+ All Categories
Home > Documents > ME 300 Thermodynamics II Fall 2006 - Purdue … 300 Thermodynamics II 3 ... Ammonia, Propane •...

ME 300 Thermodynamics II Fall 2006 - Purdue … 300 Thermodynamics II 3 ... Ammonia, Propane •...

Date post: 23-Apr-2018
Category:
Upload: vukhue
View: 217 times
Download: 0 times
Share this document with a friend
55
ME 300 Thermodynamics II 1 ME 300 – Thermodynamics II Prof. S. H. Frankel Fall 2006
Transcript
Page 1: ME 300 Thermodynamics II Fall 2006 - Purdue … 300 Thermodynamics II 3 ... Ammonia, Propane • Specific heats • Ideal gas properties of air (A-22) ... thermodynamic knowledge (above)

ME 300 Thermodynamics II 1

ME 300 – Thermodynamics II

Prof. S. H. FrankelFall 2006

Page 2: ME 300 Thermodynamics II Fall 2006 - Purdue … 300 Thermodynamics II 3 ... Ammonia, Propane • Specific heats • Ideal gas properties of air (A-22) ... thermodynamic knowledge (above)

ME 300 Thermodynamics II 2

Week 1

•Introduction/Motivation•Review•Unsteady analysis – NEW!

Page 3: ME 300 Thermodynamics II Fall 2006 - Purdue … 300 Thermodynamics II 3 ... Ammonia, Propane • Specific heats • Ideal gas properties of air (A-22) ... thermodynamic knowledge (above)

ME 300 Thermodynamics II 3

Today’s Outline

• Introductions/motivations• Review

– Definitions– Cycles and systems– First and Second Law– Properties and their evaluation– Problem solving technique

Page 4: ME 300 Thermodynamics II Fall 2006 - Purdue … 300 Thermodynamics II 3 ... Ammonia, Propane • Specific heats • Ideal gas properties of air (A-22) ... thermodynamic knowledge (above)

ME 300 Thermodynamics II 4

Introductions• Instructor: Prof. S. H. Frankel• Office: ME 165/Chaffee 125• Office/cell phone: 765-494-1507/765-404-6067• Email: [email protected] or

[email protected]• Office hours: MWF 11:30-12:30PM in ME 165 or by appt.• Research website: http://ristretto.ecn.purdue.edu• Class website: http://widget.ecn.purdue.edu/~me300• Section website:

http://ristretto.ecn.purdue.edu/class/~me300.html• Textbook: Fundamentals of Engineering

Thermodynamics, Moran and Shapiro, 5th Edition

Page 5: ME 300 Thermodynamics II Fall 2006 - Purdue … 300 Thermodynamics II 3 ... Ammonia, Propane • Specific heats • Ideal gas properties of air (A-22) ... thermodynamic knowledge (above)

ME 300 Thermodynamics II 5

Major topic outline/Deliverables• Motivation• Brief overview of

governing equations• Advanced 2nd law

analysis• Mixtures• HVAC theory and

applications• Combustion• Power cycle analysis

• Reading/HW assignments every class

• Use of EES software for advanced analysis

• Three exams and one final exam

• Syllabus/Course policy

Page 6: ME 300 Thermodynamics II Fall 2006 - Purdue … 300 Thermodynamics II 3 ... Ammonia, Propane • Specific heats • Ideal gas properties of air (A-22) ... thermodynamic knowledge (above)

ME 300 Thermodynamics II 6

Motivation• Why study thermodynamics?

– Important for design and analysis of any device/system that involves interchange between work and heat

– Key applications related to energy and the environment include steam power plants, gas turbine engines, internal combustion engines, refrigeration, and air-conditioning, etc.

• What’s new this time around?– Advanced concepts: unsteady systems, exergy

analysis, new applications to HVAC, combustion, more complex cycle analysis and more . . .

Page 7: ME 300 Thermodynamics II Fall 2006 - Purdue … 300 Thermodynamics II 3 ... Ammonia, Propane • Specific heats • Ideal gas properties of air (A-22) ... thermodynamic knowledge (above)

ME 300 Thermodynamics II 7

Key Definitions• Property

• State• Process• Cycle• Equilibrium and Quasi-Equilibrium process

• Dimensions/Units

Page 8: ME 300 Thermodynamics II Fall 2006 - Purdue … 300 Thermodynamics II 3 ... Ammonia, Propane • Specific heats • Ideal gas properties of air (A-22) ... thermodynamic knowledge (above)

ME 300 Thermodynamics II 8

Main Focus

HIGH TEMP.RESERVOIR, TH

HIGH TEMP.RESERVOIR, TH

HEAT ENGINE

REFRIGE-RATOR/HEAT

PUMP

LOW TEMP.RESERVOIR, TL

LOW TEMP.RESERVOIR, TL

Page 9: ME 300 Thermodynamics II Fall 2006 - Purdue … 300 Thermodynamics II 3 ... Ammonia, Propane • Specific heats • Ideal gas properties of air (A-22) ... thermodynamic knowledge (above)

ME 300 Thermodynamics II 9

Key Cycle Relations

• First Law • Second Law

Page 10: ME 300 Thermodynamics II Fall 2006 - Purdue … 300 Thermodynamics II 3 ... Ammonia, Propane • Specific heats • Ideal gas properties of air (A-22) ... thermodynamic knowledge (above)

ME 300 Thermodynamics II 10

Inside the “circle”

HEAT ENGINE

Page 11: ME 300 Thermodynamics II Fall 2006 - Purdue … 300 Thermodynamics II 3 ... Ammonia, Propane • Specific heats • Ideal gas properties of air (A-22) ... thermodynamic knowledge (above)

ME 300 Thermodynamics II 11

Generic SystemInlet

Open vs. closed

Steady vs. unsteady

Rigid vs. non-rigid

Air etc. vs. phase-changesubstance

Outlet1

3

SystemboundaryInlet

2

Page 12: ME 300 Thermodynamics II Fall 2006 - Purdue … 300 Thermodynamics II 3 ... Ammonia, Propane • Specific heats • Ideal gas properties of air (A-22) ... thermodynamic knowledge (above)

ME 300 Thermodynamics II 12

Common Systems

• Rigid tank• Piston-cylinder• Steady-flow device

– Nozzle/Diffuser– Compressor/Turbine– Heat Exchanger– Mixing chamber– Throttle

Page 13: ME 300 Thermodynamics II Fall 2006 - Purdue … 300 Thermodynamics II 3 ... Ammonia, Propane • Specific heats • Ideal gas properties of air (A-22) ... thermodynamic knowledge (above)

ME 300 Thermodynamics II 13

These devices are real!

Page 14: ME 300 Thermodynamics II Fall 2006 - Purdue … 300 Thermodynamics II 3 ... Ammonia, Propane • Specific heats • Ideal gas properties of air (A-22) ... thermodynamic knowledge (above)

ME 300 Thermodynamics II 14

Governing Equations - mass

( ) /cvi e av

dm m m m dA V Adt

ρ υ= − = ⋅ =∑ ∑ ∫ V n

Page 15: ME 300 Thermodynamics II Fall 2006 - Purdue … 300 Thermodynamics II 3 ... Ammonia, Propane • Specific heats • Ideal gas properties of air (A-22) ... thermodynamic knowledge (above)

ME 300 Thermodynamics II 15

Governing Equations - energy 2 2

( ) ( )2 2

cvi i e e cv cv

dE V Vm h gz m h gz Q Wdt

= + + − + + + −∑ ∑

Page 16: ME 300 Thermodynamics II Fall 2006 - Purdue … 300 Thermodynamics II 3 ... Ammonia, Propane • Specific heats • Ideal gas properties of air (A-22) ... thermodynamic knowledge (above)

ME 300 Thermodynamics II 16

Governing Equations - entropy

jcvi i e e cv

j

QdS m s m sdt T

σ= − + +∑ ∑ ∑

Page 17: ME 300 Thermodynamics II Fall 2006 - Purdue … 300 Thermodynamics II 3 ... Ammonia, Propane • Specific heats • Ideal gas properties of air (A-22) ... thermodynamic knowledge (above)

ME 300 Thermodynamics II 17

Governing Equations - all

2 2

; ( / )

( ) ( )2 2

cvi e

cvi i e e cv cv

jcvi i e e cv

j

dm m m m AVdt

dE V Vm h gz m h gz Q Wdt

QdS m s m sdt T

υ

σ

= − =

= + + − + + + −

= − + +

∑ ∑

∑ ∑

∑ ∑ ∑

Page 18: ME 300 Thermodynamics II Fall 2006 - Purdue … 300 Thermodynamics II 3 ... Ammonia, Propane • Specific heats • Ideal gas properties of air (A-22) ... thermodynamic knowledge (above)

ME 300 Thermodynamics II 18

Special Case: Closed System

( )

sys

sys sys sys

jsys sys

j

m const

E U KE PE Q W

QS

=

∆ = ∆ + ∆ + ∆ = −

∆ = +∑

Page 19: ME 300 Thermodynamics II Fall 2006 - Purdue … 300 Thermodynamics II 3 ... Ammonia, Propane • Specific heats • Ideal gas properties of air (A-22) ... thermodynamic knowledge (above)

ME 300 Thermodynamics II 19

Property Evaluation

• Pure substance

• Simple compressible substance

• Key properties• State principle• State relations• Ideal gas vs. pure substance with phase-change

Page 20: ME 300 Thermodynamics II Fall 2006 - Purdue … 300 Thermodynamics II 3 ... Ammonia, Propane • Specific heats • Ideal gas properties of air (A-22) ... thermodynamic knowledge (above)

ME 300 Thermodynamics II 20

Ideal Gas (IG)

• Gases at low pressure and high temperature relative to critical point values– Low density– Neglects volume of molecules– Neglects intermolecular forces– Equation of state

– Internal energy and enthalpy only function of temperature; entropy still function of T and P

Page 21: ME 300 Thermodynamics II Fall 2006 - Purdue … 300 Thermodynamics II 3 ... Ammonia, Propane • Specific heats • Ideal gas properties of air (A-22) ... thermodynamic knowledge (above)

ME 300 Thermodynamics II 21

Pure substance with phase change

Page 22: ME 300 Thermodynamics II Fall 2006 - Purdue … 300 Thermodynamics II 3 ... Ammonia, Propane • Specific heats • Ideal gas properties of air (A-22) ... thermodynamic knowledge (above)

ME 300 Thermodynamics II 22

Property Tables

• Saturated liquid/vapor states (T/P) - quality• Superheated vapor• Compressed (subcooled) liquid• Water, R134a, Ammonia, Propane• Specific heats• Ideal gas properties of air (A-22)• Ideal gas properties of gases (A-23)

Page 23: ME 300 Thermodynamics II Fall 2006 - Purdue … 300 Thermodynamics II 3 ... Ammonia, Propane • Specific heats • Ideal gas properties of air (A-22) ... thermodynamic knowledge (above)

ME 300 Thermodynamics II 23

Tie-in to Governing Equations• Recall conservation of energy (1st law):

• Apply to steady, single-inlet, single-outlet adiabatic rigid control volume neglecting PE changes:

2 2

( ) ( )2 2

cvi i e e cv cv

dE V Vm h gz m h gz Q Wdt

= + + − + + + −∑ ∑

Page 24: ME 300 Thermodynamics II Fall 2006 - Purdue … 300 Thermodynamics II 3 ... Ammonia, Propane • Specific heats • Ideal gas properties of air (A-22) ... thermodynamic knowledge (above)

ME 300 Thermodynamics II 24

Evaluating Enthalpy Change

Page 25: ME 300 Thermodynamics II Fall 2006 - Purdue … 300 Thermodynamics II 3 ... Ammonia, Propane • Specific heats • Ideal gas properties of air (A-22) ... thermodynamic knowledge (above)

ME 300 Thermodynamics II 25

Evaluating Entropy Change

Page 26: ME 300 Thermodynamics II Fall 2006 - Purdue … 300 Thermodynamics II 3 ... Ammonia, Propane • Specific heats • Ideal gas properties of air (A-22) ... thermodynamic knowledge (above)

ME 300 Thermodynamics II 26

Problem Solving Method• List what you are given• List what you are asked to find• Draw and label sketch and identify system

(open/closed?)• List assumptions • Identify and fix your states!• Identify special processes (Is anything constant?)• Develop governing equations• Substitute numerical values identifying data source• Check units!• Examine your answer critically• Comment

Page 27: ME 300 Thermodynamics II Fall 2006 - Purdue … 300 Thermodynamics II 3 ... Ammonia, Propane • Specific heats • Ideal gas properties of air (A-22) ... thermodynamic knowledge (above)

ME 300 Thermodynamics II 27

Summary• Appreciate intimate connection between your

system and the appropriate form of the governing equations

• Appreciate mathematical and physical meaning of terms in governing equations

• Evaluation of properties (changes) differs for ideal gas vs. pure/phase change substance

• Problem solving technique complements thermodynamic knowledge (above)

• Next time . . . Examples and unsteady flow

Page 28: ME 300 Thermodynamics II Fall 2006 - Purdue … 300 Thermodynamics II 3 ... Ammonia, Propane • Specific heats • Ideal gas properties of air (A-22) ... thermodynamic knowledge (above)

ME 300 Thermodynamics II 28

Today’s Outline

• Review (continued) - Example• Unsteady flow• Governing equations• Examples

Page 29: ME 300 Thermodynamics II Fall 2006 - Purdue … 300 Thermodynamics II 3 ... Ammonia, Propane • Specific heats • Ideal gas properties of air (A-22) ... thermodynamic knowledge (above)

ME 300 Thermodynamics II 29

Example 8-77• Liquid water at 200kPa and

20C is heated in a chamber by mixing it with superheated steam at 200kPa and 300C. Liquid water enters the mixing chamber at a rate of 2.5kg/s and the chamber is estimated to lose heat to the surroundings at a rate of 600kJ/min. If the mixture leaves the chamber at 200kPa and 60C, determine (a) mass flow rate of superheated steam and (b) rate of entropy production.

Page 30: ME 300 Thermodynamics II Fall 2006 - Purdue … 300 Thermodynamics II 3 ... Ammonia, Propane • Specific heats • Ideal gas properties of air (A-22) ... thermodynamic knowledge (above)

ME 300 Thermodynamics II 30

Example 8-77: Solution

Page 31: ME 300 Thermodynamics II Fall 2006 - Purdue … 300 Thermodynamics II 3 ... Ammonia, Propane • Specific heats • Ideal gas properties of air (A-22) ... thermodynamic knowledge (above)

ME 300 Thermodynamics II 31

Example 8-77: Solution

Page 32: ME 300 Thermodynamics II Fall 2006 - Purdue … 300 Thermodynamics II 3 ... Ammonia, Propane • Specific heats • Ideal gas properties of air (A-22) ... thermodynamic knowledge (above)

ME 300 Thermodynamics II 32

Example 8-77: Solution

Page 33: ME 300 Thermodynamics II Fall 2006 - Purdue … 300 Thermodynamics II 3 ... Ammonia, Propane • Specific heats • Ideal gas properties of air (A-22) ... thermodynamic knowledge (above)

ME 300 Thermodynamics II 33

Unsteady Processes

Page 34: ME 300 Thermodynamics II Fall 2006 - Purdue … 300 Thermodynamics II 3 ... Ammonia, Propane • Specific heats • Ideal gas properties of air (A-22) ... thermodynamic knowledge (above)

ME 300 Thermodynamics II 34

Motivation• Unsteady flow processes involve changes within the

CV with time• Examples include (see next slide):

– Charging a rigid vessel from supply line– Discharging fluid from pressurized vessel– Driving a gas turbine with pressurized air stored in a large

container– Start-up or shutdown of engines, devices, etc.

• Unsteady processes start and end over some finite time period vs. rate

• Unsteady flow systems, while usually fixed in space, may involve moving boundaries and hence boundary work

Page 35: ME 300 Thermodynamics II Fall 2006 - Purdue … 300 Thermodynamics II 3 ... Ammonia, Propane • Specific heats • Ideal gas properties of air (A-22) ... thermodynamic knowledge (above)

ME 300 Thermodynamics II 35

Illustrations

Page 36: ME 300 Thermodynamics II Fall 2006 - Purdue … 300 Thermodynamics II 3 ... Ammonia, Propane • Specific heats • Ideal gas properties of air (A-22) ... thermodynamic knowledge (above)

ME 300 Thermodynamics II 36

Uniform Flow/Uniform State Assumption

• Most unsteady flow processes invoke the uniform-flow assumption:– Fluid flow at inlet/exit is

uniform and steady– Fluid properties do not

change with time or position over cross-section e.g. single value suffices

• Uniform state assumes intensive properties within CV are uniform with position at each instant e.g. slow process

Page 37: ME 300 Thermodynamics II Fall 2006 - Purdue … 300 Thermodynamics II 3 ... Ammonia, Propane • Specific heats • Ideal gas properties of air (A-22) ... thermodynamic knowledge (above)

ME 300 Thermodynamics II 37

Governing Equations - Mass

cvi e

dm m mdt

= −∑ ∑Integrate term by term wrt time from initial state 1 to final state 2 . . .

Page 38: ME 300 Thermodynamics II Fall 2006 - Purdue … 300 Thermodynamics II 3 ... Ammonia, Propane • Specific heats • Ideal gas properties of air (A-22) ... thermodynamic knowledge (above)

ME 300 Thermodynamics II 38

Governing Equations - Energy

2 2

( ) ( )2 2

cvi i e e cv cv

dE V Vm h gz m h gz Q Wdt

= + + − + + + −∑ ∑Integrate term by term wrt time from initial state 1 to final state 2 . . .

Page 39: ME 300 Thermodynamics II Fall 2006 - Purdue … 300 Thermodynamics II 3 ... Ammonia, Propane • Specific heats • Ideal gas properties of air (A-22) ... thermodynamic knowledge (above)

ME 300 Thermodynamics II 39

Governing Equations - Entropy

jcvi i e e cv

j

QdS m s m sdt T

σ= − + +∑ ∑ ∑Integrate term by term wrt time from initial state 1 to final state 2 . . .

Page 40: ME 300 Thermodynamics II Fall 2006 - Purdue … 300 Thermodynamics II 3 ... Ammonia, Propane • Specific heats • Ideal gas properties of air (A-22) ... thermodynamic knowledge (above)

ME 300 Thermodynamics II 40

Typical simplifications• Charging a tank e.g.

tank filling– Initially evacuated tank– Initial mass is zero– No mass exiting

• Discharging a tank e.g. tank empyting– Initial mass/state

known– No mass entering

2

2 2

2 2

i

i i

ji i cv

j

m mm e m h Q W

Qm s m s

=

= + −

= + +∑

Page 41: ME 300 Thermodynamics II Fall 2006 - Purdue … 300 Thermodynamics II 3 ... Ammonia, Propane • Specific heats • Ideal gas properties of air (A-22) ... thermodynamic knowledge (above)

ME 300 Thermodynamics II 41

Example 5-12• A rigid, insulated tank that

is initially evacuated is connected through a valve to a supply line that carries steam at 1MPa and 300C. Now the valve is opened, and steam is allowed to flow slowly into the tank until the pressure reaches 1MPa, at which point the valve is closed. Determine the final temperature of the steam in the tank.

Page 42: ME 300 Thermodynamics II Fall 2006 - Purdue … 300 Thermodynamics II 3 ... Ammonia, Propane • Specific heats • Ideal gas properties of air (A-22) ... thermodynamic knowledge (above)

ME 300 Thermodynamics II 42

Example 5-12

Page 43: ME 300 Thermodynamics II Fall 2006 - Purdue … 300 Thermodynamics II 3 ... Ammonia, Propane • Specific heats • Ideal gas properties of air (A-22) ... thermodynamic knowledge (above)

ME 300 Thermodynamics II 43

Example 5-12

Page 44: ME 300 Thermodynamics II Fall 2006 - Purdue … 300 Thermodynamics II 3 ... Ammonia, Propane • Specific heats • Ideal gas properties of air (A-22) ... thermodynamic knowledge (above)

ME 300 Thermodynamics II 44

Example 5-12

Page 45: ME 300 Thermodynamics II Fall 2006 - Purdue … 300 Thermodynamics II 3 ... Ammonia, Propane • Specific heats • Ideal gas properties of air (A-22) ... thermodynamic knowledge (above)

ME 300 Thermodynamics II 45

Summary

• Governing equations for unsteady flow processes derived by integrating general equations wrt time

• Uniform state/flow assumption often employed• Besides inlet and exit states, unsteady flow

processes require specification or determination of initial and final states

• Without mass flow, equations reduce to those for closed system, as expected

Page 46: ME 300 Thermodynamics II Fall 2006 - Purdue … 300 Thermodynamics II 3 ... Ammonia, Propane • Specific heats • Ideal gas properties of air (A-22) ... thermodynamic knowledge (above)

ME 300 Thermodynamics II 46

Today’s Outline

• Unsteady flow examples

Page 47: ME 300 Thermodynamics II Fall 2006 - Purdue … 300 Thermodynamics II 3 ... Ammonia, Propane • Specific heats • Ideal gas properties of air (A-22) ... thermodynamic knowledge (above)

ME 300 Thermodynamics II 47

Example 5-135E• A 4-ft3 rigid tank contains

saturated refrigerant-134a at 100psia. Initially, 20% of volume is occupied by liquid and rest by vapor. A valve at the top of the tank is now opened, and vapor is allowed to escape slowly from the tank. Heat is transferred to the refrigerant such that the pressure inside the tank remains constant. The valve is closed when the last drop of liquid in the tank is vaporized. Determine the total heat transfer for this process.

Page 48: ME 300 Thermodynamics II Fall 2006 - Purdue … 300 Thermodynamics II 3 ... Ammonia, Propane • Specific heats • Ideal gas properties of air (A-22) ... thermodynamic knowledge (above)

ME 300 Thermodynamics II 48

Example 5-135E

Page 49: ME 300 Thermodynamics II Fall 2006 - Purdue … 300 Thermodynamics II 3 ... Ammonia, Propane • Specific heats • Ideal gas properties of air (A-22) ... thermodynamic knowledge (above)

ME 300 Thermodynamics II 49

Example 5-135E

Page 50: ME 300 Thermodynamics II Fall 2006 - Purdue … 300 Thermodynamics II 3 ... Ammonia, Propane • Specific heats • Ideal gas properties of air (A-22) ... thermodynamic knowledge (above)

ME 300 Thermodynamics II 50

Example 5-135E

Page 51: ME 300 Thermodynamics II Fall 2006 - Purdue … 300 Thermodynamics II 3 ... Ammonia, Propane • Specific heats • Ideal gas properties of air (A-22) ... thermodynamic knowledge (above)

ME 300 Thermodynamics II 51

Example 7-212• A 0.25m3 insulated piston-

cylinder device initially contains 0.7kg of air at 20C. At this state, the piston is free to move. Now air at 500kPa and 70C is allowed to enter the cylinder from a supply line until the volume increases by 50%. Using constant specific heats at room temperature, determine (a) final temperature, (b) amount of mass that entered, (c) work done, and (d) entropy generation.

Page 52: ME 300 Thermodynamics II Fall 2006 - Purdue … 300 Thermodynamics II 3 ... Ammonia, Propane • Specific heats • Ideal gas properties of air (A-22) ... thermodynamic knowledge (above)

ME 300 Thermodynamics II 52

Example 7-212

Page 53: ME 300 Thermodynamics II Fall 2006 - Purdue … 300 Thermodynamics II 3 ... Ammonia, Propane • Specific heats • Ideal gas properties of air (A-22) ... thermodynamic knowledge (above)

ME 300 Thermodynamics II 53

Example 7-212

Page 54: ME 300 Thermodynamics II Fall 2006 - Purdue … 300 Thermodynamics II 3 ... Ammonia, Propane • Specific heats • Ideal gas properties of air (A-22) ... thermodynamic knowledge (above)

ME 300 Thermodynamics II 54

Example 7-212

Page 55: ME 300 Thermodynamics II Fall 2006 - Purdue … 300 Thermodynamics II 3 ... Ammonia, Propane • Specific heats • Ideal gas properties of air (A-22) ... thermodynamic knowledge (above)

ME 300 Thermodynamics II 55

Summary

• Unsteady flow problems involve a start (“now”) and an end (“until”)

• Distinguish between charging (filling) and discharging (empyting)

• Use proper form of governing equations• Invoke uniform state/uniform flow assumption• Know your working fluid so you evaluate

properties correctly e.g. IG vs. pure substance


Recommended