+ All Categories
Home > Documents > MayaSim: An Agent-Based Model of the Ancient Maya Social ...

MayaSim: An Agent-Based Model of the Ancient Maya Social ...

Date post: 08-Jan-2022
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
10
©Copyright JASSS Scott Heckbert (2013) MayaSim: An Agent-Based Model of the Ancient Maya Social-Ecological System Journal of Artificial Societies and Social Simulation 16 (4) 11 <http://jasss.soc.surrey.ac.uk/16/4/11.html> Received: 20-Aug-2012 Accepted: 02-Jun-2013 Published: 31-Oct-2013 Abstract This paper presents results from the MayaSim model, an integrated agent-based, cellular automata, and network model representing the ancient Maya social- ecological system. The model represents the relationship between population growth, agricultural production, soil degradation, climate variability, primary productivity, hydrology, ecosystem services, forest succession, and the stability of trade networks. Agents representing settlements develop and expand within a spatial landscape that changes under climate variation and responds to anthropogenic impacts. The model is able to reproduce spatial patterns and timelines somewhat analogous to that of the ancient Maya, although this proof-of-concept model requires refinement and further archaeological data for calibration. This paper aims to identify candidate features of a resilient versus vulnerable social-ecological system, and employs computer simulation to explore this topic, using the ancient Maya as an example. Complex systems modelling identifies how interconnected variables behave, considering fast-moving variables such as land cover change and trade connections, meso-speed variables such as demographics and climate variability, as well as slow-moving variables such as soil degradation. Keywords: Social-Ecological System, Archaeology, Cellular Automata, Network Model, Trade Network, Agent-Based Model Introduction 1.1 Few topics gain as much cross-disciplinary interest as the rise and fall of ancient civilisations. The story of development and demise in complex societies contains narratives of the human endeavour threatened by devastating droughts, greedy rulers, foreign imperialism, and overuse of natural resources, among others. Societies are, however, a set of interacting elements which as a whole express characteristic features, interpreted as emergent properties of underlying processes at multiple scales. Designing a holistic approach to understanding social-ecological systems requires methods which simultaneously observe patterns in many dimensions, a kind of observation for which van der Leeuw (2012) argues that traditional Western science is not very well equipped. An analogy is the example of solving a Rubik's Cube, in that one cannot get the cube 'in order' by dealing first with one side, then the next, and so forth. The only way to arrive at order is by looking at the patterns on all sides simultaneously, and not favouring any particular one at any time (van der Leeuw 2012). This paper presents a method to identify candidate features of a resilient versus vulnerable social-ecological system, and employs complex systems science, using computer simulation to explore this topic using the ancient Maya as an example. 1.2 A number of research questions are presented for exploration: What dynamics lead to the development of the densely populated and interconnected human geography of the ancient Maya? Is it possible to use computational social science to 'grow' the three Maya temporal periods of the Preclassic (1000 BC - AD 250), Classic (AD 250 - 900), and Postclassic (AD 900 - 1500)? How does the simulated social-ecological system develop and respond to changing conditions, and what modelled indicators warn of vulnerability? In order to explore these research questions, a simulation model was designed and calibrated for the landscape of Central America. Model runs produce temporal and spatial patterns that can be understood through examining the underlying assumptions of the different integrated components of the model. MayaSim is a combined agent-based, cellular automata, and network model that represents the ancient Maya social-ecological system. Agents, cells, and networks are programmed to represent elements of the historical Maya civilisation, including demographics, trade, agriculture, soil degradation, provision of ecosystem services, climate variability, hydrology, primary productivity, and forest succession. Simulating these in combination allows patterns to emerge at the landscape level, effectively growing the social-ecological system from the bottom up. This approach constructs an artificial social-ecological laboratory where different theories can be tested and hypotheses proposed for how the system will perform under different configurations. 1.3 The model is able to reproduce spatial patterns and timelines somewhat analogous to that of the ancient Maya's history. This proof of concept model requires refinement and further archaeological data for calibration to improve results, although it is noted that there is little empirical evidence by which to validate such models, and such evidence is generally site-specific and discontinuous through time. 1.4 The purpose of the model is to better understand the complex dynamics of social-ecological systems and to test quantitative indicators of resilience as predictors of system sustainability. An integrated agent-based, cellular automata, and network model was constructed using the software Netlogo (Wilensky 1999). The full model, code and documentation is available in Heckbert (2012) via the www.openabm.org website, and further description of the model in the context of Maya archaeological literature is presented in Heckbert et al. (in press). Methods 2.1 The MayaSim model represents settlements as agents located in a gridded landscape. The model is constructed using the software Netlogo (Wilensky 1999). The software interface, shown in Figure 1, presents the spatial view of the model with graphs tracking model data and a user interface for interacting with the model. The view can be changed to observe different spatial data layers within the model. The model operates at a spatial extent of 516,484 km 2 with a 20 km 2 http://jasss.soc.surrey.ac.uk/16/4/11.html 1 15/10/2015
Transcript
Page 1: MayaSim: An Agent-Based Model of the Ancient Maya Social ...

©CopyrightJASSS

ScottHeckbert(2013)

MayaSim:AnAgent-BasedModeloftheAncientMayaSocial-EcologicalSystem

JournalofArtificialSocietiesandSocialSimulation 16(4)11<http://jasss.soc.surrey.ac.uk/16/4/11.html>

Received:20-Aug-2012Accepted:02-Jun-2013Published:31-Oct-2013

Abstract

ThispaperpresentsresultsfromtheMayaSimmodel,anintegratedagent-based,cellularautomata,andnetworkmodelrepresentingtheancientMayasocial-ecologicalsystem.Themodelrepresentstherelationshipbetweenpopulationgrowth,agriculturalproduction,soildegradation,climatevariability,primaryproductivity,hydrology,ecosystemservices,forestsuccession,andthestabilityoftradenetworks.Agentsrepresentingsettlementsdevelopandexpandwithinaspatiallandscapethatchangesunderclimatevariationandrespondstoanthropogenicimpacts.ThemodelisabletoreproducespatialpatternsandtimelinessomewhatanalogoustothatoftheancientMaya,althoughthisproof-of-conceptmodelrequiresrefinementandfurtherarchaeologicaldataforcalibration.Thispaperaimstoidentifycandidatefeaturesofaresilientversusvulnerablesocial-ecologicalsystem,andemployscomputersimulationtoexplorethistopic,usingtheancientMayaasanexample.Complexsystemsmodellingidentifieshowinterconnectedvariablesbehave,consideringfast-movingvariablessuchaslandcoverchangeandtradeconnections,meso-speedvariablessuchasdemographicsandclimatevariability,aswellasslow-movingvariablessuchassoildegradation.

Keywords:Social-EcologicalSystem,Archaeology,CellularAutomata,NetworkModel,TradeNetwork,Agent-BasedModel

Introduction

1.1 Fewtopicsgainasmuchcross-disciplinaryinterestastheriseandfallofancientcivilisations.Thestoryofdevelopmentanddemiseincomplexsocietiescontainsnarrativesofthehumanendeavourthreatenedbydevastatingdroughts,greedyrulers,foreignimperialism,andoveruseofnaturalresources,amongothers.Societiesare,however,asetofinteractingelementswhichasawholeexpresscharacteristicfeatures,interpretedasemergentpropertiesofunderlyingprocessesatmultiplescales.Designingaholisticapproachtounderstandingsocial-ecologicalsystemsrequiresmethodswhichsimultaneouslyobservepatternsinmanydimensions,akindofobservationforwhichvanderLeeuw(2012)arguesthattraditionalWesternscienceisnotverywellequipped.AnanalogyistheexampleofsolvingaRubik'sCube,inthatonecannotgetthecube'inorder'bydealingfirstwithoneside,thenthenext,andsoforth.Theonlywaytoarriveatorderisbylookingatthepatternsonallsidessimultaneously,andnotfavouringanyparticularoneatanytime(vanderLeeuw2012).Thispaperpresentsamethodtoidentifycandidatefeaturesofaresilientversusvulnerablesocial-ecologicalsystem,andemployscomplexsystemsscience,usingcomputersimulationtoexplorethistopicusingtheancientMayaasanexample.

1.2 Anumberofresearchquestionsarepresentedforexploration:

WhatdynamicsleadtothedevelopmentofthedenselypopulatedandinterconnectedhumangeographyoftheancientMaya?Isitpossibletousecomputationalsocialscienceto'grow'thethreeMayatemporalperiodsofthePreclassic(1000BC-AD250),Classic(AD250-900),andPostclassic(AD900-1500)?Howdoesthesimulatedsocial-ecologicalsystemdevelopandrespondtochangingconditions,andwhatmodelledindicatorswarnofvulnerability?

Inordertoexploretheseresearchquestions,asimulationmodelwasdesignedandcalibratedforthelandscapeofCentralAmerica.Modelrunsproducetemporalandspatialpatternsthatcanbeunderstoodthroughexaminingtheunderlyingassumptionsofthedifferentintegratedcomponentsofthemodel.MayaSimisacombinedagent-based,cellularautomata,andnetworkmodelthatrepresentstheancientMayasocial-ecologicalsystem.Agents,cells,andnetworksareprogrammedtorepresentelementsofthehistoricalMayacivilisation,includingdemographics,trade,agriculture,soildegradation,provisionofecosystemservices,climatevariability,hydrology,primaryproductivity,andforestsuccession.Simulatingtheseincombinationallowspatternstoemergeatthelandscapelevel,effectivelygrowingthesocial-ecologicalsystemfromthebottomup.Thisapproachconstructsanartificialsocial-ecologicallaboratorywheredifferenttheoriescanbetestedandhypothesesproposedforhowthesystemwillperformunderdifferentconfigurations.

1.3 ThemodelisabletoreproducespatialpatternsandtimelinessomewhatanalogoustothatoftheancientMaya'shistory.Thisproofofconceptmodelrequiresrefinementandfurtherarchaeologicaldataforcalibrationtoimproveresults,althoughitisnotedthatthereislittleempiricalevidencebywhichtovalidatesuchmodels,andsuchevidenceisgenerallysite-specificanddiscontinuousthroughtime.

1.4 Thepurposeofthemodelistobetterunderstandthecomplexdynamicsofsocial-ecologicalsystemsandtotestquantitativeindicatorsofresilienceaspredictorsofsystemsustainability.Anintegratedagent-based,cellularautomata,andnetworkmodelwasconstructedusingthesoftwareNetlogo(Wilensky1999).Thefullmodel,codeanddocumentationisavailableinHeckbert(2012)viathewww.openabm.orgwebsite,andfurtherdescriptionofthemodelinthecontextofMayaarchaeologicalliteratureispresentedinHeckbertetal.(inpress).

Methods

2.1 TheMayaSimmodelrepresentssettlementsasagentslocatedinagriddedlandscape.ThemodelisconstructedusingthesoftwareNetlogo(Wilensky1999).Thesoftwareinterface,showninFigure1,presentsthespatialviewofthemodelwithgraphstrackingmodeldataandauserinterfaceforinteractingwiththe

model.Theviewcanbechangedtoobservedifferentspatialdatalayerswithinthemodel.Themodeloperatesataspatialextentof516,484km2witha20km2

http://jasss.soc.surrey.ac.uk/16/4/11.html 1 15/10/2015

Page 2: MayaSim: An Agent-Based Model of the Ancient Maya Social ...

resolution.Temporalextentis650timessteps,eachrepresentingroughly2years.

2.2 Uponmodelinitialisation,baseGISlayersareimportedusingtheNetlogoGISextension.Staticcellvariablesaresettherein,dynamicvariablesareresettodefaultvaluessetontheuserinterface,andsettlementagentsarerandomlyinitialisedinthespatiallandscape.Importedspatialdataincludeelevationandslope(Farretal.2007),soilproductivity(FAO2007),andtemperatureandprecipitation(Hijmansetal.2005).DataforsoilproductivitywasslightlysmoothedusingtheNetlogofunctiondiffusetomakedifferencesalongpolygonboundarieslessstark,butallotherdataisunchangedfromthecitedsources.Dataisresampledata20km2resolutionusingtheNetlogoGISextension(seeWilensky1999).AllGISdataishighresolutionanddeemedtobeofhighqualityexceptpossiblythesoilproductivitydataset.Thelatterdatasetcanbereplacedwithfinerresolutionregionalorcountry-specificdata,butbecausetheregionextendsacrossseveralmoderncountrieswithinconsistentdatasets,thebestgloballyconsistentdatasetavailablewasused.FutureworkwillaimtoreplacetheexistingdatasetwiththeHarmonizedWorldSoilDatabase(FAOetal.2009)forfinerspatialresolutionandconsistencyacrosscountryborders.

Figure1.MayaSimmodelinterfacewithinteractivecontrols,spatialview,andgraphstrackingmodeldata.Agentsoperateonacellularlandscapeandareconnectedbylinkswithinanetwork.

2.3 Thesimulationbeginswithcalculationsofbiophysicalvariablesforwaterflowandnetprimaryproductivity,andthesearefurtherusedtocalculateforestsuccession,agriculturalproduction,andecosystemservices.Settlementagentsinteractwiththespatiallandscapetogenerateagriculturalyieldthroughcropping,derivebenefitfromlocalecosystemservices,andgeneratetradebenefitswithintheirlocaltradenetwork.Thecombinedbenefitsofagriculture,ecosystemservices,andtradedrivesdemographicgrowthincludingmigration.Simulatingtheintegratedsystemrevealshowthesocial-ecologicalsystemfunctionsthroughtime.Additionalagentsincludea'migrant'agentwhosettlenewlocations,a'raindrop'agentwhichrouteshydrologicalsurfaceflow,anda'networksearchagent'whotraverseslinksbetweenconnectedsettlementnodestocalculatenetworkstatistics.Thefollowingsectiondescribesbiophysicalandanthropogenicprocessesthataretrackedinthemodel.

Biophysicalfunctions:climate,hydrology,soil,primaryproductivity,forestsandecosystemservices

2.4 Spatialdataforprecipitationandtemperature(Hijmansetal.2005)representingcurrentconditions(1950topresentday)isadjustedwithinthemodelusingassumptionsthatmimicthepaleoclimaticvariationpresentedinPruferetal.(2011).Variationinprecipitationismorepronouncedtowardsthenorthwestofthecasestudyarea.Thisdiagonalnorth-south/east-westvariationinrainfalliscreatedoverthecurrent-dayGISdataforprecipitation,usingthefunction:

(1)

whereRj,Tisprecipitation[mm]forcelljatinitialtimestepT,andCLnisalocalizedrainfalleffectduetothepresenceofclearedlandonneighbouringcellsn=1…8withweightingparameterδdeterminingthestrengthofthiseffect.DFjisthedistance[km]ofeachcellfromthetopnorthwestcornerofthemapandisthefurthestdistancedcellfromthispoint.RCtcyclesfrom+20%to-10%linearlyovera56timestepcycle,andt=1…650.Thisfunctionservestoreduceandincreaserainfallcyclically,withamorepronouncedeffectfurthertowardsthenorthwest.

2.5 Asurface-flowhydrologicalmodelwasdevisedtorecreatepastconditionsbasedonelevationandrainfall.Thesedataareusedtocalculatesurfaceflowandlocationofpotentialseasonalstandingwater,consistentwithReaney(2008).Eachcellgeneratesamobile'raindrop'agentcontainingprecipitationvolumeRj,T.Theraindropsfollowtheelevationdata,repeatedlymovingtotheadjacentcellwiththelowestelevation(andconsideringthesummedvolume[mm]ofraindropsalreadyatthatlocation).Ifraindropscannotmove(i.e.,alocationisflooded),theraindrops'pool'andformriverandlakepatterns,asshowninFigure2depictingsimulatedwaterflowunderclimatevariationassumptions.ThisflowpatterncanbevalidatedagainsthydrologicalprocessingfunctionsinGISsoftware.Thefunctionservestomovewaterbasedonelevation,andcangeneratethespatialdistributionandsurfacewaterflowasprecipitationvariesacrosstheclimatecycle.SeeequationsinmodelcodereadilyexploredinHeckbert(2012).Theresultoftheseequationsisafinely-resolvedspatialpatternthatisabletorecreatethepotentialriver,lake,andwetlandsystemsunderclimatevariationassumptions.Animportantcaveatofthemodelassumptions,however,isthelackofheterogeneityininfiltrationratesacrosstheregion.Inreality,thesurfacewaterinmanyareasdrainsrapidlytotheaquiferowingtothekarstlimestonebedrock,howeverspatialdatatoinformthisprocesswasnotabletobesourced,andassuchaconstantrateofinfiltrationisassumedacrossthelandscape,andisatopicforfurtherresearcheffort.

http://jasss.soc.surrey.ac.uk/16/4/11.html 2 15/10/2015

Page 3: MayaSim: An Agent-Based Model of the Ancient Maya Social ...

Figure2.Simulatedsurfacewaterflow[m3](blueonwhitebackground,darkerbluebeinggreaterflow)basedonclimatevariationassumptionsofa)-15%,b)0%,andc)+15%changeinannualprecipitationinequation1.

2.6 ThebaseGISlayersforrainfallandtemperatureareusedtocalculatenetprimaryproductivity,whichinturnisusedtocalculateforestsuccession.GISsoildataisusedtocalculateagriculturalproductivity,andallthesecombinetocalculateprovisionofecosystemservices.Whilewerecognizethattheserelationshipsarecomplex,simplifyingassumptionsallowinitialrepresentationsasmethodologiesarefurtherrefined.

2.7 Forestsuccessionoperatesasacellularautomatamodel,wherethestateofacellisdependentoninternalconditionsandisinfluencedbytheconditionofneighbouringcells.Inthisproof-of-conceptstage,cellstakeononeofthreegeneralforeststatesthatrepresentclimaxforest,secondaryregrowth,andcleared/croppedland,referredtoasstate1,2and3respectively.Theforeststateisdecrementedfor3.5%ofrandomlyselectedcells,torepresentnaturaldisturbance.Thedisturbancerateislinearlyamplifiedbypopulationdensityofnearbysettlementstorepresentlocalwoodharvesting,toamaximumof15%.Cellsadvanceintheirforeststatebasedonthetimesincelastdisturbanceandtherelativenetprimaryproductivityofthecell.Oncethetimesincelastdisturbanceisaboveathreshold(40*NPPmaxj,t /NPPj,tyearsforsecondaryregrowthand100*NPPmaxj,t /NPPj,tyearsforclimaxforest,toaccountforspatialvariationinnetprimaryproductivity)theforestconvertstothenewstate.Forconversiontoclimaxforest,acellularautomatafunctionisappliedthatrequiresanumberofneighbouringcellstoalsocontainclimaxforest.Thisrulerepresentstheneedtohavelocalvegetationforseeddispersal.

2.8 NetprimaryproductivityNPPj,t[gCm2-1yr-1]isafunctionofprecipitationandtemperature,calculatedbasedontheMiamimodel(Lieth1972)as:

(2)

whereRj,tisprecipitation[mm]andTjistemperature[degreesC].

2.9 Foreachcell,agriculturalproductivityAGj,tiscalculatedas:

(3)

whereSPjissoilproductivity(FAO2007)[index1-100],Sjisslope[%],WFjiswaterflowcalculatedasthesumvolumeofwateragentstraversinganygivencellj,asdepictedinFigure2,andSDj,tissoildegradation[%lossofproductivity].Soildegradationoccursataconstantrateof1.5%pertimestepforeachcroppedcell.Thisconstantrateofsoildegradationisobviouslyasimplifyingassumption,assoilmanagementandmaintenanceofsoilproductivityisinitselfacomplexsocial-ecologicalsystem.Theβparametersareweightingsforcalibration,andpresentedinHeckbert(2012).

2.10 Ecosystemservicesaremodelledbyquantifyingtheavailabilityprovisioningservices(asdefinedinMA2005;TEEB2010)relatingtowater,food,andrawmaterials.Thisisasubsetofecosystemservicesanddoesnotincludeafullsetofindicatorswhichwouldincorporatesupportingservices(forexampleerosionprevention),habitatservices(suchasmaintenanceofgeneticdiversity)orculturalservices(suchasinspirationforculture,art,anddesign).Thecurrentecosystemservicesequationincorporatesasubsetoffourimportantservicesprovisionbasedonarablesoils,precipitation,accesstoavailablefreshwater,andtimberresources.EcosystemservicesESjarecalculatedas:

(4)

whereAGj,tistakenfromequation3,Rj,tistakenfromequation1,WFj,tisthesimulatedwaterflowvolume,andFj,tistheforeststate[1-3],ESDj,tisacatch-allproxyvariableforallotherecosystemservicesdegradation[%]asafunctionofpopulationdensity.

Anthropogenicfunctions:agriculture,trade,anddemographics

2.11 Eachsettlementagentimaintainsatleastonecelljforgeneratingagriculturalyield.Settlementsperformanagriculturebenefit-costassessmentconsideringthecostsofproduction,travelcostgiventhedistanceofthecellfromthesettlementsite,andwithlargersettlementsachievingeconomiesofscale,modelledas;

(5)

whereBCAj,tisthetotalbenefitprovidedfromagricultureyield,κj,α,andφ,arecropyieldandslopeparameters,AGj,tisagaintakenfromequation3,γistheestablishmentcostofagriculture(annualvariablecosts),Ojistheagriculturetravelcostasafunctionfordistancefromthecityandaperkmcostparameter,andPj,tispopulationofthesettlement.

2.12 Thebenefit-costofagriculturefunctiongeneratesyieldsthatarespatiallydistributedbasedonindividualconditionsofthecellsandthelocationofsettlements.Costsofproduction,includingdistancefromsettlements,resultsinaddingcroppedcells,generatingyieldandincreasingpopulation,whichinturnaddmore

http://jasss.soc.surrey.ac.uk/16/4/11.html 3 15/10/2015

Page 4: MayaSim: An Agent-Based Model of the Ancient Maya Social ...

croppedcells,butcausessoildegradation.Thesystemadjustsovertimeinresponsetothespatially-explicitagriculturalbenefit-cost.

2.13 Aseriesoffunctionsrepresenttradewithinaspatiallyconnectednetworkofagents.Itisassumedthatthroughtheprocessofspecialization,settlementsthatareconnectedtooneanotherwithinanetworkwillgeneratebenefitsfromtrade.Itisassumedalargernetworkproducesgreatertradebenefits,andalsothemorecentralasettlementiswithinthenetwork,thegreaterthetradebenefitsforthatindividualsettlement.Tomodelthesebenefits,settlementsareconnectedviaanetworkoflinksthatrepresenttraderoutes.Asasimplifyingassumptionofhowtheyconnecttogether,itisassumedwhenasettlementreaches(ordropsbelow)acertainsize,theywilladdroutes(orallowroutestodegrade)tonearbysettlementswithina40kmradius.Ateachtimestep,thesizeofthelocalnetworkiscalculatedaswellaseachsettlement'scentralitywithinthatlocalnetwork,furtherdiscussedbelow.

2.14 Combiningthefunctionsforagriculture,ecosystemservices,andtradebenefit,totalrealincomepercapitaRIiiscalculatedas:

(6)

whereNj,tisthenetworksize[#nodes],Cj,tisthecentrality[degree]andTCiisthetravelcost,andϑparametersarepricesforagriculture,ecosystemservices,andtrade,respectively.BenefitsfromagriculturearecalculatedonlyforcellsundercroppingproductionAGJi,t=1…nwhereasecosystemservicesarecalculatedencompassingtheentire'areaofinfluence'ofeachsettlementIJi,t=1…mwhichisbasedonthepopulationsizeofthesettlement,increasinglinearlytoamaximumof40kmindiameterforthemostpopuloussettlements(thosewithpopulationsgreaterthan15000people),astakenfromHeckbertetal.(inpress)andinterpretedfromChaseandChase(1998).Travelcostmeasurestherelative'friction'ofdifferentlandcovertypes,andisrepresentedas:

(7)

whereSjisslopeandWFj,tissimulatedwaterflowvolume,bothdescribedinpreviousequations,resultinginareasofhigherslopebeingrelativelymorecostlytotravelthrough,mitigatedbythepresenceofflowingwaterforcanoetransport.

2.15 ThetermsNJi,tnetworksize,andCi,tcentralityinequation6arecalculatedusinganetworksearchalgorithmcustom-builtforthisapplication.Thenetworksearchalgorithmisthemostdetailedprocedureinthemodel,andusesarecursivesearchfunctionusing'networkwalkingagents'whotraveleverypossiblecombinationofroutesalonganetworkpath.Thesereporttothenetworknodes(settlements)thetotalsizeofthelocalcluster,andthepositionofthenodewithinthatcluster(degree).Thenetworksearchalgorithmisthelengthiestprocedureintermsofamountofcodewritten,isthemostcomputationallyexpensiveprocedureinthemodel(morethandoublesthetotalruntimeofasimulationof650timesteps).TheoutcomeoftheprocedureisdepictedinFigure3fortimestep250,withthenetworklinkscolouredblackandtherangeofvaluesonthevisualscalehalvedcomparedtofollowingfiguresofthesameindicator,forvisualpurposes.

http://jasss.soc.surrey.ac.uk/16/4/11.html 4 15/10/2015

Page 5: MayaSim: An Agent-Based Model of the Ancient Maya Social ...

Figure3.Simulated'tradestrength'[lasttermofequation6](redonwhitebackground,darkerredbeinggreatertradestrength)basedoncentrality,sizeoflocalnetworkcluster,andtravelcostofeachsettlement(templeicon),connectedviatraderoutes(blacklinks).Alocalclusterisidentifiedforvisualpurposeswithablue

ovaloverthesamecluster,witha)andb)beingzoomed-inviewsofthewidersystemdepictedinc).

2.16 WeseeinFigure3anareahighlightedbyablueoval,zoomed-inatthreedifferentscales.InFigure3a),weseethatthislocalclusterisnotconnectedtoadjacentclusters,andNi,tnetworksize[#ofnodesinnetwork]issmall.InFigure3b)weseethatthetradestrength(redcolouring)isgreaterforlarger-sizedlocalclustersgiventhelargervalueofNi,t.Lastly,inFigure3c)weobservethatcentralnodesinlargerclusters(thoselocatedinthedarkestredregions),havegreatertradestrengthcomparedtonodesattheperipheryofthesamecluster.

2.17 ThevalueofeachcontributiontoRIi,tisdeterminedbytheweightingϑ,whichisstaticforϑAGandϑES;however,thevalueoftradeϑTRtisdynamic.

Specifically,ϑTRtincreaseseachtimerainfalldecreases,accordingtotheclimatevariationassumptions.Theassumptionhereisthatsettlementsspecialize

productionwithinanoveralltradenetworktoincreasethevalueoftradegoodsrelativetoothercommodities.Theeffectistolinearlyincreasethevalueoftradeeachtimetheclimatecycleisindecline.Thisassumptionisobviouslyrudimentary,andfurtherformulationsareexplored.

2.18 AfterdeterminingRIi,t,settlementdemographicsaccountforbirths,deaths,andmigration.Thebirthrateisassumedtoremainconstantat15%,whiledeathrateandout-migrationdecreaselinearlywithincreasedRIi,tpercapita,withamaximumout-migrationrateof15%andamaximumdeathrateof25%perannum.Settlementswithapopulationbelowaminimumnumberrequiredtomaintainsubsistenceagriculturearedeleted.Settlementsthatregisterout-migrationaboveaminimumthresholdofthenumberofpeoplerequiredtomaintainsubsistenceagriculturecreatea'migrantagent'.Themigrantagentusesautilityfunction(Heckbertetal.2010)toselectlocationstocreateanewsettlement.Themigrationutilityfunctioniscalculatedas:

(8)

whereλparametersareweightingsfortravelcostandecosystemservices,andESj,tistakenfromequation4,andDjisthedistancefromtheoriginsettlementtothepotentialnewsettlementsite.

2.19 Modeloutcomesaredependentonparameterizationofequations1-8.Thisstageofmodeldevelopmentisofferedforproofofconcept,fortransparency,andtoreceivefeedbackonmodelassumptions.Modelcodeandparameterizationisavailablefordownloadviathehttp://www.openabm.orgwebsiteinHeckbert(2012).

Results

3.1 Thissectiondescribesresultsandsensitivityanalysisfromsimulationruns.Thisproof-of-conceptstagemodelrevealsfamiliarpatternsanalogoustotheMayahistoricaltimelineandoffersaquantitativebasisfortheseassessments.Themodelwasinitialisedaccordingtodefaultvalues(Heckbert2012).Simulationruns

wereconductedwithatemporalextentof650timestepswithaspatialresolutionof20km2.Figures5-7describemodelresults,depictingmeanvaluesfor20runs(withconfidenceintervals[a=0.05]whererelevant),andreportingonsocial-ecologicalindicators.

3.2 Figure4presentsspatialoutcomesforfiveindicators,at200timestepintervals.Populationdensity,forestcondition,settlementtradestrength,soildegradation,theconditionofecosystemservicesandforestseachcontainanarrativedescribingthedevelopmentandreorganisationofthesimulatedsocial-ecologicalsystem.Bytimestep200,settlementshaveexpandedintoallregions,firstoccupyingareaswithgreaterecosystemservicesandprogressivelygrowingwithagriculturedevelopment.Populationdensitiesarehigherinareaswheresettlementshaveclusteredandformedlocaltradeconnections.Bytimestep400,asthevalueoftradeincreases,thepopulationdramaticallyincreases,extendinglocaltradeconnectionsto'global'connectivity.Anotablefringeexistsbetweentheconnectednetworkandtheperiphery.ThecentreoftheglobaltradenetworkisapproximatelyinthebroadregionwhereancientMayacaptialsofTikalandCaracolexisted.Theconditionoftheforestismarkedlychanged,withonlysmallpatchesofclimaxforestremaininginagriculturallyunsuitableareas,formingecologicalrefugiawithinthenear-completelysettledlandscape.Dramatically,bytimestep600thetradenetworkhasdisintegrated,thecentreofthemostdenselypopulatedareasisnearlyentirelyabandoned,leavingonlyasmallnumberoflocallyconnectedsettlementsofanynotablesizeinwhatwasoncethefringeofthegloballyconnectednetwork.Abandonedcroplandandsignificantlydecreasedfuelwoodharvestingallowsbroad-levelsecondaryregrowth,andclimaxforesteventualyexpandsoutfromitsrefugiatoanextentsimilartoprepopulationexpantionlevels.However,soilsandecosystemservicesremainseverelyimpactedandlargescaleresettlementofdegradedareasisnotpossible.

http://jasss.soc.surrey.ac.uk/16/4/11.html 5 15/10/2015

Page 6: MayaSim: An Agent-Based Model of the Ancient Maya Social ...

Figure4.Populationdensity,forestcondition,settlementtradestrength,soildegradationandtheconditionofecosystemservicesareshownat200timestepintervals.Darkercolouringshowsincreaseda)populationdensity(blue),c)tradestrength(red),d)soildegradation(red),ande)ecosystemservices(green).Forest

conditionb)depictsthreestatesofcleared/croppedcells(yellow),secondaryregrowth(lightgreen)andclimaxforest(darkgreen).

3.3 Themodelreportsquantitiativeindicatorsthroughtimeandcanbeusedtodrilldowninordertoexplorethedynamcisofthedevelopmentandreoganisationobserved.Figure5presentsthetotalpopulationofallsimulatedsettlementsandcontributionstorealincomebyecosystemservices,agricultureandtrade,respectively.Inthefirst_ofthesimulation,ecosystemsservicesprovidethemajorityofvalue.Ecosystemservicesvaluesaresupersededbyagriculturebytimestep150,andbotharesupercededbytradearoundtimestep350.Neitherrecoverastradevaluesdecreaseinthelatterhalfofthesimulationrun,andpopulationadjustsaccordingly.

http://jasss.soc.surrey.ac.uk/16/4/11.html 6 15/10/2015

Page 7: MayaSim: An Agent-Based Model of the Ancient Maya Social ...

Figure5.Totalpopulation[#people,primaryaxis]ofallsimulatedsettlementsovertime,andcontributionstorealincomebyecosystemservices,agricultureandtrade[#proxyvalueunits,secondaryaxis].Ecosystemservicesvaluesaresupercededbyagriculturebytimestep150,andbotharesupercededbytradearound

timestep350.Neitherrecoverastradevaluesdecreaseinthelatterhalfofthesimulationrun.

3.4 TherapidchangeinthevalueoftradecanbeexplainedbyexaminingFigure6,whichdepitcsthetotalnumberofsettlementnodes,thenumberofnodeswithinthelargestcluster,andtotalnaturalcapital,whichisrepresentedasthetotalsumofecosystemservicestakenfromequation4.Thenetworkgrowsfromlocalclusterstoanear-globallyconnectedsystem.Periodicperturbationsgivetheclustersstructurewhichinevitablyformthe'skeleton'oftheglobalstructure.However,whennaturalcapitalhasreacheditslowestlevel,perturbationsresultincascadingfailureinthenetwork.Althoughnaturalcapitalrecovers,thenumberofsettlementsdoesnotduetothelackoftradenetworkstructure.

http://jasss.soc.surrey.ac.uk/16/4/11.html 7 15/10/2015

Page 8: MayaSim: An Agent-Based Model of the Ancient Maya Social ...

Figure6.Totalnumberofsettlementnodesandnumberofnodeswithinthelargestcluster[primaryaxis],andtotalnaturalcapital[totalsumofecosystemservicesvalues,secondaryaxis].Thenetworkgrowsfromlocalclusterstoanear-globallyconnectedsystemthroughgrowthinlinkconnectionsandperiodicperturbations

whichgivetheclustersstructure.However,whennaturalcapitalhasreacheditslowestlevel,perturbationsresultincascadingfailureinthenetwork.

3.5 Figure7depictssoildegradationandforestconditionbythreestatesofcleared/croppedcells(state1),secondaryregrowth(state2)andclimaxforest(state3).Theinitialperiod,correspondingtoroughlythefirstthirdofthesimulationrun,isdescibedbyaccelerateddeclineofclimaxforestandinhibitedregrowthisaresultofcroppingandtimberharvestingforconstructionandfuelwoodasaresultofincreasingpopulationlevels.Thefollowingperiod,correspondingtoroughlythesecondthirdofthesimulationrun,showscontinuedrepressedregrowth,andincreasedareasofcleared/croppedlandaspopulationpressureresultsinmarginallandsbeingputunderagriculturalproduction.Asaresult,soildegradationincreasesatitshighestrateduringthisperiod.Thelastthirdofthesimulationrunshowsarapiddeclineincleared/croppedlandwithcorrespondinglargescalesecondaryregrowth,andeventualsuccessionintoclimaxforestwhichrecoverstonearpre-developmentlevels.

http://jasss.soc.surrey.ac.uk/16/4/11.html 8 15/10/2015

Page 9: MayaSim: An Agent-Based Model of the Ancient Maya Social ...

Figure7.Forestcondition[%oftotalarea,primaryaxis]bythreestatesofcleared/croppedcells(state1),secondaryregrowth(state2)andclimaxforest(state3),andsoildegradation[totalproxysoilproductivityunitslost,secondaryaxis].Accelerateddeclineofclimaxforestandinhibitedregrowthisaresultofcroppingandtimberharvesting.Increasedcleared/croppedarearesultsinhighersoildegradationrates,withsoilsbeginningtorecoverafterclimaxforestagainbecomes

dominant.3.6 ThetimelineforeachindicatorpresentedinFigures5-7revealstheunderlyingdynamicsofthemodelledsocial-ecologicalsystem.Table1presentsan

integratednarrativeofmodelindicatorsat100timestepintervals,akintotheanalogyofexaminingaRubik'sCubebylookingatthepatternsonallsidessimultaneously(vanderLeeuw2012).Thiscomplexsystemsperspectivehighlightsthatareductionistmethodofidentifyingfactorscontributingtoresilienceandvulnerabilitycannotbeusedtoidentifyasinglecause(oralinearprogressionofsinglecauses)oftheunravellingofthesocial-ecologicalsystem.

Table1:Narrativedescriptionofmodelledindicatorsforpopulation,forests,soils,andtradein100timestepintervals

TimeStep

100 200 300 400 500 600

Population Numberofsettlementsgrowsbasedonmigrationtounsettledareaswithhighecosystemservices

Populationincreaseswithagriculturedevelopment

Populationincreaseswithtradevalue

Populationreachesheight,significantperturbationswithclimatevariability

Precipitousdeclineinpopulation

Populationdoesnotrecovertopriorlevelsandsettlementsofanysignificantsizearelocatedattheformerfringeofthemostdenselypopulatedareas

Forests Gradualdeclineofclimax-dominatedforestandgradualincreaseofsecondaryregrowthandcleared/croppedareas.

Roughlyevendistributionofthreeforeststates.

Climaxforestreducedto10%oflandscapearea,timberharvestingandcroppingsuppressessecondaryregrowth.

Cleared/croppedlandaccountsfor70%oflandsurface,climaxforestreducedtorefugia.

Broad-scalesecondaryregrowth.

Climaxforestbeginstoemergefromrefugiatonearlyregainpre-developmentlevels.

SoilsandAgriculture

Agriculturalexpansionintoprimesoils.

Increaseofcroppedareasinbroadlysettledlandscape.

Expansionofagricultureintomarginalandmoredistantlocations,soildegradationrateincreases.

Broad-scalecroppingalbeitwithdiminishingreturnsrelativetolandareaunderproduction.Soildegradationreachesheight.

Abandonmentofcropsandlossofeconomiesofscaleinagricultureproduction,legacysoildegradationinhibitsre-sowingcrops.

Soilsremainunproductiveandareassuitableforagriculturearepredominantlyintheformerfringeofdenselycroppedareas.

Tradeandnetworkstructure

Littleconnectivityoftraderoutes,withsmallnetworkclustersizesof<10settlements.

Localconnectivityoftraderoutesintowell-definedclustersof<20settlements.

Regional-scaleconnectivityofpreviouslocalclusters,withkeysettlementsbecomingcriticalnetworklinks.

Near-globalnetworkemergesandexpandstofringes.Tradevaluesupersedescontributionsfromagricultureorecosystemservices.

Globalnetworkfullyconnectedthroughkeylocations,overallnetworkstructurevulnerabletoperturbance.

Cascadingnetworkfailureresultsinexistenceofonlysmalllocalnetworksattheformerfringe.

Discussionandconclusions

4.1 TheMayaSimmodelpresentsaproof-of-conceptagent-basedmodelrepresentingkeyelementsoftheancientMayasocial-ecologicalsystem.Agents,cells,andnetworksareprogrammedtorepresentdemographics,trade,agriculture,soildegradation,ecosystemservices,climatevariability,hydrology,primaryproductivity,andforestsuccession.Simulatingeachoftheseincombinationallowspatternstoemergeatthelandscapelevel,effectivelygrowingthesocial-ecologicalsystemfromthebottomup.ThisallowsinvestigationofwhatconditionsleadtothedevelopmentofdenselypopulatedandhighlyinterconnectedhumangeographyoftheancientMaya,andrevealsdynamicsofhowpastsocietiesimpactedtheirenvironmentandviceversa.

4.2 Themodelverificationprocessinvolveddebuggingandindividuallytestingmoduleswithintheoverallmodel.Throughthisprocess,itwasobservedthatmodeloutcomeswereparticularlysensitivetotherelationshipbetweensoildegradationandtherateofincreaseintradevalue,againwithintherangeofnon-extremeclimatevariation.Therelationshipliesinthefactthatsettlementswithhigherpercapitarealincome,duetotradeflows,increaseinpopulationandlocalmarginallandsareputunderproduction.Areaswithbettersoilsareabletomaintainpopulationsandtradeconnectionsovermultiplecyclesofdisturbanceandintheendbecomecriticalnodesinthetradenetwork.Thisinturnincreaseslocalsoildegradation.Whensoildegradationbecomessevere,acriticalnodeintheoverallglobaltradenetworkmaynotbeablesustainsufficientlocalpopulationtomaintaintradeconnections.Thedemiseofagloballysignificantnodecanthenresultincascadingfailureinthenetwork,witheffectsnotnecessarilylocatednearby,buteverywhereonthenetwork.

4.3 Theverificationprocessandmanualdebuggingoverthousandsofrunsproducedaninformalsensitivityanalysis,whichrevealedthatthatthemodelledMayasocial-ecologicalsystem,undergivenassumptions,doesnotalwaysreachalargepopulation'peak'.Itisonlyunderanarrowsetofconditionsthatthepopulationisabletogrowlargeenough,andwiththeproperspatialdistribution,toresultinthegloballyconnectedtradenetworkwhichinturnallowsforfurther

http://jasss.soc.surrey.ac.uk/16/4/11.html 9 15/10/2015

Page 10: MayaSim: An Agent-Based Model of the Ancient Maya Social ...

populationgrowth.Inordertogetthepeakwhichisanalogoustotheobservedprehistoricalrecord,arelativebalanceinthesetofparametersrelatingtotrade,ecosystemservices,andagriculturalrealincomemustoccur.Inotherwords,theequationsrelatingtodemographics,soildegradation,andtradevaluemustallbewithinaspecificrangeforthepopulationtorisesubstantiallyenoughtocreatepatternsthatarerecognisableasPreclassic,ClassicandPostClassictemporalperiods.Thetwoprimaryparametersthatseemtorequirebalancearetheincreaseintradevalueandtherateofsoildegradation.

4.4 Furtherresearchwillfocusoncalibratingmodelinputsfromagronomicmodels,inputtingfinerresolutionsoilandvegetationdata,andrunningthemodeloverageneratedpaleoclimatereconstruction.Rudimentaryassumtionsonhowtradevaluechangescanbereplacedwithothercandiateassumtions.FuturevalidationispossibleusingGIS-basedarcheologicalsitedataforsettlementlocationsovertime,comparisonofsimulatedbuiltareastoLIDARdata,comparingpollencorecontenttosimulatedcatchmentlandcover,aswellasnetworkconnectivityofsettlementsasevidencedthroughceramicinteractionsovertime.

4.5 Revisitingresearchquestionsinlightofthemodelresults,wecanidentifycriticaldynamicsofhowtheMayacametodevelopintoahighlyinterconnectedanddenselypopulatedsocial-ecologicalsystem.Theseprocessescanbeinterpretedintoatemporalpatternofdevelopmentandreorganisation,thatinthesimulatedmodelproducesoutcomesroughlyanalogoustothearchaeologicaldescriptionoftheMayaPreclassic(<modeltimestep200),Classic(roughlytimestep200-450),andPostclassicperiods(>modeltimestep450).Fromacomplexsystemsscienceperspective,thereisnoonecauseofthedramaticre-organisationwhichoccurstomarktheendoftheClassicperiod,andnotablyinthismodelthereisno'drought',merelycyclicalclimatevariabilitywhoseeffectcompletelydependsontheentiretyoftherestofthestatevariablesinthesocial-ecologicalsystem.Climatevariability,soildegradation,deforestation,demographicpressure,andthephysicalconfigurationoftradenetworksareallfactorswhichconcurrentlycontributetoresilienceorvulnerability,andcannotbe'ordered'or'prioritised'intoanygivensequenceofeventswhichcausesthere-organisationintothePostclassicperiod.Complexsystemsmodellingcanhoweveridentifyhowthesevariablesinteract,andprovidesapictureofhowaninterconnectedsystemrespondsgivenitsembeddedfast-movingvariablessuchaslandcoverchangeandtradeconnections,meso-speedvariablessuchasdemographicsandclimatevariability,aswellasslow-movingvariablessuchassoildegradation.

Acknowledgements

TheauthorwouldliketoacknowledgethecontributionsofChristianIsendahl,JoelGunn,AndrewReeson,SimonBrewer,TimBaynes,VernonScarborough,ArlenChase,DianeChase,RobertCostanza,JohnMurphy,DerekRobinson,NicholasDunning,CarstenLemmen,LaelParrot,TimothyBeach,SherylLuzzadder-Beach,DavidLentz,PaulSinclair,CaroleCrumleyandSandervanderLeeuw.ThisprojectwassupportedbyAlbertaInnovatesTechnologyFutures,PortlandStateUniversity,ArizonaStateUniversity,UppsalaUniversity,andUniversityofCincinnati.

References

CHASE,A.F.andChase,D.Z.(1998).ScaleandIntensityinClassicPeriodMayaAgriculture:TerracingandSettlementatthe'GardenCity'ofCaracol,Belize,CultureandAgriculture20(2):60-77.[doi:10.1525/cag.1998.20.2-3.60]

FAO(2007).SoilProductionIndex.http://www.fao.org:80/geonetwork?uuid=f7a2b3c0-bdbf-11db-a0f6-000d939bc5d8

FAO/IIASA/ISRIC/ISSCAS/JRC,(2009).HarmonizedWorldSoilDatabase(version1.1).FAO,Rome,ItalyandIIASA,Laxenburg,Austria.

FARR,T.G.,Rosen,P.A.,Caro,E.,Crippen,R.,Duren,R.,Hensley,S.,Kobrick,M.,Paller,M.,Rodriguez,E.,Roth,L.,Seal,D.,Shaffer,S.,Shimada,J.,Umland,J.,Werner,M.,Oskin,M.,Burbank,D.,andAlsdorf,D.(2007),TheShuttleRadarTopographyMission,Rev.Geophys.,45,RG2004.[doi:10.1029/2005RG000183]

HECKBERT,S.,Adamowicz,W.,Boxall,P.,&Hanneman,D.(2010).CumulativeEffectsandEmergentPropertiesofMultiple-UseNaturalResources.LectureNotesinComputerScience,5683,1-13.[doi:10.1007/978-3-642-13553-8_1]

HECKBERT,S.(2012).MayaSim:Anagent-basedmodeloftheancientMayasocial-ecologicalsystem.http://www.openabm.org/model/3063/version/3

HECKBERT,S.,Isendahl,C.,Gunn,J.,Brewer,S.,Scarborough,V.,Chase,A.F.,Chase,D.Z.,Costanza,R.,Dunning,N.,Beach,T.,Luzzadder-Beach,S.,Lentz,D.,Sinclair,P.(2014,inpress).GrowingtheancientMayasocial-ecologicalsystemfromthebottomup.In:Isendahl,C.,andStump,D.(eds.),AppliedArchaeology,HistoricalEcologyandtheUseablePast.OxfordUniversityPress.

HIJMANS,R.J.,S.E.Cameron,J.L.Parra,P.G.JonesandA.Jarvis,(2005).Veryhighresolutioninterpolatedclimatesurfacesforgloballandareas.InternationalJournalofClimatology25:1965-1978.Availableat:http://www.worldclim.org/[doi:10.1002/joc.1276]

LIETH,H.,1975.Modelingtheprimaryproductivityoftheworld.In:Lieth,H.,Whittaker,R.H.(Eds.),PrimaryProductivityoftheBiosphere.Springer-Verlag,NewYork,pp.237-263.[doi:10.1007/978-3-642-80913-2_12]

MA(2005).MillenniumEcosystemAssessment.EcosystemsandHumanWell-being:Synthesis.IslandPress.Washington,DC.

PRUFER,K.,Scarborough,V.L.Chase,A.F.,Chase,DZ.,Cobos,R.,Dunning,N.,Gunn,J.,Fedick,S.,Fialko,V.,Iannone,G.,Lentz,D.,Liendo,R.,Lucero,L.,Sabloff,J.,Tainter,J.,Valdez,F.,andvanderLeeuw,S.(2011).IHOPEMaya:ResilienceandRigidityintheDevelopmentandDisintegrationofComplexSocietiesintheTropicalLowlandsofMesoamerica,paperpresentedatResilience2011,ArizonaStateUniversity,Tempe,Arizona.

REANEY,S.M.(2008).Theuseofagentbasedmodellingtechniquesinhydrology:determiningthespatialandtemporaloriginofchannelflowinsemi-aridcatchments.EarthSurfaceProcessesandLandforms.33,pp.317-327.[doi:10.1002/esp.1540]

TEEB(2010).TheEconomicsofEcosystemsandBiodiversity.MainstreamingtheEconomicsofNature:Asynthesisoftheapproach,conclusionsandrecommendationsofTEEB.ProgressPress,Malta.

VANDERLEEUW,S.,Costanza,R.,Aulenbach,S.,Brewer,S.,Burek,M.,Cornell,S.,Crumley,C.,Dearing,J.,Downy,C.,Graumlich,L,Hegmon,M.,Heckbert,S.,Hibbard,K.,Jackson,ST.,Kubiszewski,I.,Sinclair,P.,Sörlin,S,andSteffen,W.(2011).TowardanIntegratedHistorytoGuidetheFuture.EcologyandSociety.(16)4.[doi:10.5751/es-04341-160402]

WILENSKY,U.(1999).NetLogo.CenterforConnectedLearningandComputer-BasedModeling,NorthwesternUniversity.Evanston,IL.http://ccl.northwestern.edu/netlogo/.

http://jasss.soc.surrey.ac.uk/16/4/11.html 10 15/10/2015


Recommended