+ All Categories
Home > Documents > Max-plus algebra

Max-plus algebra

Date post: 16-Oct-2021
Category:
Upload: others
View: 4 times
Download: 0 times
Share this document with a friend
92
Max-plus algebra . . . a guided tour [email protected] INRIA and CMAP, ´ Ecole Polytechnique SIAM Conference on Control and its Applications July 6 - 8, 2009 Denver, Colorado Stephane Gaubert (INRIA and CMAP) Max-plus algebra SIAM CT09 1 / 62
Transcript
Page 1: Max-plus algebra

Max-plus algebra. . . a guided tour

[email protected]

INRIA and CMAP, Ecole Polytechnique

SIAM Conference on Control and its ApplicationsJuly 6 - 8, 2009Denver, Colorado

Stephane Gaubert (INRIA and CMAP) Max-plus algebra SIAM CT09 1 / 62

Page 2: Max-plus algebra

Max-plus or tropical algebra

The max-plus semiring is the set

Rmax := R ∪ {−∞}, equipped with

a + b = max(a, b), ab := a + b,

0 = −∞, 1 = 0 .

So 2 + 3 = 3, 2× 3 = 5; 23 =? 2× 3 = 6.√−1 = ? −0.5 for (−0.5)2 = −1.

Stephane Gaubert (INRIA and CMAP) Max-plus algebra SIAM CT09 2 / 62

Page 3: Max-plus algebra

Max-plus or tropical algebra

The max-plus semiring is the set

Rmax := R ∪ {−∞}, equipped with

a + b = max(a, b), ab := a + b,

0 = −∞, 1 = 0 .

So 2 + 3 = 3, 2× 3 = 5;

23 =? 2× 3 = 6.√−1 = ? −0.5 for (−0.5)2 = −1.

Stephane Gaubert (INRIA and CMAP) Max-plus algebra SIAM CT09 2 / 62

Page 4: Max-plus algebra

Max-plus or tropical algebra

The max-plus semiring is the set

Rmax := R ∪ {−∞}, equipped with

a + b = max(a, b), ab := a + b,

0 = −∞, 1 = 0 .

So 2 + 3 = 3, 2× 3 = 5; 23 =?

2× 3 = 6.√−1 = ? −0.5 for (−0.5)2 = −1.

Stephane Gaubert (INRIA and CMAP) Max-plus algebra SIAM CT09 2 / 62

Page 5: Max-plus algebra

Max-plus or tropical algebra

The max-plus semiring is the set

Rmax := R ∪ {−∞}, equipped with

a + b = max(a, b), ab := a + b,

0 = −∞, 1 = 0 .

So 2 + 3 = 3, 2× 3 = 5; 23 =? 2× 3 = 6.

√−1 = ? −0.5 for (−0.5)2 = −1.

Stephane Gaubert (INRIA and CMAP) Max-plus algebra SIAM CT09 2 / 62

Page 6: Max-plus algebra

Max-plus or tropical algebra

The max-plus semiring is the set

Rmax := R ∪ {−∞}, equipped with

a + b = max(a, b), ab := a + b,

0 = −∞, 1 = 0 .

So 2 + 3 = 3, 2× 3 = 5; 23 =? 2× 3 = 6.√−1 = ?

−0.5 for (−0.5)2 = −1.

Stephane Gaubert (INRIA and CMAP) Max-plus algebra SIAM CT09 2 / 62

Page 7: Max-plus algebra

Max-plus or tropical algebra

The max-plus semiring is the set

Rmax := R ∪ {−∞}, equipped with

a + b = max(a, b), ab := a + b,

0 = −∞, 1 = 0 .

So 2 + 3 = 3, 2× 3 = 5; 23 =? 2× 3 = 6.√−1 = ? −0.5 for (−0.5)2 = −1.

Stephane Gaubert (INRIA and CMAP) Max-plus algebra SIAM CT09 2 / 62

Page 8: Max-plus algebra

Variants

min-plus semiring Rmin := R ∪ {+∞} with

a + b = min(a, b), ab = a + b,

max-times semiring R+ with

a + b = max(a, b), ab = a × b.

boolean semiring {0, 1}, a + b = a or b,

ab = a and b, subsemiring of the above

Stephane Gaubert (INRIA and CMAP) Max-plus algebra SIAM CT09 3 / 62

Page 9: Max-plus algebra

Studied by several researchers / schools includingCuninghame-Green 1960- OR (scheduling, optimization)

Vorobyev ∼1965 . . . Zimmerman, Butkovic; Optimization

Maslov ∼ 80’- . . . Kolokoltsov, Litvinov, Samborskii,Shpiz. . . Quasi-classic analysis, variations calculus

Simon ∼ 78- . . . Hashiguchi, Leung, Pin, Krob, . . . Automata theory

Gondran, Minoux ∼ 77 Operations research

Cohen, Quadrat, Viot ∼ 83- . . . Olsder, Baccelli, S.G., Akian initiallydiscrete event systems, then optimal control, idempotent probabilities,combinatorial linear algebra

Nussbaum 86- Nonlinear analysis, dynamical systems

Kim, Roush 84 Incline algebras

Fleming, McEneaney ∼00- Optimal control

Puhalskii ∼99- idempotent probabilities (large deviations)

Viro; Mikhalkin, Passare, Sturmfels; Shustin, Itenberg, Kharlamov,Speyer, Develin , Joswig, Yu . . . tropical geometry (emerged ∼ 02)

Stephane Gaubert (INRIA and CMAP) Max-plus algebra SIAM CT09 4 / 62

Page 10: Max-plus algebra

Like Monsieur Jourdain in Moliere’s play “Le

bourgeois gentilhomme”, who was doing prose

without knowing it. . .

every control theorist already knows max-plus

Stephane Gaubert (INRIA and CMAP) Max-plus algebra SIAM CT09 5 / 62

Page 11: Max-plus algebra

Lagrange problem / Lax-Oleinik semigroup

v(t, x) = supx(0)=x , x(·)

∫ t

0

L(x(s), x(s))ds + φ(x(t))

Lax-Oleinik semigroup: (S t)t≥0, S tφ := v(t, ·).

Superposition principle: ∀λ ∈ R, ∀φ, ψ,

S t(sup(φ, ψ)) = sup(S tφ, S tψ)

S t(λ + φ) = λ + S tφ

So S t is max-plus linear.Stephane Gaubert (INRIA and CMAP) Max-plus algebra SIAM CT09 6 / 62

Page 12: Max-plus algebra

Lagrange problem / Lax-Oleinik semigroup

v(t, x) = supx(0)=x , x(·)

∫ t

0

L(x(s), x(s))ds + φ(x(t))

Lax-Oleinik semigroup: (S t)t≥0, S tφ := v(t, ·).

Superposition principle: ∀λ ∈ R, ∀φ, ψ,

S t(φ + ψ) = S tφ + S tψ

S t(λφ) = λS tφ

So S t is max-plus linear.Stephane Gaubert (INRIA and CMAP) Max-plus algebra SIAM CT09 6 / 62

Page 13: Max-plus algebra

The function v is solution of the Hamilton-Jacobi

equation

∂v

∂t= H(x ,

∂v

∂x) v(0, ·) = φ

Max-plus linearity ⇔ Hamiltonian convex in p

H(x , p) = supu

(L(x , u) + p · u)

Hopf formula, when L = L(u) concave:

v(t, x) = supy∈Rn

tL(x − y

t) + φ(y) .

Stephane Gaubert (INRIA and CMAP) Max-plus algebra SIAM CT09 7 / 62

Page 14: Max-plus algebra

The function v is solution of the Hamilton-Jacobi

equation

∂v

∂t= H(x ,

∂v

∂x) v(0, ·) = φ

Max-plus linearity ⇔ Hamiltonian convex in p

H(x , p) = supu

(L(x , u) + p · u)

Hopf formula, when L = L(u) concave:

v(t, x) =

∫G (x − y)φ(y)dy .

Stephane Gaubert (INRIA and CMAP) Max-plus algebra SIAM CT09 7 / 62

Page 15: Max-plus algebra

Classical Maxplus

Expectation sup

Brownian motion L(x(s)) = (x(s))2/2

Heat equation: Hamilton-Jacobi equation:∂v∂t = −1

2∆v ∂v∂t = 1

2

(∂v∂x

)2exp(−1

2‖x‖2) −1

2‖x‖2

Fourier transform: Fenchel transform:∫exp(i〈x , y〉)f (x)dx supx〈x , y〉 − f (x)

convolution inf or sup-convolution

See Akian, Quadrat, Viot, Duality & Opt. . . .Stephane Gaubert (INRIA and CMAP) Max-plus algebra SIAM CT09 8 / 62

Page 16: Max-plus algebra

Max-plus basis / finite-element method

Fleming, McEneaney 00-; Akian, Lakhoua, SG 04-

Approximate the value function by a linear comb.

of “basis” functions with coeffs. λi(t) ∈ R:

v(t, ·) '∑i∈[p]

λi(t)wi

The wi are given finite elements, to be chosen

depending on the regularity of v(t, ·)Stephane Gaubert (INRIA and CMAP) Max-plus algebra SIAM CT09 9 / 62

Page 17: Max-plus algebra

Max-plus basis / finite-element method

Fleming, McEneaney 00-; Akian, Lakhoua, SG 04-

Approximate the value function by a linear comb.

of “basis” functions with coeffs. λi(t) ∈ R:

v(t, ·) ' supi∈[p]

λi(t) + wi

The wi are given finite elements, to be chosen

depending on the regularity of v(t, ·)Stephane Gaubert (INRIA and CMAP) Max-plus algebra SIAM CT09 9 / 62

Page 18: Max-plus algebra

Best max-plus approximation

P(f ) := max{g ≤ f | g linear comb. of wi}linear forms wi : x 7→ 〈yi , x〉

〈yi , x〉

adapted if v is convexStephane Gaubert (INRIA and CMAP) Max-plus algebra SIAM CT09 10 / 62

Page 19: Max-plus algebra

Best max-plus approximation

P(f ) := max{g ≤ f | g linear comb. of wi}

cone like functions wi : x 7→ −C‖x − xi‖

xi

adapted if v is C -Lip

Stephane Gaubert (INRIA and CMAP) Max-plus algebra SIAM CT09 10 / 62

Page 20: Max-plus algebra

Use max-plus linearity of Sh:

v t =∑i∈[p]

λi(t)wi

and look for new coefficients λi(t + h) such that

v t+h '∑i∈[p]

λi(t + h)wi

Stephane Gaubert (INRIA and CMAP) Max-plus algebra SIAM CT09 11 / 62

Page 21: Max-plus algebra

Use max-plus linearity of Sh:

v t+h = Shv t '∑i∈[p]

λi(t)Shwi

and look for new coefficients λi(t + h) such that

v t+h '∑i∈[p]

λi(t + h)wi

Stephane Gaubert (INRIA and CMAP) Max-plus algebra SIAM CT09 11 / 62

Page 22: Max-plus algebra

Use max-plus linearity of Sh:

v t+h = Shv t ' supi∈[p]

λi(t) + Shwi

and look for new coefficients λi(t + h) such that

v t+h ' supi∈[p]

λi(t + h) + wi

Stephane Gaubert (INRIA and CMAP) Max-plus algebra SIAM CT09 11 / 62

Page 23: Max-plus algebra

Max-plus variational approach

Max-plus scalar product

〈w , z〉 :=

∫w(x)z(x)dx

For all test functions zj , j ∈ [q]

〈v t+h, zj〉 =∑i∈[p]

λi(t + h)〈wi , zj〉

=∑k∈[p]

λk(t)〈Shwk , zj〉

Stephane Gaubert (INRIA and CMAP) Max-plus algebra SIAM CT09 12 / 62

Page 24: Max-plus algebra

Max-plus variational approach

Max-plus scalar product

〈w , z〉 := supx

w(x) + z(x)

For all test functions zj , j ∈ [q]

supi∈[p]

λi(t + h) + 〈wi , zj〉

= supk∈[p]

λk(t) + 〈Shwk , zj〉

Stephane Gaubert (INRIA and CMAP) Max-plus algebra SIAM CT09 12 / 62

Page 25: Max-plus algebra

This is of the form

Aλ(t + h) = Bλ(t), A,B ∈ Rq×pmax

� The linear system Aµ = b generically has no

solution µ ∈ Rp, however, Aµ ≤ b has a

maximal solution A]b given by

(A]b)j := mini∈[q]−Aij + bi .

Cohen, SG, Quadrat, LAA 04, Akian, SG, Kolokoltsov: Moreau

conjugaciesStephane Gaubert (INRIA and CMAP) Max-plus algebra SIAM CT09 13 / 62

Page 26: Max-plus algebra

So, the coeffs of v(t + h) are recursively given:

λ(t + h) = A]Bλ(t) .

The global error is controlled by the projection

errors of all the v(t, ·). The method is efficient if

Shwi is evaluated by a high order scheme. Then,

A]B glues the characteristics in time h.

Stephane Gaubert (INRIA and CMAP) Max-plus algebra SIAM CT09 14 / 62

Page 27: Max-plus algebra

McEneaney’s curse of dimensionalityreduction

Suppose the Hamiltonian is a finite max of

Hamiltonians arising from LQ problems

H = supi∈[r ]

Hi , Hi = −(1

2x∗Dix + x∗A∗i p +

1

2p∗Σip)

(=LQ with switching). Let S t and S ti denote the

corresponding Lax-Oleinik semigroups, S ti is

exactly known (Riccati!)

Want to solve v = S tv ,∀t ≥ 0Stephane Gaubert (INRIA and CMAP) Max-plus algebra SIAM CT09 15 / 62

Page 28: Max-plus algebra

Choose a quadratic function φ such that

S tφ→ v as t →∞. Then, for t = hk large

enough,

v ' (Sh)kφ .

This is a sup of quadratic forms. Inessential

terms are trimmed dynamically using Shor

relaxation (SDP) → solution of a typical instance

in dim 6 on a Mac in 30’

McEneaney, Desphande, SG; ACC 08

Stephane Gaubert (INRIA and CMAP) Max-plus algebra SIAM CT09 16 / 62

Page 29: Max-plus algebra

Choose a quadratic function φ such that

S tφ→ v as t →∞. Then, for t = hk large

enough,

v ' (∑i∈[r ]

Shi )kφ .

This is a sup of quadratic forms. Inessential

terms are trimmed dynamically using Shor

relaxation (SDP) → solution of a typical instance

in dim 6 on a Mac in 30’

McEneaney, Desphande, SG; ACC 08

Stephane Gaubert (INRIA and CMAP) Max-plus algebra SIAM CT09 16 / 62

Page 30: Max-plus algebra

Choose a quadratic function φ such that

S tφ→ v as t →∞. Then, for t = hk large

enough,

v '∑

i1,··· ,ik∈[r ]

Shi1· · · Sh

ikφ .

This is a sup of quadratic forms. Inessential

terms are trimmed dynamically using Shor

relaxation (SDP) → solution of a typical instance

in dim 6 on a Mac in 30’

McEneaney, Desphande, SG; ACC 08

Stephane Gaubert (INRIA and CMAP) Max-plus algebra SIAM CT09 16 / 62

Page 31: Max-plus algebra

Choose a quadratic function φ such that

S tφ→ v as t →∞. Then, for t = hk large

enough,

v ' supi1,··· ,ik∈[r ]

Shi1· · · Sh

ikφ .

This is a sup of quadratic forms. Inessential

terms are trimmed dynamically using Shor

relaxation (SDP) → solution of a typical instance

in dim 6 on a Mac in 30’

McEneaney, Desphande, SG; ACC 08

Stephane Gaubert (INRIA and CMAP) Max-plus algebra SIAM CT09 16 / 62

Page 32: Max-plus algebra

Ergodic control and games

Find a function φ and a scalar λ ∈ R such that

S tφ = λt + φ i.e. S tφ = λtφ, ∀t ≥ 0 .

λ = H(x ,∂φ

∂x) .

The eigenfunction φ avoids the “horizon effect”:

it forces the player to act in finite horizon as if

she would live forever

Stephane Gaubert (INRIA and CMAP) Max-plus algebra SIAM CT09 17 / 62

Page 33: Max-plus algebra

Some degenerate problems have been solved

using max-plus techniques

L = T + V , V potential with several points

of minima Kolokoltsov, Maslov 92

noncompact state space, max-plus Martin

boundary / horoboundaries, extreme

eigenvectors = limits of geodesics Akian, SG,

Walsh, Doc. Math. to appear, Ishii Mitake:

viscosity solution version

related to Fathi weak-KAM theory

Stephane Gaubert (INRIA and CMAP) Max-plus algebra SIAM CT09 18 / 62

Page 34: Max-plus algebra

The PDE results are best understood by looking

at the elementary finite dim case. . .

Stephane Gaubert (INRIA and CMAP) Max-plus algebra SIAM CT09 19 / 62

Page 35: Max-plus algebra

Finite dimensional spectral problem

Given A ∈ Rn×nmax , find u ∈ Rn

max, u 6= 0,

λ ∈ Rmax, such that

Au = λu

G (A): arc i → j if Aij 6= −∞

Stephane Gaubert (INRIA and CMAP) Max-plus algebra SIAM CT09 20 / 62

Page 36: Max-plus algebra

Finite dimensional spectral problem

Given A ∈ Rn×nmax , find u ∈ Rn

max, u 6≡ −∞,

λ ∈ Rmax, such that

maxj∈[n]

Aij + uj = λ + ui

G (A): arc i → j if Aij 6= −∞

Stephane Gaubert (INRIA and CMAP) Max-plus algebra SIAM CT09 20 / 62

Page 37: Max-plus algebra

Theorem (Max-plus spectral theorem, Part I:

Cuninghame-Green, 61)

Assume G (A) is strongly connected. Then

the eigenvalue is unique:

ρmax(A) := maxi1,...,ik

Ai1i2 + · · · + Aik i1

k

Stephane Gaubert (INRIA and CMAP) Max-plus algebra SIAM CT09 21 / 62

Page 38: Max-plus algebra

Example: crop rotation

2

7

6

82

F

11

45 W O

Aij = reward of the year if crop j follows crop i

F=fallow (no crop), W=wheat, O=oat,

ρmax(A) = 20/3

N. Bacaer, C.R. Acad. d’Agriculture de France, 03

Stephane Gaubert (INRIA and CMAP) Max-plus algebra SIAM CT09 22 / 62

Page 39: Max-plus algebra

Example: crop rotation

2

7

6

82

F

11

45 W O

Aij = reward of the year if crop j follows crop i

F=fallow (no crop), W=wheat, O=oat,

ρmax(A) = 20/3

N. Bacaer, C.R. Acad. d’Agriculture de France, 03

Stephane Gaubert (INRIA and CMAP) Max-plus algebra SIAM CT09 22 / 62

Page 40: Max-plus algebra

Theorem (Max-plus spectral theorem, Part II:

Gondran & Minoux 77, Cohen et al. 83)

The dim. of the eigenspace is the ] of

strongly connected components of the critical

graph (union of the maximizing circuits) of A

∼ discrete Mather or Aubry set

Stephane Gaubert (INRIA and CMAP) Max-plus algebra SIAM CT09 23 / 62

Page 41: Max-plus algebra

The max-plus spectral theorem looks like the

Perron-Frobenius theorem . . .

MetatheoremWhat is known for (max-plus, positive) linear

maps often carries over to

order preserving, sup-norm nonexpansive

maps

order preserving, positively homogeneous

maps on cones

Nussbaum, Akian, SG, Gunawardena, Lemmens. . .

Stephane Gaubert (INRIA and CMAP) Max-plus algebra SIAM CT09 24 / 62

Page 42: Max-plus algebra

Dynamic programming operators ofzero-sum games

Every order preserving, sup-norm non-expansive

map can be written as

fi(x) = infa∈A(i)

supb∈B(i ,a)

r abi + Pab

i x

zero-sum, two player, infinite action spaces,

r abi ∈ R, Pab

i substochastic vector.

The game may be even assumed to be

deterministic (Pabi degenerate), Rubinov, Singer.

Stephane Gaubert (INRIA and CMAP) Max-plus algebra SIAM CT09 25 / 62

Page 43: Max-plus algebra

Combinatorial games with mean payoff

G = (V ,E ) directed bipartite graph, rij weight of

arc (i , j) ∈ E .

“Max” and “Min” move a pawn. Payments

(made by Min to Max) correspond to moves.

The reward of Max (or the loss of Min) after k

turns is

ri0i1 + · · · + ri2k−1i2k

Stephane Gaubert (INRIA and CMAP) Max-plus algebra SIAM CT09 26 / 62

Page 44: Max-plus algebra

The circles (resp. squares) represent the nodes at

which Max (resp. Min) can play.

2

2

−1

0

5

−2

−3

3

4’

1

1’

2’

71

6

3’

11

9

0−5

Stephane Gaubert (INRIA and CMAP) Max-plus algebra SIAM CT09 27 / 62

Page 45: Max-plus algebra

2

2

−1

0

5

−2

−3

3

4’

1

1’

2’

71

6

3’

11

9

0−5

If Max initially

moves to 2′

Stephane Gaubert (INRIA and CMAP) Max-plus algebra SIAM CT09 28 / 62

Page 46: Max-plus algebra

2

2

−1

0

5

−2

−3

3

4’

1

1’

2’

71

6

3’

11

9

0−5

If Max initially

moves to 2′

Stephane Gaubert (INRIA and CMAP) Max-plus algebra SIAM CT09 28 / 62

Page 47: Max-plus algebra

2

2

−1

0

5

−2

−3

3

4’

1

1’

2’

71

6

3’

11

9

0−5

If Max initially

moves to 2′

Stephane Gaubert (INRIA and CMAP) Max-plus algebra SIAM CT09 28 / 62

Page 48: Max-plus algebra

2

2

−1

0

5

−2

−3

3

4’

1

1’

2’

71

6

3’

11

9

0−5

If Max initially

moves to 2′

he eventually looses

5 per turn.

Stephane Gaubert (INRIA and CMAP) Max-plus algebra SIAM CT09 28 / 62

Page 49: Max-plus algebra

2

2

−1

0

5

−2

−3

3

4’

1

1’

2’

71

6

3’

11

9

0−5

But if Max initially

moves to 1′

Stephane Gaubert (INRIA and CMAP) Max-plus algebra SIAM CT09 29 / 62

Page 50: Max-plus algebra

2

2

−1

0

5

−2

−3

3

4’

1

1’

2’

71

6

3’

11

9

0−5

But if Max initially

moves to 1′

Stephane Gaubert (INRIA and CMAP) Max-plus algebra SIAM CT09 29 / 62

Page 51: Max-plus algebra

2

2

0

5

−2

−3

3

4’

1

1’

2’

71

6

3’

11

9

0−5

−1

But if Max initially

moves to 1′

Stephane Gaubert (INRIA and CMAP) Max-plus algebra SIAM CT09 29 / 62

Page 52: Max-plus algebra

2

2

−1

0

5

−2

−3

3

4’

1

1’

2’

71

6

3’

11

9

0−5

But if Max initially

moves to 1′

he only looses even-

tually (1 + 0 + 2 +

3)/2 = 3 per turn.

Stephane Gaubert (INRIA and CMAP) Max-plus algebra SIAM CT09 29 / 62

Page 53: Max-plus algebra

vNj := value of Max in horizon N , initial state j .

vN := (vNj )j∈[n]

vN = f (vN−1), v 0 = 0, f = g ◦ g ′

g : Rp → Rn, gj(y) = min(j ,i)∈E

rji + yi

g ′ : Rn → Rp, g ′i (x) = max(i ,j)∈E

rij + xj

Stephane Gaubert (INRIA and CMAP) Max-plus algebra SIAM CT09 30 / 62

Page 54: Max-plus algebra

The mean payoff vector is

χ(f ) := limk→∞

f k(0)/k

A theorem of Kohlberg (1980) implies that f

admits an invariant half-line t 7→ u + tη,

u, η ∈ Rn:

f (u + tη) = u + (t + 1)η t large

Hence, χ(f ) = η.

Stephane Gaubert (INRIA and CMAP) Max-plus algebra SIAM CT09 31 / 62

Page 55: Max-plus algebra

Policy iteration for mean payoff games

A policy of Max is a map π which to each circle

node associates a successor square node.

f = supπ f π where f π is a min-plus linear

operator (one player)

∀x ∈ Rn,∃π, f (x) = f π(x)

Stephane Gaubert (INRIA and CMAP) Max-plus algebra SIAM CT09 32 / 62

Page 56: Max-plus algebra

for the current π, solve the one player game:

f π(uπ + tηπ) = uπ + (t + 1)ηπ, t large

Check whether f (uπ + tηπ) = uπ + (t + 1)ηπ

for large t.

Yes: π is optimal, mean payoff is ηπ

No: choose the new policy σ such that

f (uπ + tηπ) = f σ(uπ + tησ), t large

Stephane Gaubert (INRIA and CMAP) Max-plus algebra SIAM CT09 33 / 62

Page 57: Max-plus algebra

This is Newton, in which the tangentmap is min-plus linear !

Stephane Gaubert (INRIA and CMAP) Max-plus algebra SIAM CT09 34 / 62

Page 58: Max-plus algebra

The idea goes back to Hofman and Karp 66:

required irreducible stochastic matrices.

� in the deterministic case, the bias vector uπ

is not unique, naive policy iteration may cycle

Cochet, Gaubert, Gunawardena 99: use the max-plus

spectral theorem, uσ can be chosen to coincide

with uπ on the critical graph of σ ⇒ termination.

Extended to zero-sum stochastic games Cochet,

Gaubert CRAS 06

Stephane Gaubert (INRIA and CMAP) Max-plus algebra SIAM CT09 35 / 62

Page 59: Max-plus algebra

Works well in practice

0 50000 100000 150000 200000 250000 300000 350000 4000000

10

20

30

40

50

60

but the complexity of mean payoff games is still

an open problem (in NP ∩ coNP Condon).Stephane Gaubert (INRIA and CMAP) Max-plus algebra SIAM CT09 36 / 62

Page 60: Max-plus algebra

Static analysis of programs by abstractinterpretation

Cousot 77: finding invariants of a program

reduces to computing the smallest fixed point of

a monotone self-map of a complete lattice L

To each breakpoint i of the program, is

associated a set x i ∈ L which is an

overapproximation of the set of reachable values

of the variables, at this breakpoint.

Stephane Gaubert (INRIA and CMAP) Max-plus algebra SIAM CT09 37 / 62

Page 61: Max-plus algebra

The best x is the smallest solution of x = f (x)

void main() {

int x=0; // 1

while (x<100) { // 2

x=x+1; // 3

} // 4

}

x1 = [0, 0]

x2 = ]−∞, 99] ∩ (x1 ∪ x3)

x3 = x2 + [1, 1]

x4 = [100,+∞[∩(x1 ∪ x3)

Let x+2 := max x2. We arrive at

x+2 = min(99,max(0, x+

2 + 1)) .

The smallest x+2 is 99.

Stephane Gaubert (INRIA and CMAP) Max-plus algebra SIAM CT09 38 / 62

Page 62: Max-plus algebra

Lattice of templates

S. Sankaranarayanan and H. Sipma and Z. Manna

(VMCAI’05)

Polyhedra with limited degrees of freedom

A subset of Rn is coded by the discrete support

function

σX : P → Rn, σX (p) := supx∈X

p · x

Max-plus finite elements again, X sublevel set of

supp∈P p · x − σX (p).Stephane Gaubert (INRIA and CMAP) Max-plus algebra SIAM CT09 39 / 62

Page 63: Max-plus algebra

Theorem (SG, Goubault, Taly, Zennou, ESOP’07)

When the arithmetics of the program is affine,

abstract interpretation over a lattice of templates

reduces to finding the smallest fixed point of a

map f : (R ∪ {+∞})n → (R ∪ {+∞})n

fi(x) = infa∈A(i)

supb∈B(i ,a)

(r abi + Mab

i x)

with Mabi := (Mab

ij ), Mabij ≥ 0, but possibly∑

j Mabij > 1 (negative discount rate!)

Stephane Gaubert (INRIA and CMAP) Max-plus algebra SIAM CT09 40 / 62

Page 64: Max-plus algebra

void main() {

i = 1; j = 10;

while (i <= j){ //1

i = i + 2;

j = j - 1; }

}

i ≤ +∞i ≥ 1

j ≤ 10

j ≥ −∞i ≤ j

i + 2j ≤ 21

i + 2j ≥ 21

(i , j) ∈ [(1, 10), (7, 7)] (exact result).

Stephane Gaubert (INRIA and CMAP) Max-plus algebra SIAM CT09 41 / 62

Page 65: Max-plus algebra

solved by policy iteration for games

often more accurate than value iteration with

accelerations of convergence

-widening/narrowing- used classically in the

static analysis community

Stephane Gaubert (INRIA and CMAP) Max-plus algebra SIAM CT09 42 / 62

Page 66: Max-plus algebra

A glimpse of tropical algebra

A tropical line in the plane is the set of (x , y)

such that the max in

ax + by + c

is attained at least twice.

max(x , y , 0)

Stephane Gaubert (INRIA and CMAP) Max-plus algebra SIAM CT09 43 / 62

Page 67: Max-plus algebra

A glimpse of tropical algebra

A tropical line in the plane is the set of (x , y)

such that the max in

max(a + x , b + y , c)

is attained at least twice.

max(x , y , 0)

Stephane Gaubert (INRIA and CMAP) Max-plus algebra SIAM CT09 43 / 62

Page 68: Max-plus algebra

Two generic tropical lines meet at a unique point

Stephane Gaubert (INRIA and CMAP) Max-plus algebra SIAM CT09 44 / 62

Page 69: Max-plus algebra

By two generic points passes a unique tropical line

Stephane Gaubert (INRIA and CMAP) Max-plus algebra SIAM CT09 44 / 62

Page 70: Max-plus algebra

non generic case

Stephane Gaubert (INRIA and CMAP) Max-plus algebra SIAM CT09 44 / 62

Page 71: Max-plus algebra

Gelfand, Kapranov, and Zelevinsky defined the

amoeba of an algebraic variety V ⊂ (C∗)n to be

the “log-log plot”

A(V ) := {(log |z1|, . . . , log |zn|) | (z1, . . . , zn) ∈ V } .y = x + 1

max(x , y , 0)

If a sum of numbers is zero, then, two of them

much have the same magnitudeStephane Gaubert (INRIA and CMAP) Max-plus algebra SIAM CT09 45 / 62

Page 72: Max-plus algebra

See Passare & Rullgard, Duke Math. 04 for more

information.

Stephane Gaubert (INRIA and CMAP) Max-plus algebra SIAM CT09 46 / 62

Page 73: Max-plus algebra

Nonarchimedean amoebas are simpler.

Here, k := C{{t}}, e.g.

s = 7t−1/2 + 1 + 8t + it3/2 + · · ·v := usual valuation, e.g. v(s) = −1/2

Theorem (Kapranov)

The amoeba of

{z ∈ (k∗)n |∑i∈Nn

aizi11 · · · z

inn = 0} is

{y ∈ Rn | mini∈Nn

v(ai) + 〈i , y〉 attained twice}

Stephane Gaubert (INRIA and CMAP) Max-plus algebra SIAM CT09 47 / 62

Page 74: Max-plus algebra

The “fundamental theorem” of (maxplus)algebra

Cuninghame-Green & Meijer, 1980

A max-plus polynomial function can be factored

uniquely

f (x) = ad

∏1≤k≤d

(x + αk)

The αk are the tropical roots, can be computed

in linear time and in a robust way.Stephane Gaubert (INRIA and CMAP) Max-plus algebra SIAM CT09 48 / 62

Page 75: Max-plus algebra

The “fundamental theorem” of (maxplus)algebra

Cuninghame-Green & Meijer, 1980

A max-plus polynomial function can be factored

uniquely

f (x) = ad +∑

1≤k≤d

max(x , αk)

The αk are the tropical roots, can be computed

in linear time and in a robust way.Stephane Gaubert (INRIA and CMAP) Max-plus algebra SIAM CT09 48 / 62

Page 76: Max-plus algebra

The (algebraic) tropical eigenvalues of a matrix

A ∈ Rn×nmin are the roots of

per(A + xI )

where

per(M) :=∑σ∈Sn

∏i∈[n]

Miσ(i)

� All geom. eigenvalues λ (Au = λu) are

algebraic eigenvalues, but the converse does

not hold.Stephane Gaubert (INRIA and CMAP) Max-plus algebra SIAM CT09 49 / 62

Page 77: Max-plus algebra

The (algebraic) tropical eigenvalues of a matrix

A ∈ Rn×nmin are the roots of

per(A + xI )

where

per(M) := minσ∈Sn

∑i∈[n]

Miσ(i)

� All geom. eigenvalues λ (Au = λu) are

algebraic eigenvalues, but the converse does

not hold.Stephane Gaubert (INRIA and CMAP) Max-plus algebra SIAM CT09 49 / 62

Page 78: Max-plus algebra

Generalized Lidskii theorem

Theorem (Akian, SG, Bapat, CRAS 04)

Take (C{{ε}}, v). Let A := a + εb, a, b ∈ Cn×n,

let λ1, . . . , λn denote the eigenvalues of Aordered by increasing valuation, and let

µ1 ≤ · · · ≤ µn denote the tropical eigenvalues of

v(A). Then,

v(λ1) ≥ µ1, v(λ1) + v(λ2) ≥ µ1 + µ2 . . .

and = holds when certain minors do not vanish.Stephane Gaubert (INRIA and CMAP) Max-plus algebra SIAM CT09 50 / 62

Page 79: Max-plus algebra

Improving the accuracy of eigenvaluecomputations

Let A0 + A1x + A2x2 with Ai ∈ Cn×n, γi := ‖Ai‖.Fan, Lin, and Van Dooren proposed the scaling

x = α∗y , where α∗ =√

γ0γ2

, then linearize+QZ.

The max-times polynomial max(γ0, γ1x , γ2x2)

has one double root equal to α∗ if γ21 ≤ γ0γ2,

and two distinct roots otherwise:

α+ =γ1

γ2, α− =

γ0

γ1

Stephane Gaubert (INRIA and CMAP) Max-plus algebra SIAM CT09 51 / 62

Page 80: Max-plus algebra

When α+ � α−, two different scalings x = α±y

are needed!

x210−18

(1 2

3 4

)+ x

(−3 10

16 45

)+ 10−18

(12 15

34 28

)linearization+QZ: eigenvalues

-Inf,- 7.731e-19 , Inf, 3.588e-19

Stephane Gaubert (INRIA and CMAP) Max-plus algebra SIAM CT09 52 / 62

Page 81: Max-plus algebra

When α+ � α−, two different scalings x = α±y

are needed!

x210−18

(1 2

3 4

)+ x

(−3 10

16 45

)+ 10−18

(12 15

34 28

)Fan et al,

-Inf, -3.250e-19, Inf, 3.588e-19.

Stephane Gaubert (INRIA and CMAP) Max-plus algebra SIAM CT09 52 / 62

Page 82: Max-plus algebra

When α+ � α−, two different scalings x = α±y

are needed!

x210−18

(1 2

3 4

)+ x

(−3 10

16 45

)+ 10−18

(12 15

34 28

)tropical scaling

-7.250e-18 ± 9.744e-18 i, -2.102e+17 ±7.387e+17 i

Matlab agrees up to 14 digits with PARI

Stephane Gaubert (INRIA and CMAP) Max-plus algebra SIAM CT09 52 / 62

Page 83: Max-plus algebra

Theorem (SG, Sharify arXiv:0905.0121)

When α+ � α−, and when the Ai are well

conditioned, the pencil has n eigenvalues of order

α+ and n eigenvalues of order α−.

Experiments show that the tropical scaling

reduces the backward error.

Stephane Gaubert (INRIA and CMAP) Max-plus algebra SIAM CT09 53 / 62

Page 84: Max-plus algebra

Tropical convexity

Tropical segments:

f

g

[f , g ] := {sup(λ + f , µ + g) λ, µ ∈R ∪ {−∞}, max(λ, µ) = 0}.

Stephane Gaubert (INRIA and CMAP) Max-plus algebra SIAM CT09 54 / 62

Page 85: Max-plus algebra

Tropical convex set: f , g ∈ C =⇒ [f , g ] ∈ C

Stephane Gaubert (INRIA and CMAP) Max-plus algebra SIAM CT09 55 / 62

Page 86: Max-plus algebra

The tropical cyclic polytope

(convex hull of p points on the moment curve

t 7→ (t, t2, . . . , td), here d = 3, p = 4)

picture made with POLYMAKE (Gawrilow, Joswig)Stephane Gaubert (INRIA and CMAP) Max-plus algebra SIAM CT09 56 / 62

Page 87: Max-plus algebra

Tropical convex geometry works

Separation

projection

minimisation of distance

Choquet theory (generation by extreme

points)

discrete convexity: Helly, Caratheodory ,

Minkowski, colorful Caratheodory, Tverberg

carry over !Stephane Gaubert (INRIA and CMAP) Max-plus algebra SIAM CT09 57 / 62

Page 88: Max-plus algebra

Separation of two convex sets

SG & Sergeev arXiv:0706.3347 J. Math. Sci. (07)Stephane Gaubert (INRIA and CMAP) Max-plus algebra SIAM CT09 58 / 62

Page 89: Max-plus algebra

Tropical version of Barany’s ColorfulCaratheodory Theorem

r

r

r

b

b

b

g

g

gC

SG, Meunier, 09, arXiv:0804.1361 Disc. Comp. Geom,

to appearStephane Gaubert (INRIA and CMAP) Max-plus algebra SIAM CT09 59 / 62

Page 90: Max-plus algebra

Tropical polyhedra can be efficiently handled

Allamigeon, SG, Goubault, arXiv:0904.3436

They have often fewer (and cannot have more)

extreme points as usual polyhedra

Allamigeon, SG, Katz, arXiv:0906.3492

Stephane Gaubert (INRIA and CMAP) Max-plus algebra SIAM CT09 60 / 62

Page 91: Max-plus algebra

Tropical convexity has been applied. . .

Discrete event systems Cohen, SG, Quadrat;

more recently Katz

Horoboundaries of metric spaces Walsh

Static analysis (disjunctive invariants)

Allamigeon, SG, Goubault SAS 08

relations with tree metrics Develin, Sturmfels

Stephane Gaubert (INRIA and CMAP) Max-plus algebra SIAM CT09 61 / 62

Page 92: Max-plus algebra

Conclusion

Maxplus algebra

is useful in applications (optimal control,

discrete event systems, games)

has proved to be a gold mine of counter

examples and inspiration, for several other

fields of mathematics (combinatorics,

asymptotic analysis, geometry)

is quite fun.Some references available on http://minimal.inria.fr/gaubert/

Stephane Gaubert (INRIA and CMAP) Max-plus algebra SIAM CT09 62 / 62


Recommended