+ All Categories
Home > Documents > MAXIM Webster Cash University of Colorado. Capella 0.0001”

MAXIM Webster Cash University of Colorado. Capella 0.0001”

Date post: 20-Jan-2016
Category:
Upload: ethelbert-hardy
View: 217 times
Download: 0 times
Share this document with a friend
37
MAXIM Webster Cash University of Colorado
Transcript
Page 1: MAXIM Webster Cash University of Colorado. Capella 0.0001”

MAXIM

Webster CashUniversity of Colorado

Page 2: MAXIM Webster Cash University of Colorado. Capella 0.0001”

Sne

SNR

Log

Dia

met

er (

cm)

Log Distance (pc)0 1 2 6543 987 10

6

8

10

12

14

16

18

Maxim

PathfinderHSTChandra

NS Disks

XRB Disks

Stellar Coronae

AGNJets

AGN BLR

AGNEvent

Horizons

GRBAfterglow

InteractingBinaries

CV

XRBOrbits

20

22Star

Clusters

GalaxiesClusters ofGalaxies

Page 3: MAXIM Webster Cash University of Colorado. Capella 0.0001”

Capella 0.0001”

Page 4: MAXIM Webster Cash University of Colorado. Capella 0.0001”

Capella 0.000001”

Page 5: MAXIM Webster Cash University of Colorado. Capella 0.0001”

AR LacSimulation @ 100as

Page 6: MAXIM Webster Cash University of Colorado. Capella 0.0001”

AGN Accretion DiskSimulations @ 0.1as

Courtesy of Phil Armitage, U. Colorado and C. Reynolds, U. Maryland

Page 7: MAXIM Webster Cash University of Colorado. Capella 0.0001”

Need Resolution and Signal

If we are going to do this, we need to support two basic capabilities:

• Signal

• Resolution

Page 8: MAXIM Webster Cash University of Colorado. Capella 0.0001”

X-ray Sources Are Super Bright

Example: Mass Transfer Binary1037ergs/s from 109cm object

That is ~10,000L from 10-4A = 108 B

where B is the solar brightness in ergs/cm2/s/steradian

Brightness is a conserved quantity and is the measure of visibility for a resolved object

Note: Optically thin x-ray sources can have very low brightness and are inappropriate

targets for interferometry. Same is true in all parts of spectrum!

Page 9: MAXIM Webster Cash University of Colorado. Capella 0.0001”

Artist’s impression of Cyg X-1 (NASA)

My Impression

Page 10: MAXIM Webster Cash University of Colorado. Capella 0.0001”

Status of X-ray Optics

• Modest Resolution– 0.5 arcsec telescopes

– 0.5 micron microscopes

• Severe Scatter Problem– Mid-Frequency Ripple

• Extreme Cost– Millions of Dollars Each

– Years to Fabricate

Page 11: MAXIM Webster Cash University of Colorado. Capella 0.0001”

sin1B

2cos12 BB

sin2

sin

2cos121

BBOPD

sin20

cossin20

Baselined

2sin20

focald

Pathlength Tolerance Analysis at Grazing Incidence

A1 A2

S1S2

A1 & A2 in Phase Here

C

If OPD to be < /10 then

Page 12: MAXIM Webster Cash University of Colorado. Capella 0.0001”

A Simple X-ray Interferometer

Flats

Detector

Page 13: MAXIM Webster Cash University of Colorado. Capella 0.0001”

Wavefront Interference

d/L

=s (where s is fringe spacing)

d

Ls

s

Page 14: MAXIM Webster Cash University of Colorado. Capella 0.0001”

Optics

Each Mirror Was AdjustableFrom Outside Vacuum

System was covered by thermal shroud

Page 15: MAXIM Webster Cash University of Colorado. Capella 0.0001”

X-ray Fringes

1.25keVCash et al March 1999

0.5keVGendreau, October 2002

Page 16: MAXIM Webster Cash University of Colorado. Capella 0.0001”

Flats Held in PhaseSample Many Frequencies

Page 17: MAXIM Webster Cash University of Colorado. Capella 0.0001”

As More Flats Are UsedPattern Approaches Image

2 4 8

16 3212

Page 18: MAXIM Webster Cash University of Colorado. Capella 0.0001”

Parallel to Source Direction

To focus

Periscope Configuration

Reduces Sensitivity to BaselineEach Periscope in the array is held to sin

Keeps beam pointedin constant directionlike thin lens

Page 19: MAXIM Webster Cash University of Colorado. Capella 0.0001”

focus

Periscopes allow for delay in eachchannel. Can sample full UV plane.

Page 20: MAXIM Webster Cash University of Colorado. Capella 0.0001”

Periscope Requirements

• Even Number of Reflections

With odd number ofreflections, beam direction shiftswith mirror tilt

With even number, the mirrorscompensate and beam travels in samedirection.

Page 21: MAXIM Webster Cash University of Colorado. Capella 0.0001”

Phase Shift

Path Delay = h sin

h

so h < /10 for phase stability

if h~1cm then < 10-8 (2 milli-arcsec)

This can be done, but it’s not easy.

Page 22: MAXIM Webster Cash University of Colorado. Capella 0.0001”

Phase Delay

)cot(cot2coscot)22sec(sincotsin22seccos(cos 2111122121 dP

d1

d2

)cot(cot2coscot)22sec(sincotsin22seccos(cos 43333424234222 d

Page 23: MAXIM Webster Cash University of Colorado. Capella 0.0001”

There are Solutions

This solution can be direction and phase invariant

Dennis Gallagher has verified this by raytrace!

Pointing can wander arcseconds, even arcminutes, and beamholds fixed!

Page 24: MAXIM Webster Cash University of Colorado. Capella 0.0001”

Array Pointing

• 4 mirror periscopes solve problem of mirror stability

• But what about array pointing?

• Doesn’t the array have to be stable to 1as if we are to image to 1as?

Page 25: MAXIM Webster Cash University of Colorado. Capella 0.0001”

Thin Lens Behavior

As a thin lens wobbles, the image in space does not movePosition on the detector changes only because the detector moves

Page 26: MAXIM Webster Cash University of Colorado. Capella 0.0001”

Formation Flying

If detector is on a separate craft, then a wobble in the lens has no effect on the image.

But motion of detector relative to Line of Sight (red) does!

Much easier than stabilizing array.Still the toughest nut for full Maxim.Variety of solutions under development.

Page 27: MAXIM Webster Cash University of Colorado. Capella 0.0001”

Mirror FEMMirror Face Mirror Back

3pt Ti Flexure Mount

Optic w/FaceSheet Removed

Page 28: MAXIM Webster Cash University of Colorado. Capella 0.0001”

Mirror Analysis SummaryAnalysis Goal/Req. Result Comments

1oc Bulk Temp Load min surface deformation PtoV=6.2nm, RMS=1.2nm

1oc X Gradient min surface deformation PtoV=3.2nm, RMS=0.6nm Gradient across mirror surface

1oc Y Gradient min surface deformation PtoV=3.1nm, RMS=0.6nm Gradient across mirror surface

1oc Z Gradient min surface deformation PtoV=17.0nm, RMS=3.8nm Gradient through mirror thicknessFixed Base Dynamics FF > 100 Hz FF=278 Hz Mirror on flexures, but not entire mount20g Quasi Static Load Mount Stress < Yield 35 MPa maximum 20g Y Loading20g Quasi Static Load Low Mirror Stress 7.6MPa maximum 20g Y Loading

1cZ Mirror Deformations (mm) 20gY Mirror Back Stresses (MPa) Mirror First Mode = 278 Hz

Page 29: MAXIM Webster Cash University of Colorado. Capella 0.0001”

MAXIM Position Tolerances =1nm, F=20,000km, D=1km, m=30cm, =1deg, h=1m

DOF Mirror Equation Periscope Equation

MirrorTolerance

PeriscopeTolerance

X ±1.7nm ±4m

Y ±0.3mm ± 0.5mm

Z ±94.7nm ±0.32m

X-rot(yaw)

±6.9arcmin

± 7.8arcmin

Y-rot(pitch)

±2.3marcsec

± 10arcsec

Z-rot(roll)

±0.13arcsec

±18.5arcsec2D5

F2

)cos()sin(320

D5

F

10

)sin( m

310

)sin( m

)(sin320

)2cos(2

2

2

D5

F4

35

)sin( 15

)sin(

h20

22

10

sin

sin103

1

F

m

m

22

10

sin

sin10sin3

1

F

m

m

Page 30: MAXIM Webster Cash University of Colorado. Capella 0.0001”

Optical Bench FEM

Flexure Fixed Mount

Simplified Optics Mounts

Main Bench

“Daughter” Benches

Page 31: MAXIM Webster Cash University of Colorado. Capella 0.0001”

Periscope Assembly

Entrance Aperture(Thermal Collimator)

Shutter Mechanism(one for each aperture)

Assy. Kinematic Mounts (3)

Page 32: MAXIM Webster Cash University of Colorado. Capella 0.0001”

Launch Configuration LayoutDelta IV ø5m x L14.3m 24 Free Flyer Satellites (4 Apertures ea.)1 Hub Satellite (12 Apertures)1 Detector Satellite

Ø4.75m

Page 33: MAXIM Webster Cash University of Colorado. Capella 0.0001”

Aperture Locations (central area)

26

12

3

45

6

7

8

9

10

11

12

13

14

15

16

17

18

Page 34: MAXIM Webster Cash University of Colorado. Capella 0.0001”

On the left is the probability distribution function for two sources in the same field of view. The central source has an energy half that of the source that is displaced to the lower left. The image on the right shows 9000 total events for this system with the lower energy source having twice the intensity of the higher energy source. Even though the higher energy source is in the first maxima of the other, the two can still be easily distinguished.

Page 35: MAXIM Webster Cash University of Colorado. Capella 0.0001”

Stars

Simulation with Interferometer

Sun with SOHO

Page 36: MAXIM Webster Cash University of Colorado. Capella 0.0001”

Black hole imager

black hole census

black hole physics

space interferometry

The Beyond Einstein Program

LIGO

Chandra

Swift

MAP

Hubble

Science and Technology Precursors

Dark EnergyProbe

optical imaging

Constellation-X

x-ray imaging

LISA

gravitational wave detectors

InflationProbemicrowave background detection

Black HoleSurveyProbehard x-ray detectors

Big BangObserver

dark matter physics

space interferometry, gravitational wave detection

dark energy physics

Page 37: MAXIM Webster Cash University of Colorado. Capella 0.0001”

Bottom Line

• Maxim can be built in an affordable way

• Achieving 0.1mas can be done with modest control in free-flying

• Full black hole imaging for under $900M

• Maxim is in the planning

• NRA for “Vision Mission Studies” coming out this week.


Recommended