+ All Categories
Home > Documents > MCP4902/4912/4922 Data Sheet - Microchip...

MCP4902/4912/4922 Data Sheet - Microchip...

Date post: 15-Mar-2018
Category:
Upload: lydang
View: 231 times
Download: 2 times
Share this document with a friend
48
2010 Microchip Technology Inc. DS22250A-page 1 MCP4902/4912/4922 Features MCP4902: Dual 8-Bit Voltage Output DAC MCP4912: Dual 10-Bit Voltage Output DAC MCP4922: Dual 12-Bit Voltage Output DAC Rail-to-Rail Output SPI Interface with 20 MHz Clock Support Simultaneous Latching of the Dual DACs with LDAC pin Fast Settling Time of 4.5 μs Selectable Unity or 2x Gain Output External Voltage Reference Inputs External Multiplier Mode 2.7V to 5.5V Single-Supply Operation Extended Temperature Range: -40°C to +125°C Applications Set Point or Offset Trimming Precision Selectable Voltage Reference Motor Control Feedback Loop Digitally-Controlled Multiplier/Divider Calibration of Optical Communication Devices Related Products (1) Description The MCP4902/4912/4922 devices are dual 8-bit, 10-bit, and 12-bit buffered voltage output Digital-to-Analog Converters (DACs), respectively. The devices operate from a single 2.7V to 5.5V supply with SPI compatible Serial Peripheral Interface. The user can configure the full-scale range of the device to be V REF or 2 * V REF by setting the Gain Selection Option bit (gain of 1 of 2). The user can shut down both DAC channels by using SHDN pin or shut down the DAC channel individually by setting the Configuration register bits. In Shutdown mode, most of the internal circuits in the shutdown channel are turned off for power savings and the output amplifier is configured to present a known high resistance output load (500 k typical. The devices include double-buffered registers, allowing synchronous updates of two DAC outputs, using the LDAC pin. These devices also incorporate a Power-on Reset (POR) circuit to ensure reliable power- up. The devices utilize a resistive string architecture, with its inherent advantages of low DNL error and fast settling time. These devices are specified over the extended temperature range (+125°C). The devices provide high accuracy and low noise performance for consumer and industrial applications where calibration or compensation of signals (such as temperature, pressure and humidity) are required. The MCP4902/4912/4922 devices are available in the PDIP, SOIC and TSSOP packages. Package Types P/N DAC Resolution No. of ChannelS Voltage Reference (V REF ) MCP4801 8 1 Internal (2.048V) MCP4811 10 1 MCP4821 12 1 MCP4802 8 2 MCP4812 10 2 MCP4822 12 2 MCP4901 8 1 External MCP4911 10 1 MCP4921 12 1 MCP4902 8 2 MCP4912 10 2 MCP4922 12 2 Note 1: The products listed here have similar AC/ DC performances. MCP4902: 8-bit dual DAC MCP4912: 10-bit dual DAC MCP4922: 12-bit dual DAC 14 1 2 3 4 13 12 11 10 9 8 5 6 7 14-Pin PDIP, SOIC, TSSOP V DD NC CS SCK V REFB NC NC SDI LDAC SHDN V OUTB V OUTA V REFA V SS MCP49X2 8/10/12-Bit Dual Voltage Output Digital-to-Analog Converter with SPI Interface
Transcript
Page 1: MCP4902/4912/4922 Data Sheet - Microchip Technologyww1.microchip.com/downloads/en/DeviceDoc/22250A.pdfThe MCP4902/4912/4922 devices are dual 8-bit, 10-bit, ... can configure the full-scale

MCP4902/4912/49228/10/12-Bit Dual Voltage Output Digital-to-Analog Converter

with SPI Interface

Features• MCP4902: Dual 8-Bit Voltage Output DAC• MCP4912: Dual 10-Bit Voltage Output DAC• MCP4922: Dual 12-Bit Voltage Output DAC• Rail-to-Rail Output• SPI Interface with 20 MHz Clock Support• Simultaneous Latching of the Dual DACs

with LDAC pin• Fast Settling Time of 4.5 µs• Selectable Unity or 2x Gain Output• External Voltage Reference Inputs• External Multiplier Mode• 2.7V to 5.5V Single-Supply Operation• Extended Temperature Range: -40°C to +125°C

Applications• Set Point or Offset Trimming• Precision Selectable Voltage Reference• Motor Control Feedback Loop• Digitally-Controlled Multiplier/Divider• Calibration of Optical Communication Devices

Related Products(1)

DescriptionThe MCP4902/4912/4922 devices are dual 8-bit,10-bit, and 12-bit buffered voltage outputDigital-to-Analog Converters (DACs), respectively. Thedevices operate from a single 2.7V to 5.5V supply withSPI compatible Serial Peripheral Interface. The usercan configure the full-scale range of the device to beVREF or 2 * VREF by setting the Gain Selection Optionbit (gain of 1 of 2).

The user can shut down both DAC channels by usingSHDN pin or shut down the DAC channel individuallyby setting the Configuration register bits. In Shutdownmode, most of the internal circuits in the shutdownchannel are turned off for power savings and the outputamplifier is configured to present a known highresistance output load (500 ktypical.

The devices include double-buffered registers,allowing synchronous updates of two DAC outputs,using the LDAC pin. These devices also incorporate aPower-on Reset (POR) circuit to ensure reliable power-up.

The devices utilize a resistive string architecture, withits inherent advantages of low DNL error and fastsettling time. These devices are specified over theextended temperature range (+125°C).

The devices provide high accuracy and low noiseperformance for consumer and industrial applicationswhere calibration or compensation of signals (such astemperature, pressure and humidity) are required.

The MCP4902/4912/4922 devices are available in thePDIP, SOIC and TSSOP packages.

Package Types

P/N DAC Resolution

No. of ChannelS

Voltage Reference

(VREF)

MCP4801 8 1

Internal(2.048V)

MCP4811 10 1MCP4821 12 1MCP4802 8 2MCP4812 10 2MCP4822 12 2MCP4901 8 1

ExternalMCP4911 10 1MCP4921 12 1MCP4902 8 2MCP4912 10 2MCP4922 12 2

Note 1: The products listed here have similar AC/DC performances.

MCP4902: 8-bit dual DACMCP4912: 10-bit dual DACMCP4922: 12-bit dual DAC

141

2

3

4

13

12

11

10

9

8

5

6

7

14-Pin PDIP, SOIC, TSSOP

VDD

NCCS

SCK VREFB

NCNCSDI

LDAC

SHDN

VOUTB

VOUTA

VREFA

VSS

MC

P49X

2

2010 Microchip Technology Inc. DS22250A-page 1

Page 2: MCP4902/4912/4922 Data Sheet - Microchip Technologyww1.microchip.com/downloads/en/DeviceDoc/22250A.pdfThe MCP4902/4912/4922 devices are dual 8-bit, 10-bit, ... can configure the full-scale

MCP4902/4912/4922

Block Diagram

Op Amps

VDD

VSS

CS SDI SCK

Interface Logic

Input Register A Register B

Input

DACA Register Register

DACB

StringDACB

StringDACA

Power-on Reset

VOUTA VOUTB

LDAC

OutputGainLogic

GainLogic

OutputLogic

SHDN

VREF A VREF B

Buffer Buffer

DS22250A-page 2 2010 Microchip Technology Inc.

Page 3: MCP4902/4912/4922 Data Sheet - Microchip Technologyww1.microchip.com/downloads/en/DeviceDoc/22250A.pdfThe MCP4902/4912/4922 devices are dual 8-bit, 10-bit, ... can configure the full-scale

MCP4902/4912/4922

tal

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †VDD....................................................................... 6.5V

All inputs and outputs w.r.t .....VSS –0.3V to VDD+0.3V Current at Input Pins ......................................... ±2 mACurrent at Supply Pins .................................... ±50 mACurrent at Output Pins .................................... ±25 mAStorage temperature .......................... -65°C to +150°CAmbient temp. with power applied ..... -55°C to +125°CESD protection on all pins 4 kV (HBM), 400V (MM)Maximum Junction Temperature (TJ)................+150°C

† Notice: Stresses above those listed under “MaximumRatings” may cause permanent damage to the device.This is a stress rating only and functional operation ofthe device at those or any other conditions above thoseindicated in the operational listings of this specificationis not implied. Exposure to maximum rating conditionsfor extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICSElectrical Specifications: Unless otherwise indicated, VDD = 5V, VSS = 0V, VREF = 2.048V, Output Buffer Gain (G) = 2x, RL = 5 k to GND, CL = 100 pF TA = -40 to +85°C. Typical values are at +25°C.

Parameters Sym Min Typ Max Units Conditions

Power RequirementsOperating Voltage VDD 2.7 — 5.5 VOperating CurrentInput Cur-rent

IDD — 350 700 µA VDD = 5VVDD = 3VVREF input is unbuffered, all digiinputs are grounded, all analog outputs (VOUT) are unloaded. Code = 000h.

— 250 500 µA

Hardware Shutdown Current ISHDN — 0.3 2 µA Power-on Reset circuit is turnedoff

Software Shutdown Current ISHDN_SW — 3.3 6 µA Power-on Reset circuit stays onPower-on-Reset Threshold VPOR — 2.0 — VDC AccuracyMCP4902 Resolution n 8 — — Bits INL Error INL -1 ±0.125 1 LSb DNL DNL -0.5 ±0.1 +0.5 LSb Note 1MCP4912 Resolution n 10 — — Bits INL Error INL -3.5 ±0.5 3.5 LSb DNL DNL -0.5 ±0.1 +0.5 LSb Note 1MCP4922 Resolution n 12 — — Bits INL Error INL -12 ±2 12 LSb DNL DNL -0.75 ±0.2 +0.75 LSb Note 1Offset Error VOS — ±0.02 1 % of

FSRCode = 0x000h

Note 1: Guaranteed monotonic by design over all codes.2: This parameter is ensured by design, and not 100% tested.

2010 Microchip Technology Inc. DS22250A-page 3

Page 4: MCP4902/4912/4922 Data Sheet - Microchip Technologyww1.microchip.com/downloads/en/DeviceDoc/22250A.pdfThe MCP4902/4912/4922 devices are dual 8-bit, 10-bit, ... can configure the full-scale

MCP4902/4912/4922

ff-

r )

m

ry 0)

Offset Error TemperatureCoefficient

VOS/°C — 0.16 — ppm/°C -45°C to 25°C— -0.44 — ppm/°C +25°C to 85°C

Gain Error gE — -0.10 1 % of FSR

Code = 0xFFFh, not including oset error

Gain Error Temperature Coefficient

G/°C — -3 — ppm/°C

Input Amplifier (VREF Input)Input Range – Buffered Mode

VREF 0.040 — VDD – 0.040 V Note 2Code = 2048VREF = 0.2V p-p, f = 100 Hz and1 kHz

Input Range – Unbuffered Mode

VREF 0 — VDD V

Input Impedance RVREF — 165 — k Unbuffered ModeInput Capacitance – Unbuffered Mode

CVREF — 7 — pF

Multiplier Mode -3 dB Bandwidth

fVREF — 450 — kHz VREF = 2.5V ±0.2Vp-p, Unbuffered, G = 1x

fVREF — 400 — kHz VREF = 2.5V ±0.2 Vp-p, Unbuffered, G = 2x

Multiplier Mode – Total Harmonic Distortion

THDVREF — -73 — dB VREF = 2.5V ±0.2Vp-p,Frequency = 1 kHz

Output AmplifierOutput Swing VOUT — 0.01 to

VDD – 0.04 — V Accuracy is better than 1 LSb fo

VOUT = 10 mV to (VDD – 40 mVPhase Margin m — 66 — degreesSlew Rate SR — 0.55 — V/µsShort Circuit Current ISC — 15 24 mASettling Time tsettling — 4.5 — µs Within 1/2 LSb of final value fro

1/4 to 3/4 full-scale rangeDynamic Performance (Note 2)DAC-to-DAC Crosstalk — 10 — nV-sMajor Code Transition Glitch — 45 — nV-s 1 LSb change around major car

(0111...1111 to 1000...000Digital Feedthrough — 10 — nV-sAnalog Crosstalk — 10 — nV-s

ELECTRICAL CHARACTERISTICS (CONTINUED)Electrical Specifications: Unless otherwise indicated, VDD = 5V, VSS = 0V, VREF = 2.048V, Output Buffer Gain (G) = 2x, RL = 5 k to GND, CL = 100 pF TA = -40 to +85°C. Typical values are at +25°C.

Parameters Sym Min Typ Max Units Conditions

Note 1: Guaranteed monotonic by design over all codes.2: This parameter is ensured by design, and not 100% tested.

DS22250A-page 4 2010 Microchip Technology Inc.

Page 5: MCP4902/4912/4922 Data Sheet - Microchip Technologyww1.microchip.com/downloads/en/DeviceDoc/22250A.pdfThe MCP4902/4912/4922 devices are dual 8-bit, 10-bit, ... can configure the full-scale

MCP4902/4912/4922

ELECTRICAL CHARACTERISTIC WITH EXTENDED TEMPERATUREElectrical Specifications: Unless otherwise indicated, VDD = 5V, VSS = 0V, VREF = 2.048V, Output Buffer Gain (G) = 2x, RL = 5 k to GND, CL = 100 pF. Typical values are at +125°C by characterization or simulation.

Parameters Sym Min Typ Max Units Conditions

Power RequirementsOperating Voltage VDD 2.7 — 5.5 VOperating Current IDD — 400 — µA VREF input is unbuffered, all digi-

tal inputs are grounded, all analog outputs (VOUT) are unloaded. Code=000h

Hardware Shutdown Current

ISHDN — 1.5 — µA POR circuit is turned-off

Software Shutdown Current ISHDN_SW — 5 — µA POR circuit stays turned-onPower-On Reset threshold VPOR — 1.85 — VDC AccuracyMCP4902 Resolution n 8 — — Bits INL Error INL ±0.25 LSb DNL DNL ±0.2 LSb Note 1MCP4912 Resolution n 10 — — Bits INL Error INL ±1 LSb DNL DNL ±0.2 LSb Note 1MCP4922 Resolution n 12 — — Bits INL Error INL ±4 LSb DNL DNL ±0.25 LSb Note 1Offset Error VOS — ±0.02 — % of FSR Code 0x000hOffset Error TemperatureCoefficient

VOS/°C — -5 — ppm/°C +25°C to +125°C

Gain Error gE — -0.10 — % of FSR Code = 0xFFFh, not including off-set error

Gain Error Temperature Coefficient

G/°C — -3 — ppm/°C

Input Amplifier (VREF Input)Input Range – Buffered Mode

VREF — 0.040 to VDD – 0.040

— V Note 1Code = 2048, VREF = 0.2V p-p, f = 100 Hz and 1 kHz

Input Range – Unbuffered Mode

VREF 0 — VDD V

Input Impedance RVREF — 174 — k Unbuffered modeInput Capacitance – Unbuffered Mode

CVREF — 7 — pF

Note 1: Guaranteed monotonic by design over all codes.2: This parameter is ensured by design, and not 100% tested.

2010 Microchip Technology Inc. DS22250A-page 5

Page 6: MCP4902/4912/4922 Data Sheet - Microchip Technologyww1.microchip.com/downloads/en/DeviceDoc/22250A.pdfThe MCP4902/4912/4922 devices are dual 8-bit, 10-bit, ... can configure the full-scale

MCP4902/4912/4922

Multiplying Mode -3 dB Bandwidth

fVREF — 450 — kHz VREF = 2.5V ±0.1 Vp-p, Unbuffered, G = 1x

fVREF — 400 — kHz VREF = 2.5V ±0.1 Vp-p, Unbuffered, G = 2x

Multiplying Mode – Total Harmonic Distortion

THDVREF — — — dB VREF = 2.5V ±0.1Vp-p, Frequency = 1 kHz

Output AmplifierOutput Swing VOUT — 0.01 to

VDD – 0.04 — V Accuracy is better than 1 LSb for

VOUT = 10 mV to (VDD – 40 mV)Phase Margin m — 66 — degreesSlew Rate SR — 0.55 — V/µsShort Circuit Current ISC — 17 — mASettling Time tsettling — 4.5 — µs Within 1/2 LSb of final value from

1/4 to 3/4 full-scale rangeDynamic Performance (Note 2)DAC to DAC Crosstalk — 10 — nV-sMajor Code Transition Glitch

— 45 — nV-s 1 LSb change around major carry (0111...1111 to 1000...0000)

Digital Feedthrough — 10 — nV-sAnalog Crosstalk — 10 — nV-s

ELECTRICAL CHARACTERISTIC WITH EXTENDED TEMPERATURE (CONTINUED)Electrical Specifications: Unless otherwise indicated, VDD = 5V, VSS = 0V, VREF = 2.048V, Output Buffer Gain (G) = 2x, RL = 5 k to GND, CL = 100 pF. Typical values are at +125°C by characterization or simulation.

Parameters Sym Min Typ Max Units Conditions

Note 1: Guaranteed monotonic by design over all codes.2: This parameter is ensured by design, and not 100% tested.

DS22250A-page 6 2010 Microchip Technology Inc.

Page 7: MCP4902/4912/4922 Data Sheet - Microchip Technologyww1.microchip.com/downloads/en/DeviceDoc/22250A.pdfThe MCP4902/4912/4922 devices are dual 8-bit, 10-bit, ... can configure the full-scale

MCP4902/4912/4922

AC CHARACTERISTICS (SPI TIMING SPECIFICATIONS)

FIGURE 1-1: SPI Input Timing Data.

Electrical Specifications: Unless otherwise indicated, VDD= 2.7V – 5.5V, TA= -40 to +125°C. Typical values are at +25°C.

Parameters Sym Min Typ Max Units Conditions

Schmitt Trigger High-Level Input Voltage (All digital input pins)

VIH 0.7 VDD — — V

Schmitt Trigger Low-Level Input Voltage (All digital input pins)

VIL — — 0.2 VDD V

Hysteresis of Schmitt Trigger Inputs

VHYS — 0.05 VDD — V

Input Leakage Current ILEAKAGE -1 — 1 A SHDN = LDAC = CS = SDI = SCK + VREF = VDD or VSS

Digital Pin Capacitance(All inputs/outputs)

CIN, COUT

— 10 — pF VDD = 5.0V, TA = +25°C, fCLK = 1 MHz (Note 1)

Clock Frequency FCLK — — 20 MHz TA = +25°C (Note 1)Clock High Time tHI 15 — — ns Note 1Clock Low Time tLO 15 — — ns Note 1CS Fall to First Rising CLK Edge

tCSSR 40 — — ns Applies only when CS falls with CLK high. (Note 1)

Data Input Setup Time tSU 15 — — ns Note 1Data Input Hold Time tHD 10 — — ns Note 1SCK Rise to CS Rise Hold Time

tCHS 15 — — ns Note 1

CS High Time tCSH 15 — — ns Note 1LDAC Pulse Width tLD 100 — — ns Note 1LDAC Setup Time tLS 40 — — ns Note 1SCK Idle Time before CS Fall tIDLE 40 — — ns Note 1Note 1: This parameter is ensured by design and not 100% tested.

CS

SCK

SI

LDAC

tCSSR

tHDtSU

tLO

tCSH

tCHS

LSb inMSb in

tIDLE

Mode 1,1

Mode 0,0

tHI

tLDtLS

2010 Microchip Technology Inc. DS22250A-page 7

Page 8: MCP4902/4912/4922 Data Sheet - Microchip Technologyww1.microchip.com/downloads/en/DeviceDoc/22250A.pdfThe MCP4902/4912/4922 devices are dual 8-bit, 10-bit, ... can configure the full-scale

MCP4902/4912/4922

TEMPERATURE CHARACTERISTICSElectrical Specifications: Unless otherwise indicated, VDD = +2.7V to +5.5V, VSS = GND.

Parameters Sym Min Typ Max Units Conditions

Temperature RangesSpecified Temperature Range TA -40 — +125 °COperating Temperature Range TA -40 — +125 °C Note 1Storage Temperature Range TA -65 — +150 °CThermal Package ResistancesThermal Resistance, 14L-PDIP JA — 70 — °C/WThermal Resistance, 14L-SOIC JA — 120 — °C/WThermal Resistance, 14L-TSSOP JA — 100 — °C/WNote 1: The MCP4902/4912/4922 devices operate over this extended temperature range, but with reduced

performance. Operation in this range must not cause TJ to exceed the maximum junction temperature of 150°C.

DS22250A-page 8 2010 Microchip Technology Inc.

Page 9: MCP4902/4912/4922 Data Sheet - Microchip Technologyww1.microchip.com/downloads/en/DeviceDoc/22250A.pdfThe MCP4902/4912/4922 devices are dual 8-bit, 10-bit, ... can configure the full-scale

MCP4902/4912/4922

2.0 TYPICAL PERFORMANCE CURVES

Note: Unless otherwise indicated, TA = +25°C, VDD = 5V, VSS = 0V, VREF = 2.048V, Gain = 2x, RL = 5 k, CL = 100 pF.

FIGURE 2-1: DNL vs. Code (MCP4922).

FIGURE 2-2: DNL vs. Code and Temperature (MCP4922).

FIGURE 2-3: DNL vs. Code and VREF, Gain = 1 (MCP4922).

FIGURE 2-4: Absolute DNL vs. Temperature (MCP4922).

FIGURE 2-5: Absolute DNL vs. Voltage Reference (MCP4922).

FIGURE 2-6: INL vs. Code and Temperature (MCP4922).

Note: The graphs and tables provided following this note are a statistical summary based on a limited number ofsamples and are provided for informational purposes only. The performance characteristics listed hereinare not tested or guaranteed. In some graphs or tables, the data presented may be outside the specifiedoperating range (e.g., outside specified power supply range) and therefore outside the warranted range.

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0 1024 2048 3072 4096

Code (Decimal)

DN

L (

LS

B)

-0.2

-0.1

0

0.1

0.2

0 1024 2048 3072 4096

Code (Decimal)

DN

L (

LS

B)

125C 85C 25C

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0 1024 2048 3072 4096

Code (Decimal)

DN

L (

LS

B)

1 2 3 4 5.5

0.075

0.0752

0.0754

0.0756

0.0758

0.076

0.0762

0.0764

0.0766

-40 -20 0 20 40 60 80 100 120

Ambient Temperature (ºC)

Ab

so

lute

DN

L (

LS

B)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 2 3 4 5

Voltage Reference (V)

Ab

so

lute

DN

L (

LS

B)

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 1024 2048 3072 4096

Code (Decimal)

INL

(L

SB

)

125C 85 25

Ambient Temperature

2010 Microchip Technology Inc. DS22250A-page 9

Page 10: MCP4902/4912/4922 Data Sheet - Microchip Technologyww1.microchip.com/downloads/en/DeviceDoc/22250A.pdfThe MCP4902/4912/4922 devices are dual 8-bit, 10-bit, ... can configure the full-scale

MCP4902/4912/4922

Note: Unless otherwise indicated, TA = +25°C, VDD = 5V, VSS = 0V, VREF = 2.048V, Gain = 2x, RL = 5 k, CL = 100 pF.

FIGURE 2-7: Absolute INL vs. Temperature (MCP4922).

FIGURE 2-8: Absolute INL vs. VREF (MCP4922).

FIGURE 2-9: INL vs. Code and VREF (MCP4922).

FIGURE 2-10: INL vs. Code (MCP4922).

FIGURE 2-11: DNL vs. Code and Temperature (MCP4912).

FIGURE 2-12: INL vs. Code and Temperature (MCP4912).

0

0.5

1

1.5

2

2.5

-40 -20 0 20 40 60 80 100 120

Ambient Temperature (ºC)

Ab

so

lute

IN

L (

LS

B)

0

0.5

1

1.5

2

2.5

3

1 2 3 4 5

Voltage Reference (V)

Ab

so

lute

IN

L (

LS

B)

-4

-3

-2

-1

0

1

2

3

0 1024 2048 3072 4096

Code (Decimal)

INL

(L

SB

)

1 2 3 4 5.5

VREF

Note: Single device graph (Figure 2-10) forillustration of 64 code effect.

-6

-4

-2

0

2

0 1024 2048 3072 4096

Code (Decimal)

INL

(L

SB

)

-0.2

-0.1

0

0.1

0.2

0 128 256 384 512 640 768 896 1024Code

DNL

(LSB

)Temp = - 40oC to +125oC

-3.5

-2.5

-1.5

-0.5

0.5

1.5

0 128 256 384 512 640 768 896 1024Code

INL

(LSB

)

125oC

85oC

25oC- 40oC

DS22250A-page 10 2010 Microchip Technology Inc.

Page 11: MCP4902/4912/4922 Data Sheet - Microchip Technologyww1.microchip.com/downloads/en/DeviceDoc/22250A.pdfThe MCP4902/4912/4922 devices are dual 8-bit, 10-bit, ... can configure the full-scale

MCP4902/4912/4922

Note: Unless otherwise indicated, TA = +25°C, VDD = 5V, VSS = 0V, VREF = 2.048V, Gain = 2x, RL = 5 k, CL = 100 pF.

FIGURE 2-13: DNL vs. Code and Temperature (MCP4902).

FIGURE 2-14: INL vs. Code and Temperature (MCP4902).

FIGURE 2-15: IDD vs. Temperature and VDD.

FIGURE 2-16: IDD Histogram (VDD = 2.7V).

FIGURE 2-17: IDD Histogram (VDD = 5.0V).

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0 32 64 96 128 160 192 224 256Code

DNL

(LSB

)Temp = -40oC to +125oC

-0.5

-0.25

0

0.25

0.5

0 32 64 96 128 160 192 224 256Code

INL

(LSB

)

125oC

-40oC to +85oC

200

250

300

350

400

-40 -20 0 20 40 60 80 100 120Ambient Temperature (ºC)

I DD (µ

A) VDD

5.5V

4.0V5.0V

3.0V2.7V

0

2

4

6

8

10

12

14

16

18

20

215

225

235

245

255

265

275

285

295

305

315

325

IDD (μA)

Occu

rren

ce

0

2

4

6

8

10

12

14

16

250

265

280

295

310

325

340

355

370

385

400

415

IDD (μA)

Occu

rren

ce

2010 Microchip Technology Inc. DS22250A-page 11

Page 12: MCP4902/4912/4922 Data Sheet - Microchip Technologyww1.microchip.com/downloads/en/DeviceDoc/22250A.pdfThe MCP4902/4912/4922 devices are dual 8-bit, 10-bit, ... can configure the full-scale

MCP4902/4912/4922

Note: Unless otherwise indicated, TA = +25°C, VDD = 5V, VSS = 0V, VREF = 2.048V, Gain = 2x, RL = 5 k, CL = 100 pF.

FIGURE 2-18: Hardware Shutdown Current vs. Ambient Temperature and VDD.

FIGURE 2-19: Software Shutdown Current vs. Ambient Temperature and VDD.

FIGURE 2-20: Offset Error vs. Ambient Temperature and VDD.

FIGURE 2-21: Gain Error vs. Ambient Temperature and VDD.

FIGURE 2-22: VIN High Threshold vs Ambient Temperature and VDD.

FIGURE 2-23: VIN Low Threshold vs Ambient Temperature and VDD.

0

0.5

1

1.5

2

-40 -20 0 20 40 60 80 100 120

Ambient Temperature (ºC)

I SH

DN (

μA

)

VDD

5.5V

4.0V

5.0V

3.0V2.7V

0

1

2

3

4

5

6

-40 -20 0 20 40 60 80 100 120

Ambient Temperature (ºC)

I SH

DN

_S

W (

μA

)

VDD

5.5V

4.0V

5.0V

3.0V2.7V

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

-40 -20 0 20 40 60 80 100 120

Ambient Temperature (ºC)

Off

se

t E

rro

r (%

)

VDD

5.5V

4.0V5.0V

3.0V2.7V

-0.16

-0.14

-0.12

-0.1

-0.08

-40 -20 0 20 40 60 80 100 120

Ambient Temperature (ºC)

Ga

in E

rro

r (%

)

VDD

5.5V

4.0V

5.0V

3.0V2.7V

1

1.5

2

2.5

3

3.5

4

-40 -20 0 20 40 60 80 100 120Ambient Temperature (ºC)

VIN

Hi

Th

res

ho

ld (

V)

VDD

5.5V

4.0V

5.0V

3.0V

2.7V

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

-40 -20 0 20 40 60 80 100 120

Ambient Temperature (ºC)

VIN

Lo

w T

hre

sh

old

(V

)

VDD

5.5V

4.0V

5.0V

3.0V

2.7V

DS22250A-page 12 2010 Microchip Technology Inc.

Page 13: MCP4902/4912/4922 Data Sheet - Microchip Technologyww1.microchip.com/downloads/en/DeviceDoc/22250A.pdfThe MCP4902/4912/4922 devices are dual 8-bit, 10-bit, ... can configure the full-scale

MCP4902/4912/4922

Note: Unless otherwise indicated, TA = +25°C, VDD = 5V, VSS = 0V, VREF = 2.048V, Gain = 2x, RL = 5 k, CL = 100 pF.

FIGURE 2-24: Input Hysteresis vs. Ambient Temperature and VDD.

FIGURE 2-25: VREF Input Impedance vs. Ambient Temperature and VDD.

FIGURE 2-26: VOUT High Limit vs. Ambient Temperature and VDD.

FIGURE 2-27: VOUT Low Limit vs. Ambient Temperature and VDD.

FIGURE 2-28: IOUT High Short vs. Ambient Temperature and VDD.

FIGURE 2-29: IOUT vs VOUT. Gain = 1x.

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

-40 -20 0 20 40 60 80 100 120

Ambient Temperature (ºC)

VIN

_S

PI H

yste

resis

(V

)

VDD

5.5V

4.0V

5.0V

3.0V2.7V

155

160

165

170

175

-40 -20 0 20 40 60 80 100 120

Ambient Temperature (ºC)

VR

EF

_U

NB

UF

FE

RE

D Im

ped

an

ce

(kO

hm

)

VDD

5.5V -2.7V

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

-40 -20 0 20 40 60 80 100 120

Ambient Temperature (ºC)

VO

UT

_H

I Lim

it (

VD

D-Y

)(V

)

VDD

5.5V

4.0V

5.0V

3.0V

2.7V

0.0015

0.002

0.0025

0.003

0.0035

0.004

0.0045

-40 -20 0 20 40 60 80 100 120

Ambient Temperature (ºC)

VO

UT

_L

OW

Lim

it (

Y-A

VS

S)(

V)

VDD

5.5V

4.0V

5.0V

3.0V2.7V

10

11

12

13

14

15

16

17

18

-40 -20 0 20 40 60 80 100 120

Ambient Temperature (ºC)

I OU

T_H

I_S

HO

RT

ED (

mA

)

VDD

5.5V

4.0V5.0V

3.0V2.7V

0.0

1.0

2.0

3.0

4.0

5.0

6.0

0 2 4 6 8 10 12 14 16

IOUT (mA)

VO

UT (

V)

VREF=4.0

Output Shorted to VSS

Output Shorted to VDD

2010 Microchip Technology Inc. DS22250A-page 13

Page 14: MCP4902/4912/4922 Data Sheet - Microchip Technologyww1.microchip.com/downloads/en/DeviceDoc/22250A.pdfThe MCP4902/4912/4922 devices are dual 8-bit, 10-bit, ... can configure the full-scale

MCP4902/4912/4922

Note: Unless otherwise indicated, TA = +25°C, VDD = 5V, VSS = 0V, VREF = 2.048V, Gain = 2x, RL = 5 k, CL = 100 pF.

FIGURE 2-30: VOUT Rise Time.

FIGURE 2-31: VOUT Fall Time.

FIGURE 2-32: VOUT Rise Time.

FIGURE 2-33: VOUT Rise Time.

FIGURE 2-34: VOUT Rise Time Exit Shutdown.

FIGURE 2-35: PSRR vs. Frequency.

VOUT

SCK

LDAC

Time (1 µs/div)

VOUT

SCK

LDAC

Time (1 µs/div)

VOUT

SCK

LDAC

Time (1 µs/div)

Time (1 µs/div)

VOUT

LDAC

Time (1 µs/div)

VOUT

SCK

LDAC

Rip

ple

Rej

ectio

n (d

B)

Frequency (Hz)

DS22250A-page 14 2010 Microchip Technology Inc.

Page 15: MCP4902/4912/4922 Data Sheet - Microchip Technologyww1.microchip.com/downloads/en/DeviceDoc/22250A.pdfThe MCP4902/4912/4922 devices are dual 8-bit, 10-bit, ... can configure the full-scale

MCP4902/4912/4922

Note: Unless otherwise indicated, TA = +25°C, VDD = 5V, VSS = 0V, VREF = 2.50V, Gain = 2x, RL = 5 k, CL = 100 pF.

FIGURE 2-36: Multiplier Mode Bandwidth.

FIGURE 2-37: -3 db Bandwidth vs. Worst Codes.

FIGURE 2-38: Phase Shift.

-12

-10

-8

-6

-4

-2

0

100 1,000Frequency (kHz)

Att

en

ua

tio

n (

dB

)

D = 160

D = 416

D = 672

D = 928

D = 1184

D = 1440

D = 1696

D = 1952

D = 2208

D = 2464

D = 2720

D = 2976

D = 3232

D = 3488

D = 3744

Note:

VREF

Dn • G4096 ( ) ( )VOUTAttenuation (dB) = 20 log - 20 log

400

420

440

460

480

500

520

540

560

580

600

160416

672928

1184

1440

1696

1952

2208

2464

2720

2976

3232

3488

3744

Worst Case Codes (decimal)

Ban

dw

idth

(kH

z)

G = 1

G = 2

-180

-135

-90

-45

0

100 1,000Frequency (kHz)

q VR

EF –

qVO

UT

D = 160D = 416D = 672D = 928D = 1184D = 1440D = 1696D = 1952D = 2208D = 2464D = 2720D = 2976D = 3232D = 3488D = 3744

2010 Microchip Technology Inc. DS22250A-page 15

Page 16: MCP4902/4912/4922 Data Sheet - Microchip Technologyww1.microchip.com/downloads/en/DeviceDoc/22250A.pdfThe MCP4902/4912/4922 devices are dual 8-bit, 10-bit, ... can configure the full-scale

MCP4902/4912/4922

NOTES:

DS22250A-page 16 2010 Microchip Technology Inc.

Page 17: MCP4902/4912/4922 Data Sheet - Microchip Technologyww1.microchip.com/downloads/en/DeviceDoc/22250A.pdfThe MCP4902/4912/4922 devices are dual 8-bit, 10-bit, ... can configure the full-scale

MCP4902/4912/4922

3.0 PIN DESCRIPTIONSThe descriptions of the pins are listed in Table 3-1.

TABLE 3-1: PIN FUNCTION TABLE

3.1 Supply Voltage Pins (VDD, VSS)VDD is the positive supply voltage input pin. The inputsupply voltage is relative to VSS and can range from2.7V to 5.5V. The power supply at the VDD pin shouldbe as clean as possible for a good DAC performance.It is recommended to use an appropriate bypasscapacitor of about 0.1 µF (ceramic) to ground. Anadditional 10 µF capacitor (tantalum) in parallel is alsorecommended to further attenuate high frequencynoise present in application boards.

VSS is the analog ground pin and the current return pathof the device. The user must connect the VSS pin to aground plane through a low-impedance connection. Ifan analog ground path is available in the applicationPrinted Circuit Board (PCB), it is highly recommendedthat the VSS pin be tied to the analog ground path orisolated within an analog ground plane of the circuitboard.

3.2 Chip Select (CS)CS is the Chip Select input, which requires an activelow signal to enable serial clock and data functions.

3.3 Serial Clock Input (SCK)SCK is the SPI compatible serial clock input pin.

3.4 Serial Data Input (SDI)SDI is the SPI compatible serial data input pin.

3.5 Latch DAC Input (LDAC)LDAC (latch DAC synchronization input) pin is used totransfer the input latch registers to their correspondingDAC registers (output latches, VOUT). When this pin islow, both VOUTA and VOUTB are updated at the sametime with their input register contents. This pin can betied to low (VSS) if the VOUT update is desired at therising edge of the CS pin. This pin can be driven by anexternal control device such as an MCU I/O pin.

3.6 Hardware Shutdown Input (SHDN)SHDN is the hardware shutdown input pin. When thispin is low, both DAC channels are shut down. DACoutput is not available during the shutdown.

3.7 Analog Outputs (VOUTA, VOUTB)VOUTA is the DAC A output pin, and VOUTB is the DACB output pin. Each output has its own output amplifier.The DAC output amplifier of each channel can drive theoutput pin with a range of VSS to VDD.

3.8 Voltage Reference Inputs(VREFA, VREFB)

VREFA is the voltage reference input for DAC channelA, and VREFB is the reference input for DAC channel B.The reference on these pins is utilized to set thereference voltage on the string DAC. The input signalcan range from VSS to VDD. These pins can be tied toVDD.

Pin No. Symbol Function

1 VDD Supply Voltage Input (2.7V to 5.5V)

2 NC No Connection

3 CS Chip Select Input

4 SCK Serial Clock Input

5 SDI Serial Data Input

6 NC No Connection

7 NC No Connection

8 LDAC Synchronization Input. This pin is used to transfer DAC settings (Input Registers) to the output registers (VOUT)

9 SHDN Hardware Shutdown Input

10 VOUTB DACB Output

11 VREFB DACB Reference Voltage Input (VSS to VDD)

12 VSS Ground reference point for all circuitry on the device

13 VREFA DACA Reference Voltage Input (VSS to VDD)

14 VOUTA DACA Output

2010 Microchip Technology Inc. DS22250A-page 17

Page 18: MCP4902/4912/4922 Data Sheet - Microchip Technologyww1.microchip.com/downloads/en/DeviceDoc/22250A.pdfThe MCP4902/4912/4922 devices are dual 8-bit, 10-bit, ... can configure the full-scale

MCP4902/4912/4922

NOTES:

DS22250A-page 18 2010 Microchip Technology Inc.

Page 19: MCP4902/4912/4922 Data Sheet - Microchip Technologyww1.microchip.com/downloads/en/DeviceDoc/22250A.pdfThe MCP4902/4912/4922 devices are dual 8-bit, 10-bit, ... can configure the full-scale

MCP4902/4912/4922

4.0 GENERAL OVERVIEWThe MCP4902, MCP4912 and MCP4922 are dualvoltage-output 8-bit, 10-bit and 12-bit DAC devices,respectively. These devices include input amplifiers,rail-to-rail output amplifiers, reference buffers forexternal voltage reference, shutdown andreset-management circuitry. The devices use an SPIserial communication interface and operate with asingle supply voltage from 2.7V to 5.5V.

The DAC input coding of these devices is straightbinary. Equation 4-1 shows the DAC analog outputvoltage calculation.

EQUATION 4-1: ANALOG OUTPUT VOLTAGE (VOUT)

The ideal output range of each device is:

• MCP4902 (n = 8)(a) 0 V to 255/256 * VREF when gain setting = 1x.

(b) 0 V to 255/256 * 2 * VREF when gain setting = 2x.

• MCP4912 (n = 10)(a) 0 V to 1023/1024 * VREF when gain setting = 1x.

(b) 0 V to 1023/1024 * 2 * VREF when gain setting = 2x.

• MCP4922 (n = 12)(a) 0 V to 4095/4096 * VREF when Gain setting = 1x.

(b) 0 V to 4095/4096 * 2 * VREF when gain setting = 2x.

1 LSb is the ideal voltage difference between twosuccessive codes. Table 4-1 illustrates the LSbcalculation of each device.

4.1 DC Accuracy

4.1.1 INL ACCURACYIntegral Non-Linearity (INL) error is the maximumdeviation between an actual code transition point andits corresponding ideal transition point, after offset andgain errors have been removed. The two end points(from 0x000 and 0xFFF) method is used for the calcu-lation. Figure 4-1 shows the details.

A positive INL error represents transition(s) later thanideal. A negative INL error represents transition(s) ear-lier than ideal.

FIGURE 4-1: Example for INL Error.

4.1.2 DNL ACCURACYA Differential Non-Linearity (DNL) error is the measureof variations in code widths from the ideal code width.A DNL error of zero indicates that every code is exactly1 LSb wide.

Note: See the output swing voltage specificationin Section 1.0 “Electrical Characteris-tics”.

VOUTVREF Dn

2n------------------------------- G=

Where:

VREF = EXternal voltage reference Dn = DAC input codeG =

==

Gain Selection2 for <GA> bit = 01 for <GA> bit = 1

n ====

DAC Resolution8 for MCP490210 for MCP491212 for MCP4922

TABLE 4-1: LSb OF EACH DEVICE

Device Gain Selection LSb Size

MCP4902 (n = 8)

1x VREF/256 2x (2* VREF)/256

MCP4912 (n = 10)

1x VREF/1024 2x (2* VREF)/1024

MCP4922 (n = 12)

1x VREF/4096 2x (2* VREF)/4096

where VREF is the external voltage reference.

111

110

101

100

011

010

001

000

DigitalInputCode

ActualTransferFunction

INL < 0

Ideal TransferFunction

INL < 0

DAC Output

2010 Microchip Technology Inc. DS22250A-page 19

Page 20: MCP4902/4912/4922 Data Sheet - Microchip Technologyww1.microchip.com/downloads/en/DeviceDoc/22250A.pdfThe MCP4902/4912/4922 devices are dual 8-bit, 10-bit, ... can configure the full-scale

MCP4902/4912/4922

FIGURE 4-2: Example for DNL Accuracy.

4.1.3 OFFSET ERRORAn offset error is the deviation from zero voltage outputwhen the digital input code is zero.

4.1.4 GAIN ERRORA gain error is the deviation from the ideal output, VREF– 1 LSb, excluding the effects of offset error.

4.2 Circuit Descriptions

4.2.1 OUTPUT AMPLIFIERSThe DAC’s outputs are buffered with a low-power,precision CMOS amplifier. This amplifier provides lowoffset voltage and low noise. The output stage enablesthe device to operate with output voltages close to thepower supply rails. Refer to Section 1.0 “ElectricalCharacteristics” for the analog output voltage rangeand load conditions.

In addition to resistive load driving capability, theamplifier will also drive high capacitive loads withoutoscillation. The amplifier’s strong outputs allow VOUT tobe used as a programmable voltage reference in asystem.

Selecting a gain of 2 reduces the bandwidth of theamplifier in Multiplying mode. Refer to Section 1.0“Electrical Characteristics” for the Multiplying modebandwidth for given load conditions.

4.2.1.1 Programmable Gain BlockThe rail-to-rail output amplifier has configurable gain,allowing optimal full-scale outputs for different voltagereference inputs. The output amplifier gain has twoselections, a gain of 1x (<GA> = 1) or a gain of 2x(<GA> = 0).

The default value is a gain of 2 (<GA> = 0).

4.2.2 VOLTAGE REFERENCE AMPLIFIERS

The input buffer amplifiers for the MCP4902/4912/4922devices provide low offset voltage and low noise. AConfiguration bit for each DAC allows the VREF input tobypass the VREF input buffer amplifiers, achieving aBuffered or Unbuffered mode. Buffered mode providesa very high input impedance, with only minor limitationson the input range and frequency response.Unbuffered (<BUF> = 0) is the default configuration.Unbuffered mode provides a wide input range (0V toVDD), with a typical input impedance of 165 k with7 pF.

4.2.3 POWER-ON RESET CIRCUITThe internal Power-on Reset (POR) circuit monitors thepower supply voltage (VDD) during the deviceoperation. The circuit also ensures that the DACspower-up with high output impedance (<SHDN> = 0,typically 500 k. The devices will continue to have ahigh-impedance output until a valid write command isperformed to either of the DAC registers and the LDACpin meets the input low threshold.

If the power supply voltage is less than the PORthreshold (VPOR = 2.0V, typical), the DACs will be heldin their Reset state. The DACs will remain in that stateuntil VDD > VPOR and a subsequent write command isreceived.

Figure 4-3 shows a typical power supply transientpulse and the duration required to cause a reset tooccur, as well as the relationship between the durationand trip voltage. A 0.1 µF decoupling capacitor,mounted as close as possible to the VDD pin, canprovide additional transient immunity.

FIGURE 4-3: Typical Transient Response.

111

110

101

100

011

010

001

000

DigitalInputCode

Actualtransferfunction

Ideal transferfunction

Narrow code, < 1 LSb

DAC Output

Wide code, > 1 LSb

Transients above the

Transients below the

5V

Time

Supp

ly V

olta

ges

Transient Duration

VPOR

VDD - VPOR

TA =

Tran

sient

Dur

atio

n (µ

s)

10

8

6

4

2

01 2 3 4 5

VDD – VPOR (V)

DS22250A-page 20 2010 Microchip Technology Inc.

Page 21: MCP4902/4912/4922 Data Sheet - Microchip Technologyww1.microchip.com/downloads/en/DeviceDoc/22250A.pdfThe MCP4902/4912/4922 devices are dual 8-bit, 10-bit, ... can configure the full-scale

MCP4902/4912/4922

4.2.4 SHUTDOWN MODEThe user can shut down each DAC channel selectivelyby using a software command or shut down all chan-nels by using the SHDN pin. During Shutdown mode,most of the internal circuits in the channel that was shutdown are turned off for power savings. The serial inter-face remains active, thus allowing a write command tobring the device out of the Shutdown mode. There willbe no analog output at the channel that was shut downand the VOUT pin is internally switched to a knownresistive load (500 k typical. Figure 4-4 shows theanalog output stage during the Shutdown mode.

The condition of the Power-on Reset circuit during theshutdown is as follows:

a) Turned-off, if the shutdown occurred by theSHDN pin;

b) On, if the shutdown occurred by the software.

The device will remain in Shutdown mode until theSHDN pin is brought to high or a write command with<SHDN> bit = 1 is latched into the device. When a DACis changed from Shutdown to Active mode, the outputsettling time takes less than 10 µs, but more than thestandard active mode settling time (4.5 µs).

FIGURE 4-4: Output Stage for Shutdown Mode.

500 k

Power-DownControl Circuit

ResistiveLoad

VOUTOpAmp

Resistive String DAC

2010 Microchip Technology Inc. DS22250A-page 21

Page 22: MCP4902/4912/4922 Data Sheet - Microchip Technologyww1.microchip.com/downloads/en/DeviceDoc/22250A.pdfThe MCP4902/4912/4922 devices are dual 8-bit, 10-bit, ... can configure the full-scale

MCP4902/4912/4922

NOTES:

DS22250A-page 22 2010 Microchip Technology Inc.

Page 23: MCP4902/4912/4922 Data Sheet - Microchip Technologyww1.microchip.com/downloads/en/DeviceDoc/22250A.pdfThe MCP4902/4912/4922 devices are dual 8-bit, 10-bit, ... can configure the full-scale

MCP4902/4912/4922

5.0 SERIAL INTERFACE

5.1 OverviewThe MCP4902/4912/4922 devices are designed tointerface directly with the Serial Peripheral Interface(SPI) port, which is available on many microcontrollersand supports Mode 0,0 and Mode 1,1. Commands anddata are sent to the device via the SDI pin, with databeing clocked-in on the rising edge of SCK. Thecommunications are unidirectional, thus the datacannot be read out of the MCP4902/4912/4922. TheCS pin must be held low for the duration of a writecommand. The write command consists of 16 bits andis used to configure the DAC’s control and data latches.Register 5-1 to Register 5-3 detail the input registerthat is used to configure and load the DACA and DACBregisters for each device. Figure 5-1 to Figure 5-3show the write command for each device.

Refer to Figure 1-1 and SPI Timing SpecificationsTable for detailed input and output timing specificationsfor both Mode 0,0 and Mode 1,1 operation.

5.2 Write CommandThe write command is initiated by driving the CS pinlow, followed by clocking the four Configuration bits andthe 12 data bits into the SDI pin on the rising edge ofSCK. The CS pin is then raised, causing the data to belatched into the selected DAC’s input registers. TheMCP4902/4912/4922 utilizes a double-buffered latchstructure to allow both DACA’s and DACB’s outputs tobe synchronized with the LDAC pin, if desired. Uponthe LDAC pin achieving a low state, the values held inthe DAC’s input registers are transferred into the DAC’soutput registers. The outputs will transition to the valueand held in the DACX register.

All writes to the MCP4902/4912/4922 are 16-bit words.Any clocks past the 16th clock will be ignored. TheMost Significant 4 bits are Configuration bits. Theremaining 12 bits are data bits. No data can betransferred into the device with CS high. This transferwill only occur if 16 clocks have been transferred intothe device. If the rising edge of CS occurs prior to that,shifting of data into the input registers will be aborted.

2010 Microchip Technology Inc. DS22250A-page 23

Page 24: MCP4902/4912/4922 Data Sheet - Microchip Technologyww1.microchip.com/downloads/en/DeviceDoc/22250A.pdfThe MCP4902/4912/4922 devices are dual 8-bit, 10-bit, ... can configure the full-scale

MCP4902/4912/4922

REGISTER 5-1: WRITE COMMAND REGISTER FOR MCP4922 (12-BIT DAC)

REGISTER 5-2: WRITE COMMAND REGISTER FOR MCP4912 (10-BIT DAC)

REGISTER 5-3: WRITE COMMAND REGISTER FOR MCP4902 (8-BIT DAC)

Where:

W-x W-x W-x W-0 W-x W-x W-x W-x W-x W-x W-x W-x W-x W-x W-x W-xA/B BUF GA SHDN D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

bit 15 bit 0

W-x W-x W-x W-0 W-x W-x W-x W-x W-x W-x W-x W-x W-x W-x W-x W-xA/B BUF GA SHDN D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 x x

bit 15 bit 0

W-x W-x W-x W-0 W-x W-x W-x W-x W-x W-x W-x W-x W-x W-x W-x W-xA/B BUF GA SHDN D7 D6 D5 D4 D3 D2 D1 D0 x x x x

bit 15 bit 0

bit 15 A/B: DACA or DACB Selection bit1 = Write to DACB0 = Write to DACA

bit 14 BUF: VREF Input Buffer Control bit1 = Buffered0 = Unbuffered

bit 13 GA: Output Gain Selection bit1 = 1x (VOUT = VREF * D/4096)0 = 2x (VOUT = 2 * VREF * D/4096)

bit 12 SHDN: Output Shutdown Control bit1 = Active mode operation. VOUT is available. 0 = Shutdown the selected DAC channel. Analog output is not available at the channel that was shut down. VOUT pin is connected to 500 ktypical)

bit 11-0 D11:D0: DAC Input Data bits. Bit x is ignored.

LegendR = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’-n = Value at POR 1 = bit is set 0 = bit is cleared x = bit is unknown

DS22250A-page 24 2010 Microchip Technology Inc.

Page 25: MCP4902/4912/4922 Data Sheet - Microchip Technologyww1.microchip.com/downloads/en/DeviceDoc/22250A.pdfThe MCP4902/4912/4922 devices are dual 8-bit, 10-bit, ... can configure the full-scale

MCP4902/4912/4922

FIGURE 5-1: Write Command for MCP4922 (12-bit DAC).

FIGURE 5-2: Write Command for MCP4912 (10-bit DAC).

FIGURE 5-3: Write Command for MCP4902 (8-bit DAC).

SDI

SCK

CS

0 21

A/B GA SHDN D11 D10

config bits 12 data bits

LDAC

3 4

D9

5 6 7

D8 D7 D6

8 9 10 12

D5 D4 D3 D2 D1 D0

11 13 14 15

VOUT

(Mode 1,1)

(Mode 0,0)

BUF

SDI

SCK

CS

0 21

A/B GA SHDN D9 D8

config bits 12 data bits

LDAC

3 4

D7

5 6 7

D6 D5 D4

8 9 10 12

D3 D2 D1 D0 X X

11 13 14 15

VOUT

(Mode 1,1)

(Mode 0,0)

BUF

Note: X = “don’t care” bits

SDI

SCK

CS

0 21

A/B GA SHDN

config bits 12 data bits

LDAC

3 4 5 6 7

XD7 D6

8 9 10 12

D5 D4 D3 D2 D1 D0

11 13 14 15

VOUT

(Mode 1,1)

(Mode 0,0)

X X XBUF

Note: X = “don’t care” bits

2010 Microchip Technology Inc. DS22250A-page 25

Page 26: MCP4902/4912/4922 Data Sheet - Microchip Technologyww1.microchip.com/downloads/en/DeviceDoc/22250A.pdfThe MCP4902/4912/4922 devices are dual 8-bit, 10-bit, ... can configure the full-scale

MCP4902/4912/4922

NOTES:

DS22250A-page 26 2010 Microchip Technology Inc.

Page 27: MCP4902/4912/4922 Data Sheet - Microchip Technologyww1.microchip.com/downloads/en/DeviceDoc/22250A.pdfThe MCP4902/4912/4922 devices are dual 8-bit, 10-bit, ... can configure the full-scale

MCP4902/4912/4922

6.0 TYPICAL APPLICATIONSThe MCP4902/4912/4922 family of devices are gen-eral purpose DACs intended to be used in applicationswhere a precision with low-power and moderatebandwidth is required.

Applications generally suited for the devices are:

• Set Point or Offset Trimming• Sensor Calibration• Digitally-Controlled Multiplier/Divider• Portable Instrumentation (Battery Powered)• Motor Control Feedback Loop

6.1 Digital InterfaceThe MCP4902/4912/4922 utilizes a 3-wire synchro-nous serial protocol to transfer the DAC’s setup andoutput values from the digital source. The serial proto-col can be interfaced to SPI or Microwire peripheralsthat is common on many microcontroller units (MCUs),including Microchip’s PIC® MCUs and dsPIC® DSCs.

In addition to the three serial connections (CS, SCKand SDI), the LDAC signal synchronizes the two DACoutputs. By bringing down the LDAC pin to “low”, allDAC input codes and settings in the two DAC inputregisters are latched into their DAC output registers atthe same time. Therefore, both DACA and DACBoutputs are updated at the same time. Figure 6-1shows an example of the pin connections. Note that theLDAC pin can be tied low (VSS) to reduce the requiredconnections from 4 to 3 I/O pins. In this case, the DACoutput can be immediately updated when a valid16-clock transmission has been received and CS pinhas been raised.

6.2 Power Supply ConsiderationsThe typical application will require a bypass capacitorin order to filter high-frequency noise. The noise can beinduced onto the power supply’s traces from variousevents such as digital switching or as a result ofchanges on the DAC’s output. The bypass capacitorhelps to minimize the effect of these noise sources.Figure 6-1 illustrates an appropriate bypass strategy. Inthis example, two bypass capacitors are used inparallel: (a) 0.1 µF (ceramic) and (b) 10 µF (tantalum).These capacitors should be placed as close to thedevice power pin (VDD) as possible (within 4 mm).

The power source supplying these devices should beas clean as possible. If the application circuit hasseparate digital and analog power supplies, VDD andVSS should reside on the analog plane.

FIGURE 6-1: Typical Connection Diagram.

6.3 Layout ConsiderationsInductively-coupled AC transients and digital switchingnoises can degrade the input and output signalintegrity, and potentially reduce the device perfor-mance. Careful board layout will minimize these effectsand increase the Signal-to-Noise Ratio (SNR). Benchtesting has shown that a multi-layer board utilizing alow-inductance ground plane, isolated inputs andisolated outputs with proper decoupling, is critical forthe best performance. Particularly harsh environmentsmay require shielding of critical signals.

Breadboards and wire-wrapped boards are notrecommended if low noise is desired.

VDD

VDD VDD

AVSS

AVSS VSS

VREFA

VOUTA

VREFB

VOUTB

PIC

® M

icro

cont

rolle

r

VREFA

VOUTA

VREFB

VOUTB

SDI

SDI

CS1

SDO

SCK

LDAC

CS0

C1 C1 C2C2

MC

P49x

2

MC

P49x

2

C1

C1 = 10 µFC2 = 0.1 µF

2010 Microchip Technology Inc. DS22250A-page 27

Page 28: MCP4902/4912/4922 Data Sheet - Microchip Technologyww1.microchip.com/downloads/en/DeviceDoc/22250A.pdfThe MCP4902/4912/4922 devices are dual 8-bit, 10-bit, ... can configure the full-scale

MCP4902/4912/4922

6.4 Single-Supply OperationThe MCP4902/4912/4922 family of devices are rail-to-rail voltage output DAC devices designed to operatewith a VDD range of 2.7V to 5.5V. Its output amplifier isrobust enough to drive small-signal loads directly.Therefore, it does not require any external output bufferfor most applications.

6.4.1 DC SET POINT OR CALIBRATIONA common application for the DAC devices isdigitally-controlled set points and/or calibration ofvariable parameters, such as sensor offset or slope.For example, the MCP4922 provides 4096 outputsteps. If the external voltage reference (VREF) is4.096V, the LSb size is 1 mV. If a smaller output stepsize is desired, a lower external voltage reference isneeded.

6.4.1.1 Decreasing Output Step SizeIf the application is calibrating the bias voltage of adiode or transistor, a bias voltage range of 0.8V may bedesired with about 200 µV resolution per step. Twocommon methods to achieve a 0.8V range is to eitherreduce VREF to 0.82V or use a voltage divider on theDAC’s output.

Using a VREF is an option if the VREF is available withthe desired output voltage range. However,occasionally, when using a low-voltage VREF, the noisefloor causes SNR error that is intolerable. Using avoltage divider method is another option and providessome advantages when VREF needs to be very low orwhen the desired output voltage is not available. In thiscase, a larger value VREF is used while two resistorsscale the output range down to the precise desiredlevel.

Example 6-1 illustrates this concept. Note that thebypass capacitor on the output of the voltage dividerplays a critical function in attenuating the output noiseof the DAC and the induced noise from theenvironment.

EXAMPLE 6-1: EXAMPLE CIRCUIT OF SET POINT OR THRESHOLD CALIBRATION

VDD

SPI3-wire

VTRIPR1

R2 0.1 uF

Comparator

G = Gain selection (1x or 2x)Dn = Digital value of DAC (0-255) for MCP4901/MCP4902

VOUT VREF GDn2N------ =

VCC+

VCC–

VOUT

Vtrip VOUTR2

R1 R2+--------------------

=

VDD

RSENSE

DAC

= Digital value of DAC (0-1023) for MCP4911/MCP4912 = Digital value of DAC (0-4095) for MCP4921/MCP4922

N = DAC Bit Resolution

VREF VO

MCP4901MCP4911MCP4921

(a) Single Output DAC:

(b) Dual Output DAC:MCP4902MCP4912MCP4922

DS22250A-page 28 2010 Microchip Technology Inc.

Page 29: MCP4902/4912/4922 Data Sheet - Microchip Technologyww1.microchip.com/downloads/en/DeviceDoc/22250A.pdfThe MCP4902/4912/4922 devices are dual 8-bit, 10-bit, ... can configure the full-scale

MCP4902/4912/4922

6.4.1.2 Building a “Window” DACWhen calibrating a set point or threshold of a sensor,typically only a small portion of the DAC output range isutilized. If the LSb size is adequate enough to meet theapplication’s accuracy needs, the unused range issacrificed without consequences. If greater accuracy isneeded, then the output range will need to be reducedto increase the resolution around the desired threshold.

If the threshold is not near VREF or VSS, then creatinga “window” around the threshold has severaladvantages. One simple method to create this“window” is to use a voltage divider network with apull-up and pull-down resistor. Example 6-2 andExample 6-4 illustrate this concept.

EXAMPLE 6-2: SINGLE-SUPPLY “WINDOW” DAC

VREF VDD

SPI3

VtripR1

R2 0.1 µF

ComparatorR3

VCC-

VCC+VCC+

VCC-

VOUT

R23R2R3R2 R3+------------------=

V23VCC+R2 VCC-R3 +

R2 R3+-----------------------------------------------------=

VtripVOUTR23 V23R1+

R2 R23+--------------------------------------------=

R1

R23

V23

VOUT VOTheveninEquivalent

Rsense

G = Gain selection (1x or 2x)Dn = Digital value of DAC (0-255) for MCP4901/MCP4902

VOUT VREF GDn2N------ =

= Digital value of DAC (0-1023) for MCP4911/MCP4912 = Digital value of DAC (0-4095) for MCP4921/MCP4922

N = DAC Bit Resolution

DAC

MCP4901MCP4911MCP4921

(a) Single Output DAC:

(b) Dual Output DAC:MCP4902MCP4912MCP4922

2010 Microchip Technology Inc. DS22250A-page 29

Page 30: MCP4902/4912/4922 Data Sheet - Microchip Technologyww1.microchip.com/downloads/en/DeviceDoc/22250A.pdfThe MCP4902/4912/4922 devices are dual 8-bit, 10-bit, ... can configure the full-scale

MCP4902/4912/4922

6.5 Bipolar OperationBipolar operation is achievable using the MCP4902/4912/4922 family of devices by using an externaloperational amplifier (op amp). This configuration isdesirable due to the wide variety and availability of opamps. This allows a general purpose DAC, with its costand availability advantages, to meet almost anydesired output voltage range, power and noiseperformance.

Example 6-3 illustrates a simple bipolar voltage sourceconfiguration. R1 and R2 allow the gain to be selected,while R3 and R4 shift the DAC’s output to a selectedoffset. Note that R4 can be tied to VREF instead of VSS,if a higher offset is desired. Also note that a pull-up toVREF could be used instead of R4, if a higher offset isdesired.

EXAMPLE 6-3: DIGITALLY-CONTROLLED BIPOLAR VOLTAGE SOURCE

6.5.1 DESIGN EXAMPLE: DESIGN A BIPOLAR DAC USING EXAMPLE 6-3 WITH 12-BIT MCP4922 OR MCP4921

An output step magnitude of 1 mV with an output rangeof ±2.05V is desired for a particular application. The following steps show the details:

Step 1: Calculate the range: +2.05V – (-2.05V) = 4.1V.

Step 2: Calculate the resolution needed:4.1V/1 mV = 4100

Since 212 = 4096, 12-bit resolution isdesired.

Step 3:The amplifier gain (R2/R1), multiplied by VREF,must be equal to the desired minimum outputto achieve bipolar operation. Since any gaincan be realized by choosing resistor values(R1+R2), the VREF source needs to be deter-mined first. If a VREF of 4.1V is used, solve forthe gain by setting the DAC to 0, knowing thatthe output needs to be -2.05V. The equationcan be simplified to:

Step 4: Next, solve for R3 and R4 by setting the DAC to4096, knowing that the output needs to be+2.05V.

VREF

VREF

VDD

SPI3

VOUTR3

R4

2

R1

VIN+

0.1 µF

VCC+

VCC–

VO

VIN+VOUTR4R3 R4+--------------------=

VO VIN+ 1R2R1------+

VDDR2R1------ –=

G = Gain selection (1x or 2x)Dn = Digital value of DAC (0-255) for MCP4901/MCP4902

VOUT VREF GDn2N------ =

= Digital value of DAC (0-1023) for MCP4911/MCP4912 = Digital value of DAC (0-4095) for MCP4921/MCP4922

N = DAC Bit Resolution

DAC

MCP4901MCP4911MCP4921

(a) Single Output DAC:

(b) Dual Output DAC:MCP4902MCP4912MCP4922

R2–

R1--------- 2.05–

VREF------------- 2.05–

4.1-------------= =

If R1 = 20 k and R2 = 10 k, the gain will be 0.5.

R2R1------ 1

2---=

R4R3 R4+ -----------------------

2.05V 0.5VREF+

1.5VREF----------------------------------------- 2

3---= =

If R4 = 20 k, then R3 = 10 k

DS22250A-page 30 2010 Microchip Technology Inc.

Page 31: MCP4902/4912/4922 Data Sheet - Microchip Technologyww1.microchip.com/downloads/en/DeviceDoc/22250A.pdfThe MCP4902/4912/4922 devices are dual 8-bit, 10-bit, ... can configure the full-scale

MCP4902/4912/4922

6.6 Selectable Gain and Offset Bipolar

Voltage Output Using a Dual DACIn some applications, precision digital control of theoutput range is desirable. Example 6-4 illustrates howto use the MCP4902/4912/4922 to achieve this in abipolar or single-supply application.

This circuit is typically used in Multiplier mode and isideal for linearizing a sensor whose slope and offsetvaries. Refer to Section 6.9 “Using Multiplier Mode”for more information on Multiplier mode.

The equation to design a bipolar “window” DAC wouldbe utilized if R3, R4 and R5 are populated.

EXAMPLE 6-4: BIPOLAR VOLTAGE SOURCE WITH SELECTABLE GAIN AND OFFSET

VREFA

DACB

VDD

R3

R4

R2

DACA

VDD

R1

DACA (Gain Adjust)

DACB (Offset Adjust)SPI3

R5

VCC+

Thevenin

Bipolar “Window” DAC using R4 and R5

0.1uF

VCC–

VCC+

VCC–

VOUTB VREFBGB DB2N-------=

VOUTA

VOUTB

VOUTA VREFAGA DA2N-------=

VIN+VOUTBR4 VCC-R3+

R3 R4+------------------------------------------------=

VO VIN+ 1R2R1------+

VOUTAR2R1------ –=

Equivalent V45VCC+R4 VCC-R5+

R4 R5+--------------------------------------------= R45

R4R5R4 R5+------------------=

VIN+VOUTBR45 V45R3+

R3 R45+-----------------------------------------------= VO VIN+ 1

R2R1------+

VOUTAR2R1------ –=

Offset Adjust Gain Adjust

Offset Adjust Gain Adjust

VREFB

GX = Gain selection (1x or 2x)

DA, DB = Digital value of DAC (0-255) for MCP4902 = Digital value of DAC (0-1023) for MCP4912 = Digital value of DAC (0-4095) for MCP4922

N = DAC Bit Resolution

VO

Dual Output DAC:MCP4902MCP4912MCP4922

2010 Microchip Technology Inc. DS22250A-page 31

Page 32: MCP4902/4912/4922 Data Sheet - Microchip Technologyww1.microchip.com/downloads/en/DeviceDoc/22250A.pdfThe MCP4902/4912/4922 devices are dual 8-bit, 10-bit, ... can configure the full-scale

MCP4902/4912/4922

6.7 Designing a Double-Precision

DAC Using a Dual DACExample 6-5 illustrates how to design a single-supplyvoltage output capable of up to 24-bit resolution from adual 12-bit DAC. This design is simply a voltage dividerwith a buffered output.

As an example, if a application similar to the onedeveloped in Section 6.5.1 “Design Example: Designa Bipolar DAC Using Example 6-3 with 12-bitMCP4922 or MCP4921” required a resolution of 1 µVinstead of 1 mV and a range of 0V to 4.1V, then 12-bitresolution would not be adequate.

Step 1: Calculate the resolution needed:4.1V/1 µV = 4.1x106. Since 222 = 4.2x106, 22-bit resolution is desired. Since DNL = ±0.75LSb, this design can be attempted with theMCP4922.

Step 2: Since DACB’s VOUTB has a resolution of 1 mV,its output only needs to be “pulled” 1/1000 tomeet the 1 µV target. Dividing VOUTA by 1000would allow the application to compensate forDACB’s DNL error.

Step 3: If R2 is 100, then R1 needs to be 100 k.

Step 4:The resulting transfer function is not perfectlylinear, as shown in the equation ofExample 6-5.

EXAMPLE 6-5: SIMPLE, DOUBLE-PRECISION DAC WITH MCP4922

VREF

MCP4922

VDD

R2

MCP4922

VDD

R1DACA (Fine Adjust)

DACB (Course Adjust)SPI

3

R1 >> R2

VOVOUTAR2 VOUTBR1+

R1 R2+-----------------------------------------------------=

G = Gain selection (1x or 2x)D = Digital value of DAC (0- 4096)

0.1 µF

VCC+

VCC–

VOUTA VREFAGADA212-------=

VOUTB VREFBGBDB212-------=

VOUTA

VOUTB

VO

DS22250A-page 32 2010 Microchip Technology Inc.

Page 33: MCP4902/4912/4922 Data Sheet - Microchip Technologyww1.microchip.com/downloads/en/DeviceDoc/22250A.pdfThe MCP4902/4912/4922 devices are dual 8-bit, 10-bit, ... can configure the full-scale

MCP4902/4912/4922

6.8 Building Programmable Current

SourceExample 6-6 shows an example for building aprogrammable current source using a voltage follower.The current sensor (sensor resistor) is used to convertthe DAC voltage output into a digitally-selectablecurrent source.

Adding the resistor network from Example 6-2 wouldbe advantageous in this application. The smaller Rsenseis, the less power dissipated across it. However, thisalso reduces the resolution that the current can becontrolled with. The voltage divider, or “window”, DACconfiguration would allow the range to be reduced, thusincreasing resolution around the range of interest.

When working with very small sensor voltages, plan oneliminating the amplifier’s offset error by storing theDAC’s setting under known sensor conditions.

EXAMPLE 6-6: DIGITALLY-CONTROLLED CURRENT SOURCE

DAC

RSENSE

Ib

Load

IL

VDD

SPI3-wire

VCC+

VCC–

VOUT

ILVOUTRsense---------------

1+------------=

IbIL----=

G = Gain select (1x or 2x)Dn = Digital value of DAC (0-255) for MCP4901/MCP4902

VOUT VREF GDn2N------ =

= Digital value of DAC (0-1023) for MCP4911/MCP4912 = Digital value of DAC (0-4095) for MCP4921/MCP4922

N = DAC Bit Resolution

Common-Emitter Current Gainwhere

VREF

VDD or VREF

MCP4901MCP4911MCP4921

(a) Single Output DAC:

(b) Dual Output DAC:MCP4902MCP4912MCP4922

2010 Microchip Technology Inc. DS22250A-page 33

Page 34: MCP4902/4912/4922 Data Sheet - Microchip Technologyww1.microchip.com/downloads/en/DeviceDoc/22250A.pdfThe MCP4902/4912/4922 devices are dual 8-bit, 10-bit, ... can configure the full-scale

MCP4902/4912/4922

6.9 Using Multiplier ModeThe MCP4902/4912/4922 family of devices use exter-nal reference, and these devices are ideally suited foruse as a multiplier/divider in a signal chain. Thecommon applications are: (a) Precision programmablegain/attenuator amplifiers and (b) Motor controlfeedback loop. The wide input range (0V – VDD) is inUnbuffered mode and near rail-to-rail range in Bufferedmode: its bandwidth (> 400 kHz), selectable 1x/2x gainand low power consumption give maximum flexibility tomeet the application’s needs.

To configure the MCP4902/4912/4922 family ofdevices for multiple applications, connect the input sig-nal to VREF and serially configure the DAC’s input buf-fer, gain and output value. The DAC’s output can utilizeany of Examples 6-1 to 6-6, depending on the applica-tion requirements. Example 6-7 is an illustration of howthe DAC can operate in a motor control feedback loop.

If the gain selection bit is configured for 1x mode(<GA> = 1), the resulting input signal will be attenuatedby D/2n. With the 12-bit DAC (MCP4921 or MCP4922),if the gain is configured for 2x mode (<GA> = 0), thecodes less than 2048 attenuate the signal, while thecodes greater than 2048 gain the signal.

A DAC provides significantly more gain/attenuationresolution when compared to typical ProgrammableGain Amplifiers. Adding an op amp to buffer the output,as illustrated in Examples 6-2 to 6-6, extends theoutput range and power to meet the precise needs ofthe application.

EXAMPLE 6-7: MULTIPLIER MODE USING VREF INPUT

VCC+

VCC-

VREFDAC

VRPM

+

VDD

SPI3

VOUT

Rsense

VRPM_SET

ZFBMCP4901MCP4911MCP4921

(a) Single Output DAC:

(b) Dual Output DAC:MCP4902MCP4912MCP4922

VOUT VREF GDn2N------ =

DS22250A-page 34 2010 Microchip Technology Inc.

Page 35: MCP4902/4912/4922 Data Sheet - Microchip Technologyww1.microchip.com/downloads/en/DeviceDoc/22250A.pdfThe MCP4902/4912/4922 devices are dual 8-bit, 10-bit, ... can configure the full-scale

MCP4902/4912/4922

7.0 DEVELOPMENT SUPPORT

7.1 Evaluation and Demonstration Boards

The Mixed Signal PICtailTM Demo Board supports theMCP4902/4912/4922 family of devices. Please refer towww.microchip.com for further information on thisproducts capabilities and availability.

2010 Microchip Technology Inc. DS22250A-page 35

Page 36: MCP4902/4912/4922 Data Sheet - Microchip Technologyww1.microchip.com/downloads/en/DeviceDoc/22250A.pdfThe MCP4902/4912/4922 devices are dual 8-bit, 10-bit, ... can configure the full-scale

MCP4902/4912/4922

NOTES:

DS22250A-page 36 2010 Microchip Technology Inc.

Page 37: MCP4902/4912/4922 Data Sheet - Microchip Technologyww1.microchip.com/downloads/en/DeviceDoc/22250A.pdfThe MCP4902/4912/4922 devices are dual 8-bit, 10-bit, ... can configure the full-scale

MCP4902/4912/4922

8.0 PACKAGING INFORMATION

8.1 Package Marking Information

Legend: XX...X Customer-specific informationY Year code (last digit of calendar year)YY Year code (last 2 digits of calendar year)WW Week code (week of January 1 is week ‘01’)NNN Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn)* This package is Pb-free. The Pb-free JEDEC designator ( )

can be found on the outer packaging for this package.

Note: In the event the full Microchip part number cannot be marked on one line, it willbe carried over to the next line, thus limiting the number of available charactersfor customer-specific information.

3e

3e

14-Lead PDIP (300 mil) Example:

14-Lead TSSOP Example:

14-Lead SOIC (150 mil) Example:

XXXXXXXXXXXXXXXXXXXXXXXXXXXX

YYWWNNN

XXXXXXXXXX

YYWWNNN

XXXXXXYYWW

NNN

MCP4922

1011256

4922E/ST1011

256

XXXXXXXXXXMCP4922

1011256

3eE/P

3eE/SL

2010 Microchip Technology Inc. DS22250A-page 37

Page 38: MCP4902/4912/4922 Data Sheet - Microchip Technologyww1.microchip.com/downloads/en/DeviceDoc/22250A.pdfThe MCP4902/4912/4922 devices are dual 8-bit, 10-bit, ... can configure the full-scale

MCP4902/4912/4922

���������� ������������������������������

�� ��!

�� �������� !�����"�#�$��%!��&������'�(!%�&! %�(�����%�"�)�%��%�����%���"������� *������$����%�+����%�� %���,� ��&�� �� �����"�-��"��%�����!"��&�"�$�� ����%! �� ����"�$�� ����%! �� � ������%��#���"�����.���� �"���� ��&�� ��������"�%���������������-�/���0��

1�+2�1� �����&�� ���� ���%��������#��%����!�� �)��)�%�!%�%������ �

�� �! 3�%���& %��!��%����4����"�)��� '����� �� ���%��������������4�����������$���%������%�"��%��%%�255)))�&��������&5���4�����

6��% �7+8-���&�� ���9�&�% ��7 7:� ��;

7!&(��$���� 7 ����%�� � �����1�+ ��%����%��������� � < < ������"�"����4���� ���4�� �� ���0 ��,� ���01� ��%����%��������� �� ���0 < <��!�"��%���!�"��=�"%� - ���� �,�� �,�0��"�"����4����=�"%� -� ���� ��0� ��>�:������9���%� � ��,0 ��0� ���0 ���%����%��������� 9 ���0 ��,� ��0�9��"� ���4�� � ���> ���� ���06����9��"�=�"%� (� ���0 ��?� ����9)��9��"�=�"%� ( ���� ���> ����:�������)����������* �1 < < ��,�

N

E1

D

NOTE 1

1 2 3

E

c

eB

A2

L

A

A1b1

b e

������� ������� ��)��� +�����01

DS22250A-page 38 2010 Microchip Technology Inc.

Page 39: MCP4902/4912/4922 Data Sheet - Microchip Technologyww1.microchip.com/downloads/en/DeviceDoc/22250A.pdfThe MCP4902/4912/4922 devices are dual 8-bit, 10-bit, ... can configure the full-scale

MCP4902/4912/4922

���������� ��"����#� �����"�����$$�&'�*+��������"#�/�

�� ��!

�� �������� !�����"�#�$��%!��&������'�(!%�&! %�(�����%�"�)�%����%�����%���"������� *������$����%�+����%�� %���,� ��&�� �� �����"�-��"��%�����!"��&�"�$�� ����%! �� ����"�$�� ����%! �� � ������%��#���"����0�&&���� �"���� ��&�� ��������"�%���������������-�/���0��

1�+2 1� �����&�� ���� ���%��������#��%����!�� �)��)�%�!%�%������ ��-32 ��$��������&�� ��'�! !�����)�%�!%�%������'�$���$&�%����!� � �����

�� �! 3�%���& %��!��%����4����"�)��� '����� �� ���%��������������4�����������$���%������%�"��%��%%�255)))�&��������&5���4�����

6��% ��99��- -����&�� ���9�&�% ��7 7:� ��;

7!&(��$���� 7 ����%�� � �����1�+:������8����% � < < ���0��"�"����4���� ���4�� �� ���0 < <�%��"$$��* �� ���� < ���0:������=�"%� - ?����1�+��"�"����4����=�"%� -� ,����1�+:������9���%� � >�?0�1�++��&$��@�%����A � ���0 < ��0�3%�9���%� 9 ���� < ����3%���% 9� ������-33%������ � �B < >B9��"� ���4�� � ���� < ���09��"�=�"%� ( ��,� < ��0���"���$%������� � � 0B < �0B��"���$%�������1%%& � 0B < �0B

NOTE 1

N

D

E

E1

1 2 3

b

e

A

A1

A2

L

L1

c

h

h α

β

φ

������� ������� ��)��� +����?01

2010 Microchip Technology Inc. DS22250A-page 39

Page 40: MCP4902/4912/4922 Data Sheet - Microchip Technologyww1.microchip.com/downloads/en/DeviceDoc/22250A.pdfThe MCP4902/4912/4922 devices are dual 8-bit, 10-bit, ... can configure the full-scale

MCP4902/4912/4922

�� �! 3�%���& %��!��%����4����"�)��� '����� �� ���%��������������4�����������$���%������%�"��%��%%�255)))�&��������&5���4�����

DS22250A-page 40 2010 Microchip Technology Inc.

Page 41: MCP4902/4912/4922 Data Sheet - Microchip Technologyww1.microchip.com/downloads/en/DeviceDoc/22250A.pdfThe MCP4902/4912/4922 devices are dual 8-bit, 10-bit, ... can configure the full-scale

MCP4902/4912/4922

���������� ��:;��";$��<"����#� �����":���*��������:""#�

�� ��!

�� �������� !�����"�#�$��%!��&������'�(!%�&! %�(�����%�"�)�%����%�����%���"������� ��&�� �� �����"�-��"��%�����!"��&�"�$�� ����%! �� ����"�$�� ����%! �� � ������%��#���"����0�&&���� �"��,� ��&�� ��������"�%���������������-�/���0��

1�+2 1� �����&�� ���� ���%��������#��%����!�� �)��)�%�!%�%������ ��-32 ��$��������&�� ��'�! !�����)�%�!%�%������'�$���$&�%����!� � �����

�� �! 3�%���& %��!��%����4����"�)��� '����� �� ���%��������������4�����������$���%������%�"��%��%%�255)))�&��������&5���4�����

6��% ��99��- -����&�� ���9�&�% ��7 7:� ��;

7!&(��$���� 7 ����%�� � ��?0�1�+:������8����% � < < ������"�"����4���� ���4�� �� ��>� ���� ���0�%��"$$� �� ���0 < ���0:������=�"%� - ?����1�+��"�"����4����=�"%� -� ��,� ���� ��0���"�"����4����9���%� � ���� 0��� 0���3%�9���%� 9 ���0 ��?� ���03%���% 9� ������-33%������ � �B < >B9��"� ���4�� � ���� < ����9��"�=�"%� ( ���� < ��,�

NOTE 1

D

N

E

E1

1 2

eb

cA

A1

A2

L1 L

φ

������� ������� ��)��� +����>�1

2010 Microchip Technology Inc. DS22250A-page 41

Page 42: MCP4902/4912/4922 Data Sheet - Microchip Technologyww1.microchip.com/downloads/en/DeviceDoc/22250A.pdfThe MCP4902/4912/4922 devices are dual 8-bit, 10-bit, ... can configure the full-scale

MCP4902/4912/4922

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

DS22250A-page 42 2010 Microchip Technology Inc.

Page 43: MCP4902/4912/4922 Data Sheet - Microchip Technologyww1.microchip.com/downloads/en/DeviceDoc/22250A.pdfThe MCP4902/4912/4922 devices are dual 8-bit, 10-bit, ... can configure the full-scale

MCP4902/4912/4922

APPENDIX A: REVISION HISTORY

Revision A (April 2010)• Original Release of this Document.

2010 Microchip Technology Inc. DS22250A-page 43

Page 44: MCP4902/4912/4922 Data Sheet - Microchip Technologyww1.microchip.com/downloads/en/DeviceDoc/22250A.pdfThe MCP4902/4912/4922 devices are dual 8-bit, 10-bit, ... can configure the full-scale

MCP4902/4912/4922

NOTES:

DS22250A-page 44 2010 Microchip Technology Inc.

Page 45: MCP4902/4912/4922 Data Sheet - Microchip Technologyww1.microchip.com/downloads/en/DeviceDoc/22250A.pdfThe MCP4902/4912/4922 devices are dual 8-bit, 10-bit, ... can configure the full-scale

MCP4902/4912/4922

PRODUCT IDENTIFICATION SYSTEMTo order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO. X /XX

PackageTemperatureRange

Device

Device: MCP4902: Dual 8-Bit Voltage Output DACMCP4902T: Dual 8-Bit Voltage Output DAC

(Tape and Reel)MCP4912: Dual 10-Bit Voltage Output DACMCP4912T: Dual 10-Bit Voltage Output DAC

(Tape and Reel)MCP4922: Dual 12-Bit Voltage Output DACMCP4922T: Dual 12-Bit Voltage Output DAC

(Tape and Reel)

Temperature Range:

E = -40C to +125C (Extended)

Package: P = 14-Lead Plastic Dual In-Line (PDIP)SL = 14-Lead Plastic Small Outline - Narrow (SOIC)ST = 14-Lead Plastic Think Shrink Small Outline

(TSSOP)

Examples:

a) MCP4902-E/P: Extended temperature,PDIP package.

b) MCP4902-E/SL: Extended temperature,SOIC package.

c) MCP4902T-E/SL: Extended temperature,SOIC package, Tapeand Reel

d) MCP4902-E/ST: Extended temperature,TSSOP package.

e) MCP4902T-E/ST: Extended temperature,TSSOP package, Tapeand Reel

f) MCP4912-E/P: Extended temperature,PDIP package.

g) MCP4912-E/SL: Extended temperature,SOIC package.

h) MCP4912T-E/SL: Extended temperature,SOIC package, Tapeand Reel

i) MCP4912-E/ST: Extended temperature,TSSOP package.

j) MCP4912T-E/ST: Extended temperature,TSSOP package, Tapeand Reel

k) MCP4922-E/P: Extended temperature,PDIP package.

l) MCP4922-E/SL: Extended temperature,SOIC package.

m) MCP4922T-E/SL: Extended temperature,SOIC package, Tapeand Reel

n) MCP4922-E/ST: Extended temperature,TSSOP package.

o) MCP4922T-E/ST: Extended temperature,TSSOP package, Tapeand Reel

2010 Microchip Technology Inc. DS22250A-page 45

Page 46: MCP4902/4912/4922 Data Sheet - Microchip Technologyww1.microchip.com/downloads/en/DeviceDoc/22250A.pdfThe MCP4902/4912/4922 devices are dual 8-bit, 10-bit, ... can configure the full-scale

MCP4902/4912/4922

NOTES:

DS22250A-page 46 2010 Microchip Technology Inc.

Page 47: MCP4902/4912/4922 Data Sheet - Microchip Technologyww1.microchip.com/downloads/en/DeviceDoc/22250A.pdfThe MCP4902/4912/4922 devices are dual 8-bit, 10-bit, ... can configure the full-scale

Note the following details of the code protection feature on Microchip devices:• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of ourproducts. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such actsallow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding deviceapplications and the like is provided only for your convenienceand may be superseded by updates. It is your responsibility toensure that your application meets with your specifications.MICROCHIP MAKES NO REPRESENTATIONS ORWARRANTIES OF ANY KIND WHETHER EXPRESS ORIMPLIED, WRITTEN OR ORAL, STATUTORY OROTHERWISE, RELATED TO THE INFORMATION,INCLUDING BUT NOT LIMITED TO ITS CONDITION,QUALITY, PERFORMANCE, MERCHANTABILITY ORFITNESS FOR PURPOSE. Microchip disclaims all liabilityarising from this information and its use. Use of Microchipdevices in life support and/or safety applications is entirely atthe buyer’s risk, and the buyer agrees to defend, indemnify andhold harmless Microchip from any and all damages, claims,suits, or expenses resulting from such use. No licenses areconveyed, implicitly or otherwise, under any Microchipintellectual property rights.

2010 Microchip Technology Inc.

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC32 logo, rfPIC and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Octopus, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2010, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

ISBN: 978-1-60932-129-1

DS22250A-page 47

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company’s quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

Page 48: MCP4902/4912/4922 Data Sheet - Microchip Technologyww1.microchip.com/downloads/en/DeviceDoc/22250A.pdfThe MCP4902/4912/4922 devices are dual 8-bit, 10-bit, ... can configure the full-scale

DS22250A-page 48 2010 Microchip Technology Inc.

AMERICASCorporate Office2355 West Chandler Blvd.Chandler, AZ 85224-6199Tel: 480-792-7200 Fax: 480-792-7277Technical Support: http://support.microchip.comWeb Address: www.microchip.comAtlantaDuluth, GA Tel: 678-957-9614 Fax: 678-957-1455BostonWestborough, MA Tel: 774-760-0087 Fax: 774-760-0088ChicagoItasca, IL Tel: 630-285-0071 Fax: 630-285-0075ClevelandIndependence, OH Tel: 216-447-0464 Fax: 216-447-0643DallasAddison, TX Tel: 972-818-7423 Fax: 972-818-2924DetroitFarmington Hills, MI Tel: 248-538-2250Fax: 248-538-2260KokomoKokomo, IN Tel: 765-864-8360Fax: 765-864-8387Los AngelesMission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608Santa ClaraSanta Clara, CA Tel: 408-961-6444Fax: 408-961-6445TorontoMississauga, Ontario, CanadaTel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFICAsia Pacific OfficeSuites 3707-14, 37th FloorTower 6, The GatewayHarbour City, KowloonHong KongTel: 852-2401-1200Fax: 852-2401-3431Australia - SydneyTel: 61-2-9868-6733Fax: 61-2-9868-6755China - BeijingTel: 86-10-8528-2100 Fax: 86-10-8528-2104China - ChengduTel: 86-28-8665-5511Fax: 86-28-8665-7889China - ChongqingTel: 86-23-8980-9588Fax: 86-23-8980-9500China - Hong Kong SARTel: 852-2401-1200 Fax: 852-2401-3431China - NanjingTel: 86-25-8473-2460Fax: 86-25-8473-2470China - QingdaoTel: 86-532-8502-7355Fax: 86-532-8502-7205China - ShanghaiTel: 86-21-5407-5533 Fax: 86-21-5407-5066China - ShenyangTel: 86-24-2334-2829Fax: 86-24-2334-2393China - ShenzhenTel: 86-755-8203-2660 Fax: 86-755-8203-1760China - WuhanTel: 86-27-5980-5300Fax: 86-27-5980-5118China - XianTel: 86-29-8833-7252Fax: 86-29-8833-7256China - XiamenTel: 86-592-2388138 Fax: 86-592-2388130China - ZhuhaiTel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFICIndia - BangaloreTel: 91-80-3090-4444 Fax: 91-80-3090-4123India - New DelhiTel: 91-11-4160-8631Fax: 91-11-4160-8632India - PuneTel: 91-20-2566-1512Fax: 91-20-2566-1513Japan - YokohamaTel: 81-45-471- 6166 Fax: 81-45-471-6122Korea - DaeguTel: 82-53-744-4301Fax: 82-53-744-4302Korea - SeoulTel: 82-2-554-7200Fax: 82-2-558-5932 or 82-2-558-5934Malaysia - Kuala LumpurTel: 60-3-6201-9857Fax: 60-3-6201-9859Malaysia - PenangTel: 60-4-227-8870Fax: 60-4-227-4068Philippines - ManilaTel: 63-2-634-9065Fax: 63-2-634-9069SingaporeTel: 65-6334-8870Fax: 65-6334-8850Taiwan - Hsin ChuTel: 886-3-6578-300Fax: 886-3-6578-370Taiwan - KaohsiungTel: 886-7-536-4818Fax: 886-7-536-4803Taiwan - TaipeiTel: 886-2-2500-6610 Fax: 886-2-2508-0102Thailand - BangkokTel: 66-2-694-1351Fax: 66-2-694-1350

EUROPEAustria - WelsTel: 43-7242-2244-39Fax: 43-7242-2244-393Denmark - CopenhagenTel: 45-4450-2828 Fax: 45-4485-2829France - ParisTel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79Germany - MunichTel: 49-89-627-144-0 Fax: 49-89-627-144-44Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781Netherlands - DrunenTel: 31-416-690399 Fax: 31-416-690340Spain - MadridTel: 34-91-708-08-90Fax: 34-91-708-08-91UK - WokinghamTel: 44-118-921-5869Fax: 44-118-921-5820

WORLDWIDE SALES AND SERVICE

01/05/10


Recommended