+ All Categories
Home > Documents > M.Capitelli Dipartimento di Chimica, Università di Bari, Italy IMIP-CNR, Bari, Italy.

M.Capitelli Dipartimento di Chimica, Università di Bari, Italy IMIP-CNR, Bari, Italy.

Date post: 14-Dec-2015
Category:
Upload: lexie-leak
View: 220 times
Download: 1 times
Share this document with a friend
Popular Tags:
79
CRP (C OOR DINATED R ESEA RCH PROJECT), IAEA M EETING “ATOMIC and M O LECU LAR D ATA for PLA SM A M OD ELING V IENNA , SEPTEM BER 26-28, 2005 D YNAMICS , KINET ICS AND MODEL ING OF MOLEC ULAR AND A TOMIC PLA SMAS : THE S TATE TO S TATE A PPROACH M.Capitelli Dipartimento di Chimica, Università di Bari, Italy IMIP-CNR, Bari, Italy
Transcript
Page 1: M.Capitelli Dipartimento di Chimica, Università di Bari, Italy IMIP-CNR, Bari, Italy.

CRP (COORDINATED RESEARCH PROJECT), IAEA MEETING “ATOMIC and MOLECULAR DATA for PLASMA MODELING”VIENNA, SEPTEMBER 26-28, 2005

DYNAMICS, KINETICS AND MODELING OF MOLECULAR AND

ATOMIC PLASMAS: THE STATE TO STATE APPROACH

M.Capitelli

Dipartimento di Chimica, Università di Bari, ItalyIMIP-CNR, Bari, Italy

Page 2: M.Capitelli Dipartimento di Chimica, Università di Bari, Italy IMIP-CNR, Bari, Italy.

CRP (COORDINATED RESEARCH PROJECT), IAEA MEETING “ATOMIC and MOLECULAR DATA for PLASMA MODELING”VIENNA, SEPTEMBER 26-28, 2005

COLLABORATORS

C.GORSE, S.LONGO, P.DIOMEDE, D.PAGANO, D.PIETANZADepartment of Chemistry, University of Bari, Bari, Italy

O.DE PASCALE, F.ESPOSITO, A.LARICCHIUTA, M.RUTIGLIANO, M.CACCIATOREIMIP(CNR), Bari, Bari, Italy

R.CELIBERTODICA Politecnico di Bari, Bari, Italy

AND

A.GICQUEL, K.HASSOUNILIMHP-CNRS, Université Paris Nord, Villetaneuse, France

B.M.SMIRNOV, A.V.K OSARIMInstitute for High Temperatures of RAS, Moscow, Russia

Page 3: M.Capitelli Dipartimento di Chimica, Università di Bari, Italy IMIP-CNR, Bari, Italy.

CRP (COORDINATED RESEARCH PROJECT), IAEA MEETING “ATOMIC and MOLECULAR DATA for PLASMA MODELING”VIENNA, SEPTEMBER 26-28, 2005

QUANTUM CHEMISTRY

MOLECULAR DYNAMICS

COLLISION INTEGRALSground stateexcited states

Maxwell Distribution(DSMC)

Boltzmann Equation for electrons (PIC-MCC)

RATE COEFFICIENTS

KINETICS

LASER-PLASMAInteraction

DIVERTOR Plasmas

MULTICUSP(Magnetic Plasmas)

FilamentRF

H-/D- Production

MICROWAVE DISCHARGES

(Maxwell Equations)

Diamond Film Production

PARALLEL PLATE(PIC-MCC)

Microelectronics

Chapman-Enskog

TRANSPORT PROPERTIES

RF TORCHES

Waste Discharges

Metallurgy

AEROSPACE

ReentryProblems

FLUIDYNAMICS

ELECTRON-IMPACT induced PROCESSES

(inelastic+reactive)

SemiclassicalImpact Parameter

Method

HEAVY PARTICLE COLLISIONS

(inelastic+reactive)

QuasiclassicalTrajectory

Method

GAS-SURFACEINTERACTION

SemiclassicalCollisional

Model

Page 4: M.Capitelli Dipartimento di Chimica, Università di Bari, Italy IMIP-CNR, Bari, Italy.

CRP (COORDINATED RESEARCH PROJECT), IAEA MEETING “ATOMIC and MOLECULAR DATA for PLASMA MODELING”VIENNA, SEPTEMBER 26-28, 2005

OUTLINE

- Open problems (1985-1995) in Multipole Magnetic Plasmasa) Validation of Bari code with FOM experimentsb) Extension to D2 plasmasc) Pulsed dischargesd) Rydberg statese) Wall effects

- Cross Section Improvements (1995-2005) a) Electron-molecule cross sections

b) Heavy particle collision cross sections c) Gas surface interaction

- Kinetic models Improvements(1995-2005)a) New multipole zerodimensional codeb) Parallel-plate 1D codec) RF and MW quasi 1D code

- Air Plasmasa) N2 and O2 State-to-State Cross Sections

Page 5: M.Capitelli Dipartimento di Chimica, Università di Bari, Italy IMIP-CNR, Bari, Italy.

CRP (COORDINATED RESEARCH PROJECT), IAEA MEETING “ATOMIC and MOLECULAR DATA for PLASMA MODELING”VIENNA, SEPTEMBER 26-28, 2005

OUTLINE

- Open problems (1985-1995) in Multipole Magnetic Plasmasa) Validation of Bari code with FOM experimentsb) Extension to D2 plasmasc) Pulsed dischargesd) Rydberg statese) Wall effects

- Cross Section Improvements (1995-2005) a) Electron-molecule cross sections

b) Heavy particle collision cross sections c) Gas surface interaction

- Kinetic models Improvements(1995-2005)a) New multipole zerodimensional codeb) Parallel-plate 1D codec) RF and MW quasi 1D code

- Air Plasmasa) N2 and O2 State-to-State Cross Sections

Page 6: M.Capitelli Dipartimento di Chimica, Università di Bari, Italy IMIP-CNR, Bari, Italy.

CRP (COORDINATED RESEARCH PROJECT), IAEA MEETING “ATOMIC and MOLECULAR DATA for PLASMA MODELING”VIENNA, SEPTEMBER 26-28, 2005

∂n ε,t( )∂t

= −∂Jel

∂ε

⎛ ⎝ ⎜

⎞ ⎠ ⎟e−M

−∂Jel

∂ε

⎛ ⎝ ⎜

⎞ ⎠ ⎟e−e

+ In + Ion + Sup + S − L

VIBRATIONAL EXCITATION and NEGATIVE ION KINETICS

Time Evolution (heavy species)

dNv

dt

⎛ ⎝ ⎜

⎞ ⎠ ⎟=

dNv

dt

⎛ ⎝ ⎜

⎞ ⎠ ⎟e−V

+dNv

dt

⎛ ⎝ ⎜

⎞ ⎠ ⎟E−V

+dNv

dt

⎛ ⎝ ⎜

⎞ ⎠ ⎟

V−V

+dNv

dt

⎛ ⎝ ⎜

⎞ ⎠ ⎟

V−T

+

dNv

dt

⎛ ⎝ ⎜

⎞ ⎠ ⎟e−D

+dNv

dt

⎛ ⎝ ⎜

⎞ ⎠ ⎟e−I

+dNv

dt

⎛ ⎝ ⎜

⎞ ⎠ ⎟e−da

+dNv

dt

⎛ ⎝ ⎜

⎞ ⎠ ⎟e−E

+dNv

dt

⎛ ⎝ ⎜

⎞ ⎠ ⎟wall

InTerm due to inelastic collisions

Ion Term due to ionization collisions

Sup Term due to superelastic collisions

L Electron loss term€

−∂Jel

∂ε

⎛ ⎝ ⎜

⎞ ⎠ ⎟e−M

Flux of electrons along energy axis due to elastic collisions

−∂Jel

∂ε

⎛ ⎝ ⎜

⎞ ⎠ ⎟e−e

Flux of electrons along energy axis due to electron-electron collisions

Electron source term:

S =I

VeΔε p

MULTIPOLE MAGNETIC PLASMAS:

!! Self-consistent non equilibrium vibrational kinetics coupled to the Boltzmann equation for the electron energy distribution function!!

Page 7: M.Capitelli Dipartimento di Chimica, Università di Bari, Italy IMIP-CNR, Bari, Italy.

CRP (COORDINATED RESEARCH PROJECT), IAEA MEETING “ATOMIC and MOLECULAR DATA for PLASMA MODELING”VIENNA, SEPTEMBER 26-28, 2005

VALIDATION of BARI CODE with the FOM EXPERIMENTS (GORSE ET AL. 1992)

109

1011

1013

1015

0 2 4

p=2.25 mtorrp=4.5 mtorrp=7.5 mtorrp=15 mtorr

population densities (cm

-3)

vibrational quantum number

a)

1010

1012

1014

1016

0 2 4

p= 2.25mtorrp=4.5 mtorrp=7.5 mtorrp=15 mtorr

population densities (cm

-3)

vibrational quantum number

b)

comparison between experimental (a) and theoretical (b) vdfs at several pressures

109

1011

1013

1015

0 2 4

Id=5 AId=10 AId=20 AId=30 A

population densities (cm

-3)

vibrational quantum number

a)

1010

1012

1014

1016

0 2 4

Id=5 AId=10 AId=20 AId=30 A

population densities (cm

-3)

vibrational quantum number

b)

comparison between experimental (a) and theoretical (b) vdfs at several discharge currents I d

Page 8: M.Capitelli Dipartimento di Chimica, Università di Bari, Italy IMIP-CNR, Bari, Italy.

CRP (COORDINATED RESEARCH PROJECT), IAEA MEETING “ATOMIC and MOLECULAR DATA for PLASMA MODELING”VIENNA, SEPTEMBER 26-28, 2005

!!PROBLEMS!!- calculations overestimate by a factor 10 the high lying vibrational levels giving satisfactory agreement

with negative ion concentrations- FOM experimental vibrational distributions limited to v=5 !!New: experimental determination by Mosbach and Dobele up to v=13!!

108

109

1010

4 6 8 10 12 14

number density (cm

-3)

vibrational quantum number

vibrational distribution Nv measured in a H2 multicusp source (p = 11.25 mtorr, Id = 0.5 A, Vd = 100 V)

Page 9: M.Capitelli Dipartimento di Chimica, Università di Bari, Italy IMIP-CNR, Bari, Italy.

CRP (COORDINATED RESEARCH PROJECT), IAEA MEETING “ATOMIC and MOLECULAR DATA for PLASMA MODELING”VIENNA, SEPTEMBER 26-28, 2005

EXTENSION to D2 PLASMAS

105

107

109

1011

0 40 80

EEDF (cm

-3eV

-1)

energy (eV)

D2

H2

a)

1010

1012

1014

0 5 10 15 20

population densities (cm

-3)

vibrational quantum number

H2

D2

b)

theoretical EEDF (a) and Nv (b) in H2 and D2 sources

(p = 4.5 mtorr, Id = 10 A, Vd = 115 V, plasma potential Vp = 2.9 V)

10-18

10-16

10-14

10-12

10-10

10-8

0 5 10 15 20

B

vibrational quantum number

H2

D2

rate coefficients (cm

3 s-1)

dissociative attachment rates versus vibrational quantum number for H2 and D2 molecules

Page 10: M.Capitelli Dipartimento di Chimica, Università di Bari, Italy IMIP-CNR, Bari, Italy.

CRP (COORDINATED RESEARCH PROJECT), IAEA MEETING “ATOMIC and MOLECULAR DATA for PLASMA MODELING”VIENNA, SEPTEMBER 26-28, 2005

0

2

4

6

8

10

0 2 4 6 8 10 12 14

electron density (10

11

cm-3

)

pressure (mtorr)

D2

a)H

2

0,7

0,8

0,9

1

1,1

1,2

1,3

2 4 6 8 10 12 14

electron temperature (eV)

pressure (mtorr)

D2

H2

b)

5

10

15

20

25

2 4 6 8 10 12 14atom D/H concentration (10

12

cm-3

)

pressure (mtorr)

D2

H2

c)

2

4

6

8

10

12

14

2 4 6 8 10 12 14D-/H

- ion concentration (10

9 cm

-3)

pressure (mtorr)

D2

H2

d)

(a) behavior of electron density ne(b) electron temperature Te(c) atomic concentration [H]/[D] (d) negative ion concentration [H-]/[D-]for H2 and D2 systems versus pressure p (Id = 10 A, Vd = 115 V)

Page 11: M.Capitelli Dipartimento di Chimica, Università di Bari, Italy IMIP-CNR, Bari, Italy.

CRP (COORDINATED RESEARCH PROJECT), IAEA MEETING “ATOMIC and MOLECULAR DATA for PLASMA MODELING”VIENNA, SEPTEMBER 26-28, 2005

2

4

6

8

10

0 4 8 12 16 20 24 28 32

electron density (10

11

cm-3

)

discharge current (A)

D2

a)H

2

0,6

1

1,4

0 4 8 12 16 20 24 28 32

electron temperature (eV)

discharge current (A)

D2

H2

b)

5

15

25

35

0 4 8 12 16 20 24 28 32atom D/H concentration (10

12

cm-3

)

discharge current (A)

D2

H2

c)

2

6

10

14

18

0 4 8 12 16 20 24 28 32D-/H

- ion concentration (10

9 cm

-3)

discharge current (A)

D2

H2

d)

(a) behavior of electron density ne(b) electron temperature Te(c) atomic concentration [H]/[D] (d) negative ion concentration [H-]/[D-]for H2 and D2 systems versus current Id (p = 7.5 mtorr, Vd = 115 V)

Page 12: M.Capitelli Dipartimento di Chimica, Università di Bari, Italy IMIP-CNR, Bari, Italy.

CRP (COORDINATED RESEARCH PROJECT), IAEA MEETING “ATOMIC and MOLECULAR DATA for PLASMA MODELING”VIENNA, SEPTEMBER 26-28, 2005

DISSOCIATIVE ATTACHMENT: H2 (X 1g,) + e H2- H- + H

E = 4.5 eV

10-9

10-8

10-7

10-6

10-5

10-4

10-3

0.0 0.5 1.0 1.5 2.0 2.5 3.0

H2

D2

σ

DISSOCIATIVE ATTACHMENT

(Å2)

( )INITIAL VIBRATIONAL EIGENVALUE eV

Page 13: M.Capitelli Dipartimento di Chimica, Università di Bari, Italy IMIP-CNR, Bari, Italy.

CRP (COORDINATED RESEARCH PROJECT), IAEA MEETING “ATOMIC and MOLECULAR DATA for PLASMA MODELING”VIENNA, SEPTEMBER 26-28, 2005

RESONANT VIBRATIONAL EXCITATION: H2 (X 1g, i) + e H2

- H2 (X 1g, f) + e

E = 5 eV

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

H2

D2

FINAL VIBRATIONAL EIGENVALUE (eV)

i = 0

σ

VIBRATIONAL EXCITATION

(Å2)

Page 14: M.Capitelli Dipartimento di Chimica, Università di Bari, Italy IMIP-CNR, Bari, Italy.

CRP (COORDINATED RESEARCH PROJECT), IAEA MEETING “ATOMIC and MOLECULAR DATA for PLASMA MODELING”VIENNA, SEPTEMBER 26-28, 2005

PULSED DISCHARGES: MODEL

2 1010

6 1010

1 1011

0 1 2 3 4

tpd

= 0 µs

tpd

= 15 µs

tpd

= 25 µs

tpd

= 60 µs

tpd

= 200 µsEEDF (eV

-1cm

-3)

energy (eV)

a)

2 10-9

6 10-9

1 10-8

8 12 16 20

tpd

= 4 µs

tpd

= 16 µs

tpd

= 193 µs

dissociative attachment rate (cm

3s-1)

vibrational quantum number

b)

109

1011

1013

0 10 20

tpd

= 5.8 µs

tpd

= 25.8 µstpd

= 73.7 µstpd

= 203.7 µs

D2 population densities (cm

-3)

vibrational quantum number

c)

2,0 109

2,3 109

2,6 109

4,0 109

4,6 109

5,2 109

0 100 1,5 10 -3 3 10-3

D- negative ion density (cm

-3)

time (s)

d)

Relaxation of several quantities in the D2 post-discharge regime

(a) EEDF, (b) e-da rate coefficient, (c) Nv, (d) D- density

Page 15: M.Capitelli Dipartimento di Chimica, Università di Bari, Italy IMIP-CNR, Bari, Italy.

CRP (COORDINATED RESEARCH PROJECT), IAEA MEETING “ATOMIC and MOLECULAR DATA for PLASMA MODELING”VIENNA, SEPTEMBER 26-28, 2005

PULSED DISCHARGES: EXPERIMENT

0

0,1

0,2

0,3

0 1 2 3

extracted H

-

current (mA)

time (ms)

extracted H- current in a pulsed hydrogen discharge with a 2.7 ms pulse length and a 87 Hz repetition rate (p = 2.4 mtorr, Id = 15 A)

Page 16: M.Capitelli Dipartimento di Chimica, Università di Bari, Italy IMIP-CNR, Bari, Italy.

CRP (COORDINATED RESEARCH PROJECT), IAEA MEETING “ATOMIC and MOLECULAR DATA for PLASMA MODELING”VIENNA, SEPTEMBER 26-28, 2005

RYDBERG STATES: HYSTORICAL SCENARIO/1

Pinnaduwage et al. [Phys. Rev. Lett. 70, 754 (1993)]

e + H2* H + H- Kda(Ryd)=10-6 cm3/sec

Garscadden and Nagpal [Plasma Sources Sci. Technol. 4, 268 (1995)]

Simplified model: (lumped excitation cross section on Rydberg states + lifetime of Rydberg states of 10-6sec + Kda(Ryd)=10-6 cm3/sec)

Result: Contribution from Rydberg states 10 times the one from vibrationally excited states

Gorse et al. [AIP Conf. Proc. 380, 109 (1995)]Model: Insertion of Garscadden model in the self-consistent kinetics in multipole magnetic plasmasResult: enhancement by a factor 2

Hiskes [Appl. Phys. Lett. 69, 755 (1996)]Model: collisional radiative model for H2

* Rydberg states + Kda(Ryd)=10-6 cm3/secResult: lifetime of Rydberg states of the order of 10-8secConsequence: contribution of Rydberg states 1%

Page 17: M.Capitelli Dipartimento di Chimica, Università di Bari, Italy IMIP-CNR, Bari, Italy.

CRP (COORDINATED RESEARCH PROJECT), IAEA MEETING “ATOMIC and MOLECULAR DATA for PLASMA MODELING”VIENNA, SEPTEMBER 26-28, 2005

RYDBERG STATES: HYSTORICAL SCENARIO/2

Pinnaduwage et al. [Phys. Rev. A 55, 4131 (1997)]e + H2* = H + H- Kda(Ryd) = 510-5 cm3/sec

Hassouni et al. [Chem. Phys. Lett. 290, 502 (1998)]Model: collisional radiative model for H2* Rydberg states + Kda(Ryd)=5 10-5 cm3/secResult: enhancement by factor 2.7Problem: Rydberg state from n>3

Pinnaduwage et al. [J.Appl.Phys. 85, 7064 (1999)]scaling law for Rydberg states which corresponds to n=12An estimation

For a plateau between 1010-1012cm-3 Rydberg concentrations of the order of 1/6 107 to 1/6 109 cm-3 can be of the same importance as the dissociative attachment from vibrationally excited molecules

kda (n) =10−8n7 / 2cm3 / s

6 ×10−5 H (n)n>12∑ =10−8 H2 (ν )ν>4∑

Page 18: M.Capitelli Dipartimento di Chimica, Università di Bari, Italy IMIP-CNR, Bari, Italy.

CRP (COORDINATED RESEARCH PROJECT), IAEA MEETING “ATOMIC and MOLECULAR DATA for PLASMA MODELING”VIENNA, SEPTEMBER 26-28, 2005

FUTURE IMPROVEMENTS

• COLLISIONAL RADIATIVE MODEL FOR RYDBERG STATES

• SCALING LAW FOR THE EXCITATION OF RYDBERG STATES

• LIFETIMES OF RYDBERG STATES

• SCALING LAW FOR DISSOCIATIVE ATTACHMENT FROM RYDBERG STATES

Page 19: M.Capitelli Dipartimento di Chimica, Università di Bari, Italy IMIP-CNR, Bari, Italy.

CRP (COORDINATED RESEARCH PROJECT), IAEA MEETING “ATOMIC and MOLECULAR DATA for PLASMA MODELING”VIENNA, SEPTEMBER 26-28, 2005

WALL EFFECTS: HYSTORICAL SCENARIO

Hiskes & KaroModel: trajectory calculationsResults: strong deactivation of vibrationally excited molecules on iron surfaces - widely used in multicusp modelling

Billing & CacciatoreModel: semiclassical/classical for describing atoms and molecules reaching the surface; quantum description of the interaction of the molecule/atom with the phononic and electronic structure of the metalResults : small deactivation of vibrationally excited molecules on copper surfaces

Page 20: M.Capitelli Dipartimento di Chimica, Università di Bari, Italy IMIP-CNR, Bari, Italy.

CRP (COORDINATED RESEARCH PROJECT), IAEA MEETING “ATOMIC and MOLECULAR DATA for PLASMA MODELING”VIENNA, SEPTEMBER 26-28, 2005

Dissociation Probabilities and Energy Accommodation for H2(v,j) Colliding with a Cu(100) Surface

as a Function of Vibrational and Rotational Angular Momenta v and j and Initial Kinetic Energy

j Ekin [eV] PD a) ’ b) j’ b) Eint b,c) [eV]

5 0 1,0 0,0 5 0,1 0,016

2,0 0,70 5 1 0,026

6 0 0,2 0,0 6 0,1 0,0024

0,4 0,0 6 0,1 0,0060

0,6 0,0 6 1 0,0095

1,0 0,62 6 1 0,014

8 0 0,05 0,0 8 (7) 0 0,001

0,2 1,0

10 0 0,05 0,95

0,1 1,0

a) Dissociation probabilityb)Averaged values for reflected trajectoriesc) Energy transferred to surface phonons

Page 21: M.Capitelli Dipartimento di Chimica, Università di Bari, Italy IMIP-CNR, Bari, Italy.

CRP (COORDINATED RESEARCH PROJECT), IAEA MEETING “ATOMIC and MOLECULAR DATA for PLASMA MODELING”VIENNA, SEPTEMBER 26-28, 2005

FORMATION OF VIBRATIONALLY EXCITED STATES

from HETEROGENEOUS ATOM RECOMBINATION

H(gas) + Hads H2() DIRECT ELEY RIDEAL (E-R) MECHANISM

H(gas) H (trapped)

H(trapped) + Hads H2() HOT ATOM (HA) MECHANISM

Hads + Hads H2() HINSHELWOOD-LANGMUIR (H-L) MECHANISM

!!Different energetics depending on the nature of the adsorbed atom e.g. physi-adsorbed; chemi-adsorbed!!

PHYSI-ADSORBED: practically all the recombination energy can go into vibrational excitation of

desorbed molecules in both E-R and H-L mechanisms

CHEMI-ADSORBED: only the difference between the dissociation energy of the diatom and the adsorption

energy of atom(s) can go into vibrational energy of the desorbed molecules

Page 22: M.Capitelli Dipartimento di Chimica, Università di Bari, Italy IMIP-CNR, Bari, Italy.

CRP (COORDINATED RESEARCH PROJECT), IAEA MEETING “ATOMIC and MOLECULAR DATA for PLASMA MODELING”VIENNA, SEPTEMBER 26-28, 2005

semiclassical collisional method

Hads equilibrium distance of 1.5 Å

in thermal equilibrium with the surface

Hgas

TS

(;) Ekin

MD

energetic fluxes

H2 vibrationaldistribution

recombinationprobabilities

reaction probabilitiesfor different reaction products

surface temperature effect

ELEY-RIDEL MECHANISM

Page 23: M.Capitelli Dipartimento di Chimica, Università di Bari, Italy IMIP-CNR, Bari, Italy.

CRP (COORDINATED RESEARCH PROJECT), IAEA MEETING “ATOMIC and MOLECULAR DATA for PLASMA MODELING”VIENNA, SEPTEMBER 26-28, 2005

VIBRATIONAL DISTRIBUTIONS from PHYSIADSORBED H and D ATOMS on COPPER

(E-R mechanism, BILLING&CACCIATORE)

0

0,05

0,1

0,15

0,2

0 2 4 6 8 10 12 14

vibrational contribute to rate constant

vibrational quantum number

Hgas

+ Hads

H2(v,j) →

= 5000 T K

0

0,05

0,1

0,15

0,2

0 2 4 6 8 10 12 14

vibrational contribute to rate constant

vibrational quantum number

T = 5000 K

Dgas

+ Dads

D2(v,j) →

Page 24: M.Capitelli Dipartimento di Chimica, Università di Bari, Italy IMIP-CNR, Bari, Italy.

CRP (COORDINATED RESEARCH PROJECT), IAEA MEETING “ATOMIC and MOLECULAR DATA for PLASMA MODELING”VIENNA, SEPTEMBER 26-28, 2005

VIBRATIONAL DISTRIBUTIONS from CHEMIADSORBED H ATOMS on COPPER (HA-SHALASHILIN et al.) for the REACTION Hgas + Dads HD()

P (

)

vibrational quantum number

Page 25: M.Capitelli Dipartimento di Chimica, Università di Bari, Italy IMIP-CNR, Bari, Italy.

CRP (COORDINATED RESEARCH PROJECT), IAEA MEETING “ATOMIC and MOLECULAR DATA for PLASMA MODELING”VIENNA, SEPTEMBER 26-28, 2005

VIBRATIONAL DISTRIBUTIONS from PHYSIADSORBED H ATOMS on GRAPHITE (E-R mechanism, H-L mechanism, SIDIS&MORISSET)

SCHEME OF THE REACTION PATH

(v, j) distribution of the H2 product

Page 26: M.Capitelli Dipartimento di Chimica, Università di Bari, Italy IMIP-CNR, Bari, Italy.

CRP (COORDINATED RESEARCH PROJECT), IAEA MEETING “ATOMIC and MOLECULAR DATA for PLASMA MODELING”VIENNA, SEPTEMBER 26-28, 2005

VIBRATIONAL DISTRIBUTIONS from PHYSIADSORBED H ATOMS on GRAPHITE (E-R mechanism, BILLING&CACCIATORE)

TS = 500K

0.00

0.10

0.20

0.30

0.40

0.50

0 2 4 6 8 10 12

VIBRATIONAL QUANTUM NUMBER

Page 27: M.Capitelli Dipartimento di Chimica, Università di Bari, Italy IMIP-CNR, Bari, Italy.

CRP (COORDINATED RESEARCH PROJECT), IAEA MEETING “ATOMIC and MOLECULAR DATA for PLASMA MODELING”VIENNA, SEPTEMBER 26-28, 2005

OUTLINE

- Open problems (1985-1995) in Multipole Magnetic Plasmasa) Validation of Bari code with FOM experimentsb) Extension to D2 plasmasc) Pulsed dischargesd) Rydberg statese) Wall effects

- Cross Section Improvements (1995-2005) a) Electron-molecule cross sections

b) Heavy particle collision cross sections c) Gas surface interaction

- Kinetic models Improvements(1995-2005)a) New multipole zerodimensional codeb) Parallel-plate 1D codec) RF and MW quasi 1D code

- Air Plasmasa) N2 and O2 State-to-State Cross Sections

Page 28: M.Capitelli Dipartimento di Chimica, Università di Bari, Italy IMIP-CNR, Bari, Italy.

CRP (COORDINATED RESEARCH PROJECT), IAEA MEETING “ATOMIC and MOLECULAR DATA for PLASMA MODELING”VIENNA, SEPTEMBER 26-28, 2005

ELECTRONIC EXCITATION to the lowest SINGLETS

X 1 g ( i) C 1uX 1g (i) B 1 u

0.0

0.4

0.8

1.2

1.6

0.0 50.0 100.0 150.0 200.0

Energy (eV)

= 0

1

3

4

6

9-10

12

13 14

11

0.0

0.2

0.4

0.6

0.8

1.0

0.0 50.0 100.0 150.0 200.0

Energy (eV)

12-14

= 0

2 4 6 8

10

CROSS SECTIONS IMPROVEMENTS

Page 29: M.Capitelli Dipartimento di Chimica, Università di Bari, Italy IMIP-CNR, Bari, Italy.

CRP (COORDINATED RESEARCH PROJECT), IAEA MEETING “ATOMIC and MOLECULAR DATA for PLASMA MODELING”VIENNA, SEPTEMBER 26-28, 2005

THEORETICAL APPROACH IMPACT PARAMETER METHOD

TOTALCROSS SECTION

σ i

α i→α f (E) = Σν fσ ν i ,ν f

α i→α f (E) + dεdσ ν i,ε

α i→α f (E)

dε∫

VIBRONIC EXCITATION

DISSOCIATIVE EXCITATION

SEMICLASSICAL Method (quantal target - classical projectile) ALLOWED Transitions (selection rules) degenerate rotational levels

σ i

α i→α f (E) = Sν i ,ν f

α i→α f ⋅Dν i ,ν f

α i→α f (E)

STRUCTURAL FACTOR

DYNAMICAL FACTOR

σ i

α i→α f (E) = dR χ ν f

α fμ(R)∫ χ ν i

α i

Dν i,ν f

α i→α f (E,ρ0,ΔEν i ,ν f

α i→α f )

IMPACT PARAMETER(BORN cross section)

TRANSITION DIPOLE MOMENT

Page 30: M.Capitelli Dipartimento di Chimica, Università di Bari, Italy IMIP-CNR, Bari, Italy.

CRP (COORDINATED RESEARCH PROJECT), IAEA MEETING “ATOMIC and MOLECULAR DATA for PLASMA MODELING”VIENNA, SEPTEMBER 26-28, 2005

0.40

0.60

0.80

1.00

1.20

1.40

0 5 10 15 20 25

H2

D2

DT

T2

Vibrational Quantum Number

0.40

0.60

0.80

1.00

1.20

1.40

0.0 1.0 2.0 3.0 4.0 5.0

H2

D2

DT

T2

Vibrational Eigenvalues (eV)

CROSS SECTIONS for H2 ISOTOPIC VARIANTS

E = 40 eVX 1g (i) B 1 u

Page 31: M.Capitelli Dipartimento di Chimica, Università di Bari, Italy IMIP-CNR, Bari, Italy.

CRP (COORDINATED RESEARCH PROJECT), IAEA MEETING “ATOMIC and MOLECULAR DATA for PLASMA MODELING”VIENNA, SEPTEMBER 26-28, 2005

0.00

0.20

0.40

0.60

0.80

1.00

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

H2

D2

T2

bi H2

bi D2

bi T2

INITIAL VIBRATIONAL EIGENVALUE (eV)

f =

i+1

σ

VIBRATIONAL EXCITATION

(Å2)

f =

i+2

0.00

0.20

0.40

0.60

0.80

1.00

0 1 2 3 4 5 6

H2

D2

T2

bi H2

bi D2

bi T2

INITIAL VIBRATIONAL LEVEL

f =

i+1

σ

VIBRATIONAL EXCITATION

(Å2)

f =

i+2

RESONANT VIBRATIONAL EXCITATIONH2 (X 1g, ni) + e H2

- H2 (X 1g, nf) + e

E = 5 eV

Page 32: M.Capitelli Dipartimento di Chimica, Università di Bari, Italy IMIP-CNR, Bari, Italy.

CRP (COORDINATED RESEARCH PROJECT), IAEA MEETING “ATOMIC and MOLECULAR DATA for PLASMA MODELING”VIENNA, SEPTEMBER 26-28, 2005

EXCITATION of low-lying RYDBERG STATES

0.00

0.03

0.06

0.09

0.12

0.15

0.0 50.0 100.0 150.0 200.0

1413v = 0

v = 9

Energy (eV)

1

3

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.0 50.0 100.0 150.0 200.0

14

v =04

Energy (eV)

3

9 1011

12,13

12

8

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.0 50.0 100.0 150.0 200.0

v = 0

14

1312

Energy (eV)

87

9

10

0.000

0.010

0.020

0.030

0.040

0.050

0.060

0.0 50.0 100.0 150.0 200.0

14

v = 0

Energy (eV)

23

1

910

1112

13

X 1 g ( i) D 1uX 1g (i) B’ 1 u

X 1 g ( i) D’ 1uX 1g (i) B” 1 u

Page 33: M.Capitelli Dipartimento di Chimica, Università di Bari, Italy IMIP-CNR, Bari, Italy.

CRP (COORDINATED RESEARCH PROJECT), IAEA MEETING “ATOMIC and MOLECULAR DATA for PLASMA MODELING”VIENNA, SEPTEMBER 26-28, 2005

0.00

0.20

0.40

0.60

0.80

1.00

2 3 4

=0=10

σTOTAL

(Å2)

PRINCIPAL QUANTUM NUMBER n

=40 E eV

C u [2pπ]

D u [3pπ]

D' u [4pπ]

H2 ( X

g, )+ e→ H

2(

u [npπ])+e

1

1

1

1 1

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

2 3 4

=0=10

σ

DISSOCIATION

(Å2)

PRINCIPAL QUANTUM NUMBER n

=40 E eV

C u [2pπ]

D u [3pπ]

D' u [4pπ]

H2 ( X

g,)+ e→ H

2(

u [npπ])+ e→ ( )+ ( )+H H n e

1

1

1

1 1 1

σ n-4

Page 34: M.Capitelli Dipartimento di Chimica, Università di Bari, Italy IMIP-CNR, Bari, Italy.

CRP (COORDINATED RESEARCH PROJECT), IAEA MEETING “ATOMIC and MOLECULAR DATA for PLASMA MODELING”VIENNA, SEPTEMBER 26-28, 2005

DISSOCIATION

DIRECT DISSOCIATION through EXCITED STATES

H2 (X 1g

+ , i ) +e→ H2 (b 3u

+ ,ε) +e→ H +H +e

H2 (X 1g

+ , i ) +e→ H2 (singlets, ′ ε ) +e→ H +H +e

B 1 u and C 1 u + low-lying RYDBERG STATES B’, B” 1 u , D, D’ 1 u

i

pure repulsive state

excited bound state

DISSOCIATION

DISSOCIATION

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

20.0 40.0 60.0 80.0 100.0

Energy (eV)

911

13

= 0

1

2

7

6

4,5

3

810

12

Page 35: M.Capitelli Dipartimento di Chimica, Università di Bari, Italy IMIP-CNR, Bari, Italy.

CRP (COORDINATED RESEARCH PROJECT), IAEA MEETING “ATOMIC and MOLECULAR DATA for PLASMA MODELING”VIENNA, SEPTEMBER 26-28, 2005

theoretical approach in atom-molecule collisions:QCT Method

atomic motion is considered classical on the potential energy surface (PES)

initial and final states are approximated with pseudoquantization rules

COMPUTATIONAL LOAD RELIABILITY of METHOD

goodmonths on fast processor

Page 36: M.Capitelli Dipartimento di Chimica, Università di Bari, Italy IMIP-CNR, Bari, Italy.

CRP (COORDINATED RESEARCH PROJECT), IAEA MEETING “ATOMIC and MOLECULAR DATA for PLASMA MODELING”VIENNA, SEPTEMBER 26-28, 2005

RATE COEFFICIENTS for the PROCESS: H+H2(,Trot) 3H

Trot=500 K

H2 D2

Page 37: M.Capitelli Dipartimento di Chimica, Università di Bari, Italy IMIP-CNR, Bari, Italy.

CRP (COORDINATED RESEARCH PROJECT), IAEA MEETING “ATOMIC and MOLECULAR DATA for PLASMA MODELING”VIENNA, SEPTEMBER 26-28, 2005

HYDROGEN VIBRATIONAL EXCITATION RATE COEFFICIENTSas a FUNCTION of FINAL VIBRATIONAL QUANTUM NUMBER

H2 (ν =10,Trot = 500K )+ H → H2 (ν =10 + n,Trot = 500K )+ H

Page 38: M.Capitelli Dipartimento di Chimica, Università di Bari, Italy IMIP-CNR, Bari, Italy.

CRP (COORDINATED RESEARCH PROJECT), IAEA MEETING “ATOMIC and MOLECULAR DATA for PLASMA MODELING”VIENNA, SEPTEMBER 26-28, 2005

HYDROGEN VIBRATIONAL DEACTIVATION RATE COEFFICIENTS as a FUNCTION of FINAL VIBRATIONAL QUANTUM NUMBER

H2 (ν =10,Trot = 500K )+ H → H2 (ν =10 − n,Trot = 500K )+ H

Page 39: M.Capitelli Dipartimento di Chimica, Università di Bari, Italy IMIP-CNR, Bari, Italy.

CRP (COORDINATED RESEARCH PROJECT), IAEA MEETING “ATOMIC and MOLECULAR DATA for PLASMA MODELING”VIENNA, SEPTEMBER 26-28, 2005

HYDROGEN VIBRATIONAL MONOQUANTUM DEACTIVATION RATE COEFFICIENTS

H2 (ν ,Trot = 500K )+ H → H2 (ν −1,Trot = 500K )+ H

Page 40: M.Capitelli Dipartimento di Chimica, Università di Bari, Italy IMIP-CNR, Bari, Italy.

CRP (COORDINATED RESEARCH PROJECT), IAEA MEETING “ATOMIC and MOLECULAR DATA for PLASMA MODELING”VIENNA, SEPTEMBER 26-28, 2005

!! normalized to total recombination, at different temperatures !!

HYDROGEN RECOMBINATION RATE COEFFICIENTS as a FUNCTION of FINAL VIBRATIONAL QUANTUM NUMBER

H + H + H → H2 (ν )+ H

Page 41: M.Capitelli Dipartimento di Chimica, Università di Bari, Italy IMIP-CNR, Bari, Italy.

CRP (COORDINATED RESEARCH PROJECT), IAEA MEETING “ATOMIC and MOLECULAR DATA for PLASMA MODELING”VIENNA, SEPTEMBER 26-28, 2005

OUTLINE

- Open problems (1985-1995) in Multipole Magnetic Plasmasa) Validation of Bari code with FOM experimentsb) Extension to D2 plasmasc) Pulsed dischargesd) Rydberg statese) Wall effects

- Cross Section Improvements (1995-2005) a) Electron-molecule cross sections

b) Heavy particle collision cross sections c) Gas surface interaction

- Kinetic models Improvements(1995-2005)a) New multipole zerodimensional codeb) Parallel-plate 1D codec) RF and MW quasi 1D code

- Air Plasmasa) N2 and O2 State-to-State Cross Sections

Page 42: M.Capitelli Dipartimento di Chimica, Università di Bari, Italy IMIP-CNR, Bari, Italy.

CRP (COORDINATED RESEARCH PROJECT), IAEA MEETING “ATOMIC and MOLECULAR DATA for PLASMA MODELING”VIENNA, SEPTEMBER 26-28, 2005

KINETIC MODELS IMPROVEMENTS

MULTIPOLE H2 DISCHARGES!! Time dependent electron kinetics and vibrational kinetics treated at the same level!!

n ε,t( ) ≈ n ε i ,t( )

εi −12

Δε i ≤ ε ≤ ε i +12

Δε ifor

Δεi

εi

εi −1

2Δε i

εi +1

2Δε i

ELECTRON ENERGY DISCRETIZATION

each electron energy sub-interval a “different electron” characterized by a representative energy

εi (sub-interval mean energy)

ELECTRONS STATE-TO-STATE KINETICS

(electrons with different energies as molecular energy levels)

kie = σ i ε( )v ε( )

discretized electron rate coefficients:

Page 43: M.Capitelli Dipartimento di Chimica, Università di Bari, Italy IMIP-CNR, Bari, Italy.

CRP (COORDINATED RESEARCH PROJECT), IAEA MEETING “ATOMIC and MOLECULAR DATA for PLASMA MODELING”VIENNA, SEPTEMBER 26-28, 2005

VDF and EEDF as a function of PRESSURE

109

1010

1011

1012

1013

1014

0.0 1.0 2.0 3.0 4.0 5.0

P=2.25 mtorrP=4.5 mtorrP=7.5 mtorr

energy (eV)

106

107

108

109

1010

1011

1012

0.0 20.0 40.0 60.0 80.0 100.0 120.0

P=2.25 mtorrP=4.5 mtorrP=7.5 mtorr

energy (eV)

TG =500 K

DISCHARGE CURRENT=10 A

DISCHARGE VOLTAGE=100 V

Page 44: M.Capitelli Dipartimento di Chimica, Università di Bari, Italy IMIP-CNR, Bari, Italy.

CRP (COORDINATED RESEARCH PROJECT), IAEA MEETING “ATOMIC and MOLECULAR DATA for PLASMA MODELING”VIENNA, SEPTEMBER 26-28, 2005

VDF and EEDF as a function of CURRENT

109

1010

1011

1012

1013

1014

1015

0.0 1.0 2.0 3.0 4.0 5.0

Id=5 A

Id=10 A

Id=20 A

energy (eV)

106

107

108

109

1010

1011

1012

0.0 20.0 40.0 60.0 80.0 100.0 120.0

Id=5 A

Id=10 A

Id=20 A

energy (eV)

TG =500 K

PRESSURE=7.5 mtorr

DISCHARGE VOLTAGE=100 V

Page 45: M.Capitelli Dipartimento di Chimica, Università di Bari, Italy IMIP-CNR, Bari, Italy.

CRP (COORDINATED RESEARCH PROJECT), IAEA MEETING “ATOMIC and MOLECULAR DATA for PLASMA MODELING”VIENNA, SEPTEMBER 26-28, 2005

RF DISCHARGES: PARALLEL PLATES

1D(r)2D(v) self-consistent particle/continuum model

• PIC/MCC applied to ELECTRONS and IONIC SPECIES

• GRID-DISCRETIZED RELAXATION technique for REACTION-DIFFUSION part

∂∂t

+ vx

∂x−

qs

ms

∂ϕ x,t( )

∂x

∂vx

⎝ ⎜

⎠ ⎟fs x,v,t( ) = Cs Fc{ }( )

∂2ϕ x,t( )

∂x2= −

1

ε 0

qs d3vfs(x,v,t)∫s

−Dc

∂2nc x( )

∂x2= ′ ν rc − ν rc( )kr fe t( )

r∑ n ′ c

ν rc

′ c ∏

Cs: Boltzmann collision integral for charged/neutral collisions

BOUNDARYCONDITIONS POISSON EQUATION

REACTION/DIFFUSIONEQUATIONS

CHARGED PARTICLE KINETICS

SPACE CHARGE

EEDF

ELECTR./IONDENSITY

ELECTRICFIELD

GAS COMPOSITION

SURFACEREACTIONS

(WALL)

ABSORPTION,SEC.EMISSION

Page 46: M.Capitelli Dipartimento di Chimica, Università di Bari, Italy IMIP-CNR, Bari, Italy.

CRP (COORDINATED RESEARCH PROJECT), IAEA MEETING “ATOMIC and MOLECULAR DATA for PLASMA MODELING”VIENNA, SEPTEMBER 26-28, 2005

p = 10 mtorr d = 36 cm Vrf = 300 V

num

ber

dens

ity

(m-3)

position (m)

VD

F (

m-3)

vibrational quantum number

mea

n ki

neti

c en

ergy

(eV

)

position (m)

EE

DF

(eV

-3/2)

energy (eV)

Page 47: M.Capitelli Dipartimento di Chimica, Università di Bari, Italy IMIP-CNR, Bari, Italy.

CRP (COORDINATED RESEARCH PROJECT), IAEA MEETING “ATOMIC and MOLECULAR DATA for PLASMA MODELING”VIENNA, SEPTEMBER 26-28, 2005

FUTURE STEPS

• CONSTRUCTION OF A DATA BASE OF CROSS SECTIONS FOR H2 AND ISOTOPES

• RYDBERG KINETICS AND GAS-SURFACE INTERACTIONS

• INSERTION OF THE COMPLETE DATA BASE IN 1D-2D CODES

• EXTENSION TO SURFACE SOURCES

• VALIDATION OF THE PREDICTIVE CODE WITH DEDICATED EXPERIMENTS

• AGREEMENT PROTOCOL WITH ITER PROGRAMME

Page 48: M.Capitelli Dipartimento di Chimica, Università di Bari, Italy IMIP-CNR, Bari, Italy.

CRP (COORDINATED RESEARCH PROJECT), IAEA MEETING “ATOMIC and MOLECULAR DATA for PLASMA MODELING”VIENNA, SEPTEMBER 26-28, 2005

HARPOON REACTION INVOLVING CESIUM ATOM AND HYDROGEN MOLECULE

Cs+H2∗⇔ Cs−+H2

+

σ =1.5 ×10−13cm2

k = 3×10−8cm3 / s

Asymptotic Approach

Page 49: M.Capitelli Dipartimento di Chimica, Università di Bari, Italy IMIP-CNR, Bari, Italy.

CRP (COORDINATED RESEARCH PROJECT), IAEA MEETING “ATOMIC and MOLECULAR DATA for PLASMA MODELING”VIENNA, SEPTEMBER 26-28, 2005

OUTLINE

- Open problems (1985-1995) in Multipole Magnetic Plasmasa) Validation of Bari code with FOM experimentsb) Extension to D2 plasmasc) Pulsed dischargesd) Rydberg statese) Wall effects

- Cross Section Improvements (1995-2005) a) Electron-molecule cross sections

b) Heavy particle collision cross sections c) Gas surface interaction

- Kinetic models Improvements(1995-2005)a) New multipole zerodimensional codeb) Parallel-plate 1D codec) RF and MW quasi 1D code

- Air Plasmasa) N2 and O2 State-to-State Cross Sections

Page 50: M.Capitelli Dipartimento di Chimica, Università di Bari, Italy IMIP-CNR, Bari, Italy.

CRP (COORDINATED RESEARCH PROJECT), IAEA MEETING “ATOMIC and MOLECULAR DATA for PLASMA MODELING”VIENNA, SEPTEMBER 26-28, 2005

ELECTRON IMPACT induced PROCESSES in HOMONUCLEAR DIATOMIC MOLECULES

VIBRONIC EXCITATION and (PRE)DISSOCIATION of O2 and N2

NON-DISSOCIATIVE IONIZATION of N2

AIR PLASMAS

ATOM-DIATOM COLLISION PROCESSES

DISSOCIATION/RECOMBINATION of O2 and N2

ENERGY EXCHANGE (VT Processes) of O2 and N2

Page 51: M.Capitelli Dipartimento di Chimica, Università di Bari, Italy IMIP-CNR, Bari, Italy.

CRP (COORDINATED RESEARCH PROJECT), IAEA MEETING “ATOMIC and MOLECULAR DATA for PLASMA MODELING”VIENNA, SEPTEMBER 26-28, 2005

0.00

5.00

10.00

15.00

20.00

25.00

0.5 1 1.5 2 2.5 3 3.5 4

Internuclear Distance (Å)

X1g+

A3u+

B3u

X2g+

A2u

B2u+

N2+

N2

F.R. Gilmore, J.Q.R.S.T. 5, 369 (1965)

N2-N2+ system POTENTIAL ENERGY CURVES

2e + N2+ (A2Π u )

e + N2 (X1Σg+ ,ν )

2e + N2+ (X2Σg

+ )

2e + N2+ (B2Σu

+ )

2e + N2+ (X2Σg

+ )

e + N2 (A3Σu+ ,ν )

e + N2 (B3Π g ,ν )

IONIZATION

Page 52: M.Capitelli Dipartimento di Chimica, Università di Bari, Italy IMIP-CNR, Bari, Italy.

CRP (COORDINATED RESEARCH PROJECT), IAEA MEETING “ATOMIC and MOLECULAR DATA for PLASMA MODELING”VIENNA, SEPTEMBER 26-28, 2005

IONIZATION CROSS SECTION of atoms by electron impact

CLASSICAL METHODS (THOMSON)

σ ION = n πe4

J2 ƒ

EJ

⎛ ⎝ ⎜

⎞ ⎠ ⎟ ƒ universal function

IONIZATION CROSS SECTION of vibrationally excited molecules

by electron impact

σION = ∑ν ' σ νν '

ION = ∑ν ' n πe4

Jνν '2

ƒE

Jν ′ ν

⎝ ⎜

⎠ ⎟ Sνν '

ionization potential

Franck-Condon factor

'ν"

R

U

M2

M2+

SIMPLIFIED APPROACH

σION = n

πe4

2

1

Jν ′ ν 2

ƒE

Jν ′ ν

⎝ ⎜

⎠ ⎟+

1

Jν ′ ′ ν 2

ƒE

Jν ′ ′ ν

⎝ ⎜

⎠ ⎟

⎣ ⎢

⎦ ⎥

ELECTRON-IMPACT IONIZATION: THEORETICAL APPROACH

Jν ′ ′ ν

Jν ′ ν

Page 53: M.Capitelli Dipartimento di Chimica, Università di Bari, Italy IMIP-CNR, Bari, Italy.

CRP (COORDINATED RESEARCH PROJECT), IAEA MEETING “ATOMIC and MOLECULAR DATA for PLASMA MODELING”VIENNA, SEPTEMBER 26-28, 2005

ELECTRON-IMPACT IONIZATION from GROUND STATEcross section [10-17 cm2]

0 0.82 2.1 3.44 0.87 2.2 3.58 0.92 2.2 3.612 0.92 2.2 3.616 0.92 2.3 3.620 0.97 2.3 3.724 1.0 2.4 3.828 1.0 2.4 3.832 1.1 2.5 3.936 1.1 2.5 3.940 1.1 2.5 3.9

0 0.79 2.9 5.24 0.90 3.1 5.38 0.95 3.2 5.412 1.0 3.3 5.516 1.2 3.5 5.820 1.4 3.7 6.124 1.5 3.9 6.428 1.6 4.1 6.632 1.8 4.3 6.836 1.8 4.4 6.940 1.9 4.5 7.3

0 0.13 1.0 2.04 0.16 1.1 2.18 0.20 1.2 2.212 0.26 1.3 2.316 0.32 1.4 2.520 0.39 1.5 2.624 0.47 1.6 2.828 0.56 1.7 2.932 0.65 1.9 3.136 0.75 2.0 3.340 0.83 2.1 3.4

N2 (X,ν) → N2+(X)

N2 (X,ν) → N2+(A)

N2 (X,ν) → N2+(B)

30eV

50eV

σ(E = 20eV)

30eV

50eV

σ(E = 20eV)

30eV

50eV

σ(E = 20eV)

[J.Geophys.Res. 100, 23755 (1995)]

ionic state Van Zyl this work0.320 0.300.535 0.500.145 0.20

N2+(X)

N2+(A)

N2+(B)

E=100eV

Page 54: M.Capitelli Dipartimento di Chimica, Università di Bari, Italy IMIP-CNR, Bari, Italy.

CRP (COORDINATED RESEARCH PROJECT), IAEA MEETING “ATOMIC and MOLECULAR DATA for PLASMA MODELING”VIENNA, SEPTEMBER 26-28, 2005

ELECTRON-IMPACT IONIZATION from EXCITED STATE

N2 (B,ν) → N2+ (X)

N2 (A,ν) → N2+ (X)

25eV

40eV

σ(E = 15eV)

0 9.6 11.6 1.4 3.1 4.24 8.8 12.0 1.7 3.5 4.68 8.2 12.4 2.1 4.0 5.112 7.6 12.8 2.6 4.5 5.616 7.1 13.2 3.0 5.1 6.220 6.8 13.6 3.4 5.5 6.624 6.6 14.0 3.7 5.8 6.8

Jν ′ ν [eV]

Jν ′ ′ ν [eV]

25eV

40eV

σ(E = 15eV)

Jν ′ ν [eV]

Jν ′ ′ ν [eV]

0 8.2 9.0 3.0 5.3 6.64 7.9 9.8 3.5 5.8 7.18 7.6 10.1 3.9 6.3 7.512 7.3 10.3 4.4 6.9 8.116 7.0 10.5 5.0 7.5 8.720 6.7 10.7 5.3 7.8 8.924 6.4 10.8 5.3 7.9 9.0

Page 55: M.Capitelli Dipartimento di Chimica, Università di Bari, Italy IMIP-CNR, Bari, Italy.

CRP (COORDINATED RESEARCH PROJECT), IAEA MEETING “ATOMIC and MOLECULAR DATA for PLASMA MODELING”VIENNA, SEPTEMBER 26-28, 2005

0

2

4

6

8

10

1.5 2 2.5 3 3.5 4 4.5 5

Potential Energy (eV)

Internuclear Distance (bohr)

X 3

g−

B 3

u−

3 u

1 u 5 u

2 3u+

O2 system POTENTIAL ENERGY CURVES:Schumann-Runge transition

O (3P) + O (3P)

O (3P) + O (1D)

Page 56: M.Capitelli Dipartimento di Chimica, Università di Bari, Italy IMIP-CNR, Bari, Italy.

CRP (COORDINATED RESEARCH PROJECT), IAEA MEETING “ATOMIC and MOLECULAR DATA for PLASMA MODELING”VIENNA, SEPTEMBER 26-28, 2005

0.00

0.20

0.40

0.60

0.80

0.0 20.0 40.0 60.0 80.0 100.0

Dissociative Cross Section (Å

2 )

Energy (eV)

i = 0

4 8,1012 2024

30

2

6

14 26 28

0.00

0.10

0.20

0.30

0.40

0.50

0.0 20.0 40.0 60.0 80.0 100.0

Bound-Bound ExcitationCross Section (Å

2 )

Energy (eV)

i = 0

4

816

2024

30

2

6

26 28

18

14

12

1

€ e+O2(X 3Σg−,ν)€ e+O2(B 3Σu−,ε)→e+2O€ e+O2(B 3Σu−,ν)predissociation ⏐ → ⏐ ⏐ ⏐ ⏐e+2ODISSOCIATIVE O2 CHANNELS

Page 57: M.Capitelli Dipartimento di Chimica, Università di Bari, Italy IMIP-CNR, Bari, Italy.

CRP (COORDINATED RESEARCH PROJECT), IAEA MEETING “ATOMIC and MOLECULAR DATA for PLASMA MODELING”VIENNA, SEPTEMBER 26-28, 2005

0.0

5.0

10.0

15.0

20.0

1.0 2.0 3.0 4.0 5.0

POTENTIAL ENERGY (eV)

INTERNUCLEAR DISTANCE (a0)

X 1 g

+

b 1 u

dissociation limit

( N 4 ) + ( S N4 )S

( N 2 ) + ( D N2 )D

i

f

ε

N2 (X 1Σg+ ,ν i ) + e → N2 (b 1Π u ,ε) + e → N + N + e

Direct Dissociation through the excited state

N2 (X 1Σg+ ,ν i ) + e → N2 (b 1Π u ,ν f ) + e

Vibronic Excitation

D.Spelsberg, W.Meyer, Journal of Chemical Physics 115 (2001) 6438

The N2 Birge-Hopfield system

Dissociation through Predissociative Channels

N + N + e

Page 58: M.Capitelli Dipartimento di Chimica, Università di Bari, Italy IMIP-CNR, Bari, Italy.

CRP (COORDINATED RESEARCH PROJECT), IAEA MEETING “ATOMIC and MOLECULAR DATA for PLASMA MODELING”VIENNA, SEPTEMBER 26-28, 2005

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0 20.0 40.0 60.0 80.0 100.0

Total cross section (Å

2)

Energy (eV)

i = 05

1015 20

253035

40

0.0

0.1

0.2

0.3

0.4

0.0 20.0 40.0 60.0 80.0 100.0

Dissociative cross section (Å

2)

Energy (eV)

5

10

1520 25

3035

40

X 1g (i) b 1u X 1g (i) b 1u (continuum)

E=40eV E=40eV

Page 59: M.Capitelli Dipartimento di Chimica, Università di Bari, Italy IMIP-CNR, Bari, Italy.

CRP (COORDINATED RESEARCH PROJECT), IAEA MEETING “ATOMIC and MOLECULAR DATA for PLASMA MODELING”VIENNA, SEPTEMBER 26-28, 2005

CROSS SECTION DEPENDENCE on the INITIAL VIBRATIONAL QUANTUM NUMBER

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0 5 10 15 20 25 30 35 40

CROSS SECTION (Å

2 )

INITIAL VIBRATIONAL QUANTUM NUMBER

E=40 eVTOTAL

DISSOCIATIVE

VIBRONICEXCITATION

Page 60: M.Capitelli Dipartimento di Chimica, Università di Bari, Italy IMIP-CNR, Bari, Italy.

CRP (COORDINATED RESEARCH PROJECT), IAEA MEETING “ATOMIC and MOLECULAR DATA for PLASMA MODELING”VIENNA, SEPTEMBER 26-28, 2005

DISSOCIATION CROSS SECTIONS FOR NITROGEN

rotationally averaged cross sections from =40, Trot= 50, 1000, 3000 K

rotationally averaged cross sections from =40,50,60,65, Trot= 3000 K

Page 61: M.Capitelli Dipartimento di Chimica, Università di Bari, Italy IMIP-CNR, Bari, Italy.

CRP (COORDINATED RESEARCH PROJECT), IAEA MEETING “ATOMIC and MOLECULAR DATA for PLASMA MODELING”VIENNA, SEPTEMBER 26-28, 2005

DISSOCIATION RATE COEFFICIENTS FOR NITROGEN

T = 300, 1000, 3000 K!!interpolated with polynomials of order 3-4!!

comparison of total dissociation rate coefficient with experimental results

Roth&Thielen (1986)

Appleton (1968)

Page 62: M.Capitelli Dipartimento di Chimica, Università di Bari, Italy IMIP-CNR, Bari, Italy.

CRP (COORDINATED RESEARCH PROJECT), IAEA MEETING “ATOMIC and MOLECULAR DATA for PLASMA MODELING”VIENNA, SEPTEMBER 26-28, 2005

VIBRATIONAL DE-EXCITATION RATE COEFFICIENTS FOR NITROGEN

comparison with theoretical results ofLaganà&Garcia (1996) (T=1000 K)

!!lines without points are reactive rates!!

-1, -5, -15, -25, -35 T=1000 K

Page 63: M.Capitelli Dipartimento di Chimica, Università di Bari, Italy IMIP-CNR, Bari, Italy.

CRP (COORDINATED RESEARCH PROJECT), IAEA MEETING “ATOMIC and MOLECULAR DATA for PLASMA MODELING”VIENNA, SEPTEMBER 26-28, 2005

DISSOCIATION RATE COEFFICIENTS FOR OXYGEN

T = 300, 1000, 3000 K

Page 64: M.Capitelli Dipartimento di Chimica, Università di Bari, Italy IMIP-CNR, Bari, Italy.

CRP (COORDINATED RESEARCH PROJECT), IAEA MEETING “ATOMIC and MOLECULAR DATA for PLASMA MODELING”VIENNA, SEPTEMBER 26-28, 2005

VIBRATIONAL DE-EXCITATION RATE COEFFICIENTS FOR OXYGEN

-1 T=1000 K

Page 65: M.Capitelli Dipartimento di Chimica, Università di Bari, Italy IMIP-CNR, Bari, Italy.

CRP (COORDINATED RESEARCH PROJECT), IAEA MEETING “ATOMIC and MOLECULAR DATA for PLASMA MODELING”VIENNA, SEPTEMBER 26-28, 2005

VIBRATIONAL DE-EXCITATION RATE COEFFICIENTS FOR OXYGEN

-5 T=1000 K

Page 66: M.Capitelli Dipartimento di Chimica, Università di Bari, Italy IMIP-CNR, Bari, Italy.

CRP (COORDINATED RESEARCH PROJECT), IAEA MEETING “ATOMIC and MOLECULAR DATA for PLASMA MODELING”VIENNA, SEPTEMBER 26-28, 2005

VIBRATIONAL DE-EXCITATION RATE COEFFICIENTS FOR OXYGEN

-15 T=1000 K

Page 67: M.Capitelli Dipartimento di Chimica, Università di Bari, Italy IMIP-CNR, Bari, Italy.

CRP (COORDINATED RESEARCH PROJECT), IAEA MEETING “ATOMIC and MOLECULAR DATA for PLASMA MODELING”VIENNA, SEPTEMBER 26-28, 2005

VIBRATIONAL DE-EXCITATION RATE COEFFICIENTS FOR OXYGEN

-25 T=1000 K

Page 68: M.Capitelli Dipartimento di Chimica, Università di Bari, Italy IMIP-CNR, Bari, Italy.

CRP (COORDINATED RESEARCH PROJECT), IAEA MEETING “ATOMIC and MOLECULAR DATA for PLASMA MODELING”VIENNA, SEPTEMBER 26-28, 2005

VIBRATIONAL DE-EXCITATION RATE COEFFICIENTS FOR OXYGEN

-35 T=1000 K

Page 69: M.Capitelli Dipartimento di Chimica, Università di Bari, Italy IMIP-CNR, Bari, Italy.

CRP (COORDINATED RESEARCH PROJECT), IAEA MEETING “ATOMIC and MOLECULAR DATA for PLASMA MODELING”VIENNA, SEPTEMBER 26-28, 2005

VIBRATIONAL DE-EXCITATION RATE COEFFICIENTS FOR OXYGEN

comparison of rate coefficients with Laganà&Garcia results on the same PES

-1(yellow) -5(black)

Page 70: M.Capitelli Dipartimento di Chimica, Università di Bari, Italy IMIP-CNR, Bari, Italy.

CRP (COORDINATED RESEARCH PROJECT), IAEA MEETING “ATOMIC and MOLECULAR DATA for PLASMA MODELING”VIENNA, SEPTEMBER 26-28, 2005

DISSOCIATION CROSS SECTIONS FOR OXYGEN

rotationally averaged cross sections from =30, Trot= 50,1000,3000,10000 K

rotationally averaged cross sections from =20,25,30,35,40, Trot= 1000 K

Page 71: M.Capitelli Dipartimento di Chimica, Università di Bari, Italy IMIP-CNR, Bari, Italy.

CRP (COORDINATED RESEARCH PROJECT), IAEA MEETING “ATOMIC and MOLECULAR DATA for PLASMA MODELING”VIENNA, SEPTEMBER 26-28, 2005

QuickTime™ e undecompressore TIFF (LZW)

sono necessari per visualizzare quest'immagine.

TOTAL DISSOCIATION CROSS SECTIONS FOR OXYGEN!! COMPARISON with some EXPERIMENTAL FITS!!

• Our rate is similar to that of Shatalov within ±13% over the whole interval 1000-10000K

• NF: no correction factor

• VF: variable factor

Page 72: M.Capitelli Dipartimento di Chimica, Università di Bari, Italy IMIP-CNR, Bari, Italy.

CRP (COORDINATED RESEARCH PROJECT), IAEA MEETING “ATOMIC and MOLECULAR DATA for PLASMA MODELING”VIENNA, SEPTEMBER 26-28, 2005

1. Excitation and de-excitation by electron impact

2. Ionization by electron impact and three body recombination

3. Spontaneous emission and absorption

4. Radiative recombination

Collisional-Radiative Model for Atomic Plasma

A(i)+e−(ε)kij →

k ji←

A( j)+e−( ′ ε )

A(i)+e−(ε)kic →

kci←

A+ +e−( ′ ε )+eb−(εb)

A(i) λijAij → A( j)+h ij with i> j

A+ +e−(ε) βi → A(i)+h

Page 73: M.Capitelli Dipartimento di Chimica, Università di Bari, Italy IMIP-CNR, Bari, Italy.

CRP (COORDINATED RESEARCH PROJECT), IAEA MEETING “ATOMIC and MOLECULAR DATA for PLASMA MODELING”VIENNA, SEPTEMBER 26-28, 2005

Rate Equations

dni

dt=+ njA ji

*

j>i∑ +ne njk ji

j≠i∑ +ne

2n+kci+nen+βi −ni A ij*

j<i∑ −nine kij

j≠i∑ −ninekic ∀i

dne

dt=dn+

dt=− dni

dti∑

Quasi-Stationary Solution(QSS)

dni

dt=0 ∀i

dni

dt≠0 ∀i

Stationary solution

Time-dependent solution

dni

dt=0 i≥2

dn1dt

≈−dne

dt=−dn+

dt

Page 74: M.Capitelli Dipartimento di Chimica, Università di Bari, Italy IMIP-CNR, Bari, Italy.

CRP (COORDINATED RESEARCH PROJECT), IAEA MEETING “ATOMIC and MOLECULAR DATA for PLASMA MODELING”VIENNA, SEPTEMBER 26-28, 2005

QSS approximation

dni

dt=0 i≥2

dn1dt

≈−dne

dt=−dn+

dt

⎨ ⎪

⎩ ⎪

X i =ni

niSB

dX1dt

=a11X1+ a1jX jj=2

i*

∑ −b1

X i≥2 =X i≥20 +Ri≥2

1 X1

aijX jj=1

i*

∑ =bi i >1

The ground state density changes like the density of the charged particles andthe excited states are in an instantaneous ionization-recombination equilibrium with the free electrons

differential equation for the ground state

system of linear equation for excited levels

The system of equations is linear in X1

X i≥20 =f(ne,Te)

Ri≥21 =f(ne,Te)

Xj (j>1) can be calculated when X1, ne, Te are given

X i≥2 =f(X1,ne,Te)

Page 75: M.Capitelli Dipartimento di Chimica, Università di Bari, Italy IMIP-CNR, Bari, Italy.

CRP (COORDINATED RESEARCH PROJECT), IAEA MEETING “ATOMIC and MOLECULAR DATA for PLASMA MODELING”VIENNA, SEPTEMBER 26-28, 2005

CR for Atomic Nitrogen Plasma: Energy-level Model

group Energy (cm-1) Statistical weight Terms1 0 4 2p34S2 19228 10 2p32D3 28840 6 2p32P4 83337 12 3s4P5 86193 6 3s”P6 95276 36 3p4S, 4P, 4D7 96793 18 3p2S,2P,2D8 103862 18 4s4P,2P9 104857 60 3d4P,4D,4F

10 104902 30 3d2P,2D,2F11 107125 54 4p4S,4P,4D,2S,2D,2P12 109951 18 5s4P,2P13 110315 90 4d4P,4D,4F,2P,2D,2F14 110486 126 4f4D,4F,4G,2D,2F,2G15 111363 54 5p4S,4P,4D,2S,2P,2D16 112691 18 6s4P,2P17 112851 90 5d4P,4D,4F,2P,2D,2F18 112955 288 5f,5g19 113391 54 6p20 114211 90 6d4P,4D,4F,2P,2D,2F21 114255 486 6f,6g,6h22 114914 882 n=723 115464 1152 n=824 115837 1458 n=925 116102 1800 n=1026 116298 2178 n=1127 116445 2592 n=1228 116560 3042 n=1329 116650 3528 n=1430 116724 4050 n=1531 116784 4608 n=1632 116834 5202 n=1733 116875 5832 n=1834 116910 6498 n=1935 116940 7200 n=20

Page 76: M.Capitelli Dipartimento di Chimica, Università di Bari, Italy IMIP-CNR, Bari, Italy.

CRP (COORDINATED RESEARCH PROJECT), IAEA MEETING “ATOMIC and MOLECULAR DATA for PLASMA MODELING”VIENNA, SEPTEMBER 26-28, 2005

CR for Atomic Nitrogen Plasma with QSS

Xi vs level energy

Te=5800 K Te=11600 K Te=17400 K

0.0001

0.001

0.01

0.1

1

10

8 104 8.5 104 9 104 9.5 104 1 105 1.05 105 1.1 105 1.15 105 1.2 105

ne=10

8 cm

-3

ne=1016 cm-3

level energy (cm-1

)

X1=1

0.0001

0.001

0.01

0.1

1

10

8 104 8.5 104 9 104 9.5 104 1 105 1.05 105 1.1 105 1.15 105 1.2 105

ne=108 cm-3

ne=1016 cm-3

level energy (cm-1

)

X1=1

0.0001

0.001

0.01

0.1

1

10

100

8 104 8.5 104 9 104 9.5 104 1 105 1.05 105 1.1 105 1.15 105 1.2 105

ne=108 cm-3

ne=1016 cm-3

level energy (cm-1

)

X1=1

Page 77: M.Capitelli Dipartimento di Chimica, Università di Bari, Italy IMIP-CNR, Bari, Italy.

CRP (COORDINATED RESEARCH PROJECT), IAEA MEETING “ATOMIC and MOLECULAR DATA for PLASMA MODELING”VIENNA, SEPTEMBER 26-28, 2005

Time-dependent solution

CR rate equations Boltzmann equation

dni

dt≠0 ∀i

Rate coefficients for electron impact processes

k= f(ε)Et

∞∫ σ(ε)v(ε)dεf(e) electron energy distribution functions(e) cross sectionv(e) electron velocity

level populationplasma composition

f(e)rate coefficients

Page 78: M.Capitelli Dipartimento di Chimica, Università di Bari, Italy IMIP-CNR, Bari, Italy.

CRP (COORDINATED RESEARCH PROJECT), IAEA MEETING “ATOMIC and MOLECULAR DATA for PLASMA MODELING”VIENNA, SEPTEMBER 26-28, 2005

ATOMIC HYDROGEN PLASMA

P=100 Torr, Tg=30000 K, Te(t=0)=1000 K H+ = e

- =10-8 , H=1, H(1)=1, H(i)=0 i>1

H(n≤25),H+ ,e−[ ]

0

5000

10000

15000

20000

25000

30000

35000

10-14 10-12 10-10 10-8 10-6 10-4 10-2 100 102 104 106

time (s)

108

1010

1012

1014

1016

10-5 10-4 10-3 10-2 10-1

H

H+

e-

time (s)

10-20

10-18

10-16

10-14

10-12

10-10

10-8

10-6

0.0001

0.01

1

100

104

10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1

i=1i=2i=5i=10i=15i=20i=25

time (s)

density (cm-3) vs time(s) Xi = ni/niSB vs time(s) Te vs time(s)

Page 79: M.Capitelli Dipartimento di Chimica, Università di Bari, Italy IMIP-CNR, Bari, Italy.

CRP (COORDINATED RESEARCH PROJECT), IAEA MEETING “ATOMIC and MOLECULAR DATA for PLASMA MODELING”VIENNA, SEPTEMBER 26-28, 2005

10-30

10-28

10-26

10-24

10-22

10-20

10-18

10-16

10-14

10-12

10-10

10-8

10-6

0.0001

0.01

1

0 5 10 15 20 25

t(s)=0 s

t(s)=10-10 s

t(s)=10-9 s

t(s)=5 10-9 s

t(s)=10-8 s

t(s)=3 10-8 s

t(s)=5 10-8 s

t(s)=8 10-8 s

t(s)=10-7 s

t(s)=10-6 s

t(s)=10-5

s

t(s)=10-4 s

t(s)=8 10-4 s

t(s)=9 10-4 s

t(s)=10-3 s

ε( )eV

Tfit = 30020 K

H(i)/g(i) vs Ei

10-30

10-28

10-26

10-24

10-22

10-20

10-18

10-16

10-14

10-12

10-10

10-8

10-6

0.0001

0.01

0 2 4 6 8 10 12 14

t(s)=0 s

t(s)=10-10

s

t(s)=10-9

s

t(s)=5 10-9 s

t(s)=10-8 s

t(s)=3 10-8 s

t(s)=5 10-8 s

t(s)=8 10-8 s

t(s)=10-7 s

t(s)=10-6 s

t(s)=10-5 s

t(s)=10-4 s

t(s)=8 10-4 s

t(s)=9 10-4 s

t(s)=10-3 s

( )level energy eV

Tfit = 29986 K

eedf(eV-3/2) vs E


Recommended