+ All Categories
Home > Documents > me s: USA - NeonCRM s A r ia a m t ... Alonso R & Ogata J (2010). Effect of auditory training on the...

me s: USA - NeonCRM s A r ia a m t ... Alonso R & Ogata J (2010). Effect of auditory training on the...

Date post: 31-Mar-2018
Category:
Upload: vulien
View: 213 times
Download: 1 times
Share this document with a friend
33
Slide 1 Clinical Application of Auditory Evoked Responses: The Time Has Come James W. Hall III, Ph.D. Adjunct Professor Nova Southeastern University Fort Lauderdale, Florida, USA Salus University Elkins Park, Pennsylvania, USA Extraordinary Professor University of Pretoria Pretoria, South Africa [email protected] www.audiologyworld.net ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 2 P300 ALR AMLR ABR ECochG Clinical Application of Auditory Evoked Responses: The Time Has Come ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 3 Dan Geisler, Ph.D. Discoverer of Auditory Middle Latency Response (AMLR) in 1958 Geisler, C. D., Frishkopf, L. S., & Rosenblith, W. A. (1958). Extracranial responses to acoustic clicks in man. Science, 128, 1210-1211. Cody, D. T. R., Jacobson, J. L., Walker, J. C., & Bickford, R. G. (1964). Averaged evoked myogenic and cortical potentials to sound in man. Annals of Otology, Rhinology, and Laryngology, 73, 763-777. ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________
Transcript

Slide 1 Clinical Application of Auditory Evoked Responses:

The Time Has Come

James W. Hall III, Ph.D.Adjunct Professor

Nova Southeastern University

Fort Lauderdale, Florida, USA

Salus University

Elkins Park, Pennsylvania, USA

Extraordinary Professor

University of Pretoria

Pretoria, South Africa

[email protected]

www.audiologyworld.net

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 2

P300

ALR

AMLR

ABR

ECochG

Clinical Application of Auditory Evoked Responses:

The Time Has Come

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 3 Dan Geisler, Ph.D.

Discoverer of Auditory Middle Latency Response

(AMLR) in 1958

Geisler, C. D., Frishkopf, L. S., &

Rosenblith, W. A. (1958). Extracranial

responses to acoustic clicks in man.

Science, 128, 1210-1211.

Cody, D. T. R., Jacobson, J. L., Walker,

J. C., & Bickford, R. G. (1964).

Averaged evoked myogenic and

cortical potentials to sound in man.

Annals of Otology, Rhinology, and

Laryngology, 73, 763-777.

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 4 Auditory Middle Latency Response (AMLR):

Analysis

100 ms

PAM

PbPa (22 - 30 ms)

PAM = Post-auricular muscle

Am

pli

tud

e (m

V)

NbNa

1 mV

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 5 Auditory Middle Latency Response (AMLR):

An Example of Post-Auricular Muscle (PAM) Artifact

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 6

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 7 Origins of the Auditory Middle Latency Response (AMLR)

(Photograph adapted from F.E. Musiek)

Primary

Auditory

Cortex

Thalamus

(Medial

Geniculate

Body)

Thalamus

(Medial

Geniculate

Body)

Primary

Auditory

Cortex

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 8 Origins of the Auditory Middle Latency Response (AMLR)

(Photograph adapted from F.E. Musiek)

Primary

Auditory

Cortex

(Superior

Temporal

Gyrus)

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 9 AMLR TEST PROTOCOL (1)

Stimulus Parameters

Type Tone bursts

Duration 2 cycles of rise time and long plateau

Rate 7.1/sec or slower as necessary

Polarity Alternating or rarefaction

Intensity 70 dB nHL or less (< PAM)

Transducer Insert

Masking Rarely needed

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 10 AMLR TEST PROTOCOL (2)

Acquisition Parameters

Amplification 75,000 or less

Analysis time 100 ms

Sweeps 500 or less

Filters 10 to 250 or 1500 Hz

Notch filter Never (AMLR spectrum = 40 Hz)

Electrodes *

channel 1 C5 to A1/A2 (linked earlobes) or Non-cephalic (LH)

channel 2 C6 to A1/A2 or non-cephalic (RH)

channel 3 Fz to A1/A2 or non-cephalic (ML)

• With a 2 channel AER system, record AMLR with two hemisphere

electrode array and then a single channel (Fz) recording

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 11 Enhancing Detection of the Elusive Pb Wave:

Slow stimulus (< 1/sec), Low frequency stimulus (500 Hz), Very low

high pass filter setting (1 Hz)

Nelson, Hall & Jacobson, 1997

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 12 Linked Earlobe Electrode Arrangement

in AMLR Measurement

1+ 1- Gnd 2+ 2-

Electrodes

1+ = Non-inverting (C6)

1- = Inverting (Ears)

Gnd = Common (Fpz)

2+ = Non-inverting (C5)

2- = Inverting (Ears)

Right Side Left Side

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 13 Modification of the AMLR Test Protocol

to Record a Pb Component (ALR P1)

Stimulus Parameters

Type Tones (not clicks)

Frequencies Lower are better

Duration

rise/fall 5 ms

plateau > 10 ms

Rate < 1 signal/second

ISI > 1 second (up to 5 or 6 seconds)

Acquisition Parameters

Electrodes Cz (versus Fz)

Analysis time > 100 ms

Filters: 0.1 - 100 Hz

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 14 Modification of Protocol to Record an

ABR and AMLR at the Same Time

Stimulus Parameters

Type Clicks (not tones)

Rate < 11 stimuli/sec (older children and adults)

Acquisition Parameters

Electrodes Fz-Ai (to detect an ABR wave I)

Analysis time > 100 ms

Filters: 10 to 1500 Hz

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 15 Measurement and Non-Pathologic Factors

Influencing AMLR Recordings

Test Parameters:

Filtering: avoid restricted high-pass filter setting (e.g., 30 Hz) and use HP setting of < 1 Hz to detect Pb component

Stimulus intensity level: avoid very high levels (PAM artifact)

Stimulus duration: longer (> 10 ms) is better (avoid clicks)

Stimulus rate: slower rates for children and in pathology with very slow rate (< 1/sec) to detect Pb component

Subject Factors:

Age: a factor under 10 years old and interacts with rate

Sleep: AMLR more variable during sleep

Post-auricular muscle (PAM) artifact: Avoid if possible

Sedation: amplitude reduced and variable

Anesthesia: typically suppresses AMLR activity (reticular formation generators)

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 16

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 17 Neural Generators of the AMLR

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 18 Sensitivity and Specificity of the AMLR in

the Detection of Auditory CNS Dysfunction

Musiek F, Charette L, Kelly T, Lee WW, Musiek R. Hit and false-positive

rates for middle latency response in patients with central nervous system

involvement. JAAA 10: 1999.

26 adult control subjects and 26 patients with medically confirmed

CANS lesions (mostly CVAs and lobectomies)

Two groups matched for hearing status and age

AMLR measured with hemispheric electrode array (C3 and C4)

Latency measured for Na and Pa

Amplitude measured for Na-Pa

ROC curves generated by plotting hit rate by the false-positive rate for

different criteria, e.g., absolute latency and amplitude, and differences in

these parameters for ipsi versus contra AMLRs

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 19 Abnormal Patterns for Auditory Middle Latency Response (AMLR)

in Patients with Confirmed Temporal Lobe Lesions

(Musiek et al, 2007)

AMLR Component (Amplitude in mV)

Hemisphere Na-Pa Na Pa

Side of Lesion

Mean 0.55 0.20 0.35

(SD) (0.20) (0.14) (0.24)

Intact Side

Mean 0.86 0.28 0.63

SD (0.21) (0. 15) (0.27)

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 20 Abnormal Patterns of AMLR with Right Hemisphere Lesion

Electrode Effect

Left Hemisphere

C5

Right Hemisphere

C6

V V

Na Na

Pa Pb

RE

LE LE

RE

Right Ear Left Ear

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 21 Abnormal Patterns of AMLR with Right Hemisphere Lesion

Ear Effect

Left Hemisphere

C5

Right Hemisphere

C6

V

V

Na

Na

Pa Pb

RE

LE LE

RE

Right Ear Left Ear

Na

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 22 Ear and Electrode Effects in Pediatric

Auditory Middle Latency Response (AMLR) Recordings

Weihling J, Schochat E & Musiek F. (2013) Ear and electrode effects reduce

within-group variabiliy in middle latency response amplitude measures.

International Journal of Audiology, 51, 405-412

155 children

Normal peripheral function

Normal central auditory function

No history of psychological, neurological, or learning disorders

Na-Pa amplitude differences were measured for

AMLR C3 – C4 hemispheric electrode recording sites

Left ear – right ear stimulation

Conclusions

Within group variability was significant smaller for relative differences

when compared to absolute measures

Electrode effects showed significantly less variability than ear effects

Authors reports normative data

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 23 Normal Expectations for Electrode Effects in Pediatric

Auditory Middle Latency Response (AMLR) Recordings(Weihling, Schochat & Musiek, 2013)

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 24 Normal Expectations for Ear Effects in Pediatric

Auditory Middle Latency Response (AMLR) Recordings(Weihling, Schochat & Musiek, 2013)

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 25 Documenting Benefits of Auditory Training with

Auditory Middle Latency Response (AMLR) Responses

Schochat E, Musiek FE, Alonso R & Ogata J (2010). Effect of auditory training on

the middle latency response in children with (central) auditory disorder. Brazilian

Journal of Medical and Biological Resarch, 43, 777-785

Subjects

30 children (age 8 – 14 years) with APD

22 children without APD

Pre-training click-evoked AMLR C3-A1 Na-Pa amplitudes were smaller in the

APD group

0.84 uV for APD group

1.18 uV for control group

8 week period of auditory training for APD group only

Post-training AMLR C3-A1 Na-Pa amplitudes increased significantly to 1.59 uV

in the APD group

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 26 Documenting Benefits of Auditory Training with

Auditory Middle Latency Response (AMLR) Responses

Schochat E, Musiek FE, Alonso R & Ogata J (2010). Effect of auditory training on

the middle latency response in children with (central) auditory disorder. Brazilian

Journal of Medical and Biological Resarch, 43, 777-785

Diagnosis of APD

Pediatric speech intelligibility (PSI) test

Speech-in-noise test

Dichotic digits test

Dichotic non-verbal test

Auditory training protocol

Frequency discrimination training

Intensity discrimination training

Temporal (duration) discrimination training

Dichotic Inter-aural Intensity Difference (DIID

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 27 Documenting Benefits of Auditory Training with

Auditory Middle Latency Response (AMLR) Responses

(Schochat E, Musiek FE, Alonso R & Ogata J, 2010)

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 28 Documenting Benefits of Auditory Training with

Auditory Middle Latency Response (AMLR) Responses

(Schochat E, Musiek FE, Alonso R & Ogata J, 2010)

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 29 Auditory Middle Latency Response (AMLR) Responses

in Children with Specific Language Impairment (SLI)

Al-Saif SS, Abdeltawwab MM & Khamis M. (2012) Auditory middle

latency responses amplitude responses in children with specific

language impairment. European Archives of Otorhinolaryngology,

269, 1697-1702 [Saudi Arabia]

Subjects

19 children with SLI (Arabic) with delayed language

development affecting production and reception

Normal group

Analysis of Na-Pa latency and amplitude between groups

Conclusions

No statistically significant difference between groups

Findings “cast doubt” on the hypothesis that abnormalities in

the primary auditory cortex are a cause of SLI

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 30

Advantages

Accepted test protocols and procedures

Primary auditory cortex origins known

Measurable in infants and young children (but complex interaction bet/ age, stimulus rate, duration

Not influenced by

State of arousal

Behavioral response to sound (e.g, autism)

Cognitive status

Disadvantages

influenced by sleep and sedatives

Requires hemispheric electrodes for neuro-diagnostic information

Analyses strategies not well defined in CAPD

Few data on relation bet/ AMLR and behavioral CAPD findings

APD Assessment with AMLR

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 31 Auditory Evoked Responses in Auditory Processing Disorders (APD):

Clinical experience in 1990s

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 32 Auditory Middle Latency Response (AMLR):

Pb (P50) as Index of “Sensory Gating”(e.g., Boutros et al. Psychiatry Research 57: 1995)

ms

Pb (P50)Pa

Am

pli

tud

e (m

V)

Signal 1

1 mV

500 ms

Conventional AMLR

Habituation

(sensory gating)

Signal 2

Attention

Pb (P50)

Pb (P50)

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 33 Auditory Late Response (Cortical)

600 ms

P2 (180 – 200 ms)

Am

pli

tud

e (m

V)

N2 (200 - 400 ms)N1 (90 - 150 ms)

P1 (50 ms)

5mV

Stimulus

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 34 Auditory Late

Response: Generators

P300

N2

P2

N1

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 35

Stimulus parameters

Stimulus: tones or speech signals (e.g., phonemes /da/ or /ga/)

Duration: relatively long, e.g.,

10 ms rise/fall

30 ms plateau

Rate: slow (< 1/sec); amplitude increases until ISI > 5 sec)

Polarity: alternating (not important)

Intensity: moderate (< 70 dB nHL)

Repetitions (averages): < 200

Auditory Late Responses (ALRs): Test Protocol (1)

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 36

Acquisition parameters

Analysis time

Total: 600 ms

Post-stimulus: 500 or 600 ms

Pre-stimulus: 100 ms

Electrodes

Non-inverting: Cz (and/or Fz and other scalp locations)

Inverting: earlobes (linked)

Supra-orbital/canthus: monitor eyeblink

Amplification: < 25,000

Filter settings

Band-pass: 0.1 to 100 Hz

Notch: off

Auditory Late Responses (ALRs): Test Protocol (2)

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 37 Age

Developmental changes

Maturation through at least 10 to 12 years of age

N1 and P2 amplitude decreases, and P3 amplitude increases, with development

Latency decreases with development

Advancing age

Gradual latency increase > 20 years of age for all auditory late responses

Attention

Variable for different ALR components (for P2 and P3, not N1)

Sleep

Stage of sleep affects ALRs

Variability in sleep stages 3 and 4

Responses in rapid eye movement (REM) sleep equivalent to awake state

Changes in amplitude and latency can document effective intervention for APD (see Kraus and others)

Auditory Late Responses (ALRs):

Effects of Selected Subject Factors

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 38 Clinical Application of Auditory Late Responses:

Documentation and Diagnosis of APD

Kraus et al. Auditory neurophysiologic responses and

discrimination deficits in children with learning

problems. Science 273: 1996.

Cunningham, Nicol, Zecker & Kraus. Speech-evoked

neurophysiologic responses in children with learning

problems: Development and behavioral correlates of

perception. Ear & Hearing 21: 2000 [P1, N1, N2]

Dozens of new peer reviewed publications …

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 39

Hayes, Warrier, Nicol, Zecker & Kraus. Neural plasticity following auditory training in children with learning problems. Clinical Neurophysiology 114: 673-684, 2003.

Subjects

27 children with auditory learning problems (age 8–12 yrs)

15 children in control group

Training

Earobics for 35 to 40 sessions (1 hour each) for about 8 wks.

Neurophysiologic measures

ABR for click and speech signals, i.e., /da/

Auditory late response N1 and P2 for /ga/ signal in quiet and /da/ signal in noise

Effectiveness of A Computer-Based Program for

Development of Auditory Processing Skills:

Documentation with the ALR

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 40

Neural plasticity following auditory training in children with learning problems: Findings

Significant pre- vs. post-Earobics changes were noted for

“sound blending”

“auditory processing”

No pre- vs. post treatment change in the ABR

The P2-N2 amplitude showed significant decrease (maturation)

The N2 latency showed significant decrease (maturation)

The P2-N2 amplitude showed significant increase in noise

Conclusions

Children with auditory learning problems who completed auditory training (Earobics) exhibited plasticity of neural encoding of speech sounds at cortical level. These changes were associated with improvement in behavioral performance.

Effectiveness of A Computer-Based Program for

Development of Auditory Processing Skills:

Documentation with the ALR

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 41 Auditory Evoked Responses in Auditory Processing Disorders (APD):

Clinical experience in 1990s

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 42 Clinical Applications of Auditory Late Response

(Anu Sharma, PhD, University of Colorado)

Cardon G, Campbell J and Sharma A (2012). Plasticity in the

developing auditory cortex: Evidence from children with

sensorineural hearing loss and Auditory Neuropathy Spectrum

Disorder. Journal of the America Academy of Audiology

Sharma, A, Cardon G, Henion K and Roland P (2011). Cortical

maturation and behavioral outcomes in children with auditory

neuropathy spectrum disorder. International Journal of

Audiology,50, 98-106

Sharma, A, Nash A, and Dorman A (2009) Cortical development,

plasticity and reorganization in children with cochlear implants.

Journal Communication Disorders, 42, 272

Gilley PM, Sharma A, Dorman M and Martin K. (2006) Abnormalities

in central auditory maturation in children with language based

learning disabilities. Clinical Neurophysiology, 117, 1949

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 43 Clinical Applications of Auditory Late Response

(Anu Sharma, PhD, University of Colorado)

Stimulus parameters

• /ba/ with 5 formants or /uh/

• 90 ms duration for /ba/ or 23 ms for /uh/

• 70 or 75 dB SPL

• Inter-stimulus interval (ISI) = 500 ms or variable

• Stimulation via a loudspeaker 45o relative to ear

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 44 Clinical Applications of Auditory Late Response

(Anu Sharma, PhD, University of Colorado)

Response parameters

• Silver-silver chloride electrodes

• Electrodes

Cz non-inverting electrode site

Mastoid (M) inverting electrode site

• 0.1 to 100 or 300 Hz band-pass filter settings

• 600 ms analysis time (100 ms pre-stimulus time)

• Eye electrodes to detect eye-blink

• > 300 sweeps per averaged waveform

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 45 Clinical Applications of Auditory Late Response:

Effect of Inter-Stimulus Interval (ISI) on Detectability

(Anu Sharma, PhD, University of Colorado)

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 46 Clinical Applications of Auditory Late Response:

Hearing Aid versus Cochlear Implant Performance

(Anu Sharma, PhD, University of Colorado)

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 47 Clinical Applications of Auditory Late Response:

Documenting Cortical Maturation

(Anu Sharma, PhD, University of Colorado)

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 48 Recording of Auditory Late Responses to Evaluate

Hearing Aid and Cochlear Implant Performance is Feasible

(Anu Sharma, PhD, University of Colorado)

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 49 Clinical Applications of Auditory Late Response:

Documenting Hearing Aid Performance

(Anu Sharma, PhD, University of Colorado)

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 50 Clinical Applications of Auditory Late Response:

Documenting Hearing Aid Performance

(Anu Sharma, PhD, University of Colorado)

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 51 Clinical Applications of Auditory Late Response:

Evaluating Cortical Differences with Age of Cochlear Implantion

(Anu Sharma, PhD, University of Colorado)

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 52 Clinical Applications of Auditory Late Response:

Hearing Aid versus Cochlear Implant Performance

(Anu Sharma, PhD, University of Colorado)

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 53 Clinical Applications of Auditory Late Response:

Cochlear Implant Performance

(Anu Sharma, PhD, University of Colorado)

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 54 Clinical Applications of Auditory Late Response:

Evaluation of Auditory Function in Children with ANSD

(Anu Sharma, PhD, University of Colorado)

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 55 Clinical Applications of Auditory Late Response: Documenting

Hearing Aid or Cochlear Implant Performance in Patients with ANSD

(Anu Sharma, PhD, University of Colorado)

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 56 Auditory Event-Related Potentials to Words:

Implications for AudiologistsJames Jerger, Jeffrey Martin & Katharine Fitzharris

Plural Publishing, in press

Chapter 1. Introduction to AERPs to Words

Chapter 2. Overview of N1, P2, PN & LPC

Chapter 3. Examples of N1, P2, PN & LPC

Chapter 4. Dichotic Listening

Chapter 5. The Dichotic Plot Thickens

Chapter 6. Isolating Attention

Final Thoughts

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 57 Auditory Event-Related Potentials to Words:

Implications for AudiologistsJames Jerger, Jeffrey Martin & Katharine Fitzharris

Plural Publishing, in press

Listening Task = Repeating the word that is heard

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 58 Auditory Event-Related Potentials to Words:

Implications for AudiologistsJames Jerger, Jeffrey Martin & Katharine Fitzharris

Plural Publishing, in press

“Waveforms to forty repetitions of

the word “please” illustrating

varying subcomponents of the N1

component evident from different

electrode sites. “

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 59 Auditory Event-Related Potentials to Words:

Implications for AudiologistsJames Jerger, Jeffrey Martin & Katharine Fitzharris

Plural Publishing, in press

“AERP waveforms in response to

four different stimuli and tasks.

The vertical positions of the N1

and P2 peaks relative to baseline

were influenced by the degree of

PN negativity. “

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 60 Auditory Event-Related Potentials to Words:

Implications for AudiologistsJames Jerger, Jeffrey Martin & Katharine Fitzharris

Plural Publishing, in press

“This figure illustrates a more subtle effect

on the LPC. The participant was a young

man who emigrated from Poland to the

USA. His native language was Polish but

he was also an accomplished speaker of

English.

Although each elicited a robust LPC, the

component was slightly earlier and

slightly more positive at the peak of the

waveform at electrode PZ in the native

language, Polish. The necessary decisions

were more difficult in the English version.

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 61 Auditory Event-Related Potentials to Words:

Implications for AudiologistsJames Jerger, Jeffrey Martin & Katharine Fitzharris

Plural Publishing, in press

“A robust demonstration

of the REA in young

adults and seniors.

Listeners monitored an

ongoing narrative for

semantically or

syntactically anomalous

words.

Topographic maps reflect

substantial asymmetry of

the LPC response,

indicating that the

decision is less difficult in

the target right condition.

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 62 Auditory Event-Related Potentials to Words:

Implications for AudiologistsJames Jerger, Jeffrey Martin & Katharine Fitzharris

Plural Publishing, in press

“A robust demonstration

of the REA in young

adults and seniors.

Listeners monitored an

ongoing narrative for

semantically or

syntactically anomalous

words.

Topographic maps reflect

substantial asymmetry of

the LPC response,

indicating that the

decision is less difficult in

the target right condition.

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 63 Accepted test protocol

Hearing scientists use non-clinical instrumentation (NeuroScan)

Disagreement on basic test parameters, e.g., required number of electrodes

Clinical instrumentation with new features (ALR options)

Multiple channels (e.g., 4 to 8) for hemisphere and eye blink electrodes

An assortment of speech stimuli available within ALR protocols

APD protocols for measurement of ALR with:

Speech-in-noise

Dichotic listening

Temporal processing (gap detection)

Statistical analysis of ALR parameters, e.g.,

Latency and amplitude

Amplitude under the curve

Normative data (collected with clinical instrumentation)

Maturational data on ALR from infancy to adulthood (0 to 20 years)

Latency and amplitude data for various stimuli

Clinical Assessment of APD with the ALR:

How Can We Make it Happen?

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 64 Cortical Auditory Evoked Responses Elicited with

Stimuli from Loudspeakers

HEARLab

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 65 Auditory Evoked Responses:

Objective Site-Specific Indices of Auditory System Function

P300

ALR

AMLR

ABR

ECochG

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 66

Negative “obligatory” or “exogenous” response waves

N1

N1b

N1c

N150

N400

Sustained negativity (for duration of stimulus)

Positive waves

P2

Cognitive or “endogenous” response waves

Processing negativity

MMN (mismatch negativity) response

P3 (P300)

P3a

Cognitive Auditory Evoked Responses

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 67 Cognitive Auditory Evoked Responses

Historical Perspective on the P300 Response

Classic versus Passive P300 Paradigm

Anatomical Underpinnings

P300 Test Protocol

P300 versus MMN Response

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 68 Co-Discoverers of the Auditory P300 ResponseHallowell Davis (1896-1992) Samuel Sutton (1921-1986)

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 69 The P300 Response(Davis H, 1964; Sutton, Braren & Zubin, 1965)

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 70 P300 Response:

Classic Oddball Paradigm

500 ms

Frequent

Unattended

e.g., 1000 Hz or /da/

P2

Am

pli

tud

e (m

V)

P2P3 (300)*

Infrequent

(rare)

Attended

e.g., 2000 Hz or /ga/

* P3b

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 71 P300 Response:

Passive Measurement Paradigm

500 ms

Frequent

Unattended

Stimulus

e.g., 1000 Hz or /da/

P2

Am

pli

tud

e (m

V)

P2

P3a

Infrequent

Unattended

(Novel) Stimulus

e.g., 2000 Hz or /ga/

* P3b

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 72 P300 Response:

Generators

P300

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 73 Stimulus parameters

Stimulus: tones or speech signals (e.g., phonemes /da/ or /ga/)

Duration: relatively long, e.g.,

10 ms rise/fall

30 ms plateau

Rate: slow (< 1/sec); amplitude increases until ISI > 5 sec)

Polarity: alternating (not important)

Intensity: moderate (< 70 dB nHL)

Frequent versus Rare (oddball)

Some acoustic difference, e.g., frequency

Rare stimuli randomly presented with probability of ~20%

Repetitions (averages): < 200

P300 Response: Test Protocol (1)

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 74 Acquisition parameters

Analysis time

Total: 600 ms

Post-stimulus: 500 or 600 ms

Pre-stimulus: 100 ms

Electrodes

Non-inverting: Cz (and/or Fz and other scalp locations)

Inverting: earlobes (linked)

Supra-orbital/canthus: monitor eyeblink

Amplification: < 25,000

Channels

Waveform elicited by frequent stimuli

Waveform elicited by infrequent (rare) stimuli

Filter settings

Band-pass: 0.1 to 100 Hz

Notch: off

P300 Response: Test Protocol (2)

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 75

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 76

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 77

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 78

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 79

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 80 Auditory P300 Response:

Different recording strategies

One stimulus P300 paradigm

Single target signal presented randomly

Standard (frequent) signal replaced by silence

Similar latency and amplitude to standard oddball paradigm

Passive P300 paradigm

Passive and single signal paradigms yield similar waveforms (latencies)

Passive = subjects listen but not required to make a response

P2 amplitude larger for single stimulus paradigm

Polich J. Comparison of P300 from a passive tone sequence paradigm

and an active discrimination task. Psychophysiology 24: 41-46, 1987.

Zenker F & Barajas J. Auditory P300 development from active, passive,

and single-tone paradigms. International Journal of Psychophysiology

33: 99-111, 1999.

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 81 Auditory P300 Response:

Factors influencing latency and amplitude

Probability of rare stimulus

Shorter latency and larger amplitude with less probable stimulus

Attention

Shorter latency and larger amplitude with greater attention

Age

Latency decreases by about 19 ms/year up to age 20 years

Latency increases by 1 to 2 ms/year > age 20 years

Gender

No apparent effect

Handedness

Larger P300 amplitudes for posterior electrode locations for right handed subjects and for anterior locations for left handed subjects

Sleep

P300 response is highly variable depending on stages of sleep

P300 response is equivalent in awake and REM sleep state

Difficulty of task

Latency is longer and amplitude smaller as difficulty of task increases

Memory

Latency of P300 is related to memory as influenced by medications (decreased memory associated with increased latency)

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 82 Robert Jirsa (1943-2009)The Hearing Journal, 64 (July), 20-24, 2011

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 83 Robert Jirsa

P300 Response in Auditory Processing Disorders (APD)

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 84

Jirsa RE & Clontz K (1990). Long Latency Event Related Potentials from Children with Auditory Processing Disorders. Ear and Hearing 11, 222-232

Jirsa RE (1992). The Clinical Utility of the P3 ERP in Children with Auditory Processing Disorders. Journal of Speech and Hearing Research, 35, 903-912

Jirsa, RE (2002). Clinical Efficacy of Electrophysiologic Measures in Auditory Processing Disorders Management Programs." Seminars in Hearing, 23, 349-356

Jirsa RE (2003). Management of Children with APDs. The Hearing Journal, 56, 42

Robert Jirsa, PhD:

Early Research on Clinical Application of P300 in Audiology

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 85 Auditory Evoked Responses in Auditory Processing Disorders (APD):

Clinical Experience (Hall, 1995)

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 86 American Academy of Audiology (AAA)

Clinical Guidelines on Auditory Processing Disorders

(www.audiology.org)

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 87 American Academy of Audiology (AAA)

Clinical Guidelines on Auditory Processing Disorders

Role of P300 In APD (pp. 20-21)

“Although there are non-auditory contributors to the P300, there is evidence that lesions in the auditory regions of the cortex compromise the P300 in both latency and amplitude (Knight, Scabini, Woods, & Clayworth, 1989; Musiek et al, 1992).

The P300 is sensitive to compromise of the CANS, specifically to temporal lobe seizure disorder (Soysal, Atakli, Atay, Altintas, Baybas, & Arpaci, 1999).

Adults with (C)APD showed significantly longer P300 latencies than normally hearing controls in competing noise conditions (Krishnamurti, 2001).

Jirsa and Clontz (1990) also demonstrated significant differences between children with CAPD and a control group for the latency and amplitude of the P300. (Levels of evidence: 2, 3).”

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 88 American Academy of Audiology (AAA)

Clinical Guidelines on Auditory Processing Disorders

Research Needs

Systematic investigation of performance on behavioral central auditory tests and electrophysiological measures in the same subject group.

Large-scale studies to establish normative data for behavioral central auditory tests and AERs across the lifespan.

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 89 Clinical Applications and Basic Research

on the Auditory P300 Response

(www.nlm.nih.gov/PubMed

Linden David E. (2005). The P300 Response: Where in the brain is it produced and what does it tell us. The Neuroscientist, 11, 563-577

Email sent to author 2:38 pm July 18, 2013: “Dear Dr. Linden: Please

forward at your earliest convenience an electronic reprint of your article

entitled "The P300: Where in the Brain Is It Produced and What Does It

Tell Us?" in The Neuroscientist. Thank you. James W. Hall III

Response from author 3:35 am July 19, 2013: thanks for your interest, DL

David LindenProfessor of Translational Neuroscience

Honorary Consultant Psychiatrist, Cardiff and Vale University Health Board

Institute of Psychological Medicine and Clinical Neurosciences

MRC Centre for Neuropsychiatric Genetics and Genomics

School of Medicine, Cardiff University

Cardiff CF14 4XN, United Kingdom

Phone: +44 29 20 687 064

Fax: +44 29 20 687 068

http://medicine.cf.ac.uk/person/prof-david-linden/

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 90 Clinical Applications and Basic Research

on the Auditory P300 Response

(www.nlm.nih.gov/PubMed

Linden David E. (2005). The P300 Response: Where in the brain is it produced and what does it tell us. The Neuroscientist, 11, 563-577

What is the P300 and why is it relevant?

P3a versus P3b

P300 in patient studies

Localization studies

Intracranial recordings

Lesion studies

Functional imaging

Consequences for the clinical application of P300

Genetics of P300

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 91 Clinical Applications and Basic Research

on the Auditory P300 Response(Linden, 2005).

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 92 Auditory P300 Response:

Clinical Populations Highlighting Audiology

Chronic alcoholism

Dementia

Alzheimer’s dementia

Cerebro-vascular accidents (CVA or stroke)

Attention deficit hyperactivity disorder (ADHD)

Auditory processing disorders (APD) in children and adults

Depression

Epilepsy

Huntington’s disease

Parkinson’s disease

Schizophrenia

Language impairment and learning disability

Autism (decreased amplitude but unchanged latency)

Traumatic brain injury (TBI)

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 93 Mismatch Negativity (MMN)Elicited by Different Properties of Sound

(Courtesy of Catharine Pettigrew, Ph.D.)

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 94 MISMATCH NEGATIVITY (MMN) RESPONSE:

Investigations in clinical populations

Assessment of infant speech perception, including children at risk for disorders, e.g., language (e.g., Leppanen & Lyytinen, 1997)

Hearing aid fitting of infants and young children with speech signals (e.g., Kraus, et al)

Cochlear implant fitting infants and young children with speech signals (e.g., Kraus, et al)

Documentation of auditory training and language treatment (e.g., Kujala et al, 2001)

Description of Alzheimer’s disease (e.g., Pekkonen et al, 1994)

Electrophysiologic documentation of attention deficit hyperactivity disorder (e.g., Barry, Johnstone, Clarke, 2003)

Prognosis of recovery from coma (e.g., Kane et al, 1993)

Diagnosis of frontal and auditory temporal lobe dysfunction in schizophrenia (e.g., Michie et al, 2000)

Neurophysiologic documentation of auditory processing disorder (APD) and dyslexia in children

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 95 Neuroscience Evidence for APD:

Functional Neuro-Imaging (fMRI)(18 y.o. APD Patient with Right Ear Dichotic Deficit)

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 96 “fMRI” and “Auditory”:

N = > 2400 Medline Citations

Bernal B, Altman NR, Medina LS. Dissecting nonverbal auditory cortex

asymmetry: an fMRI study. Int J Neurosci. 2004 May;114(5):661-80

Rowan A, Liegeois F, Vargha-Khadem F, Gadian D, Connelly A,

Baldeweg T. Cortical lateralization during verb generation: a combined

ERP and fMRI study. Neuroimage. 2004 Jun;22(2):665-75.

Okada T, Honda M, Okamoto J, Sadato N. Activation of the primary

and association auditory cortex by the transition of sound intensity: a

new method for functional examination of the auditory cortex in

humans. Neurosci Lett. 2004 Apr 8;359(1-2):119-23.

Many addtional newer peer reviewed publications …

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 97 Differences Between Auditory P300 Response

and Mismatch Negative (MMN) Response(from New Handbook of Auditory Evoked Responses, 2007, p. 553)

P300

Classic protocol requires attention to rare stimulus

Response amplitude directly related to subject attention

Response amplitude directly related to task and to task relevance

Response with latency of about 300 ms

Generators in limbic system and auditory cortex

Larger differences between frequent vs. rare stimuli produce larger P300

MMN

Involves pre-perceptual detection of a change in the stimulus

Amplitude of the response is independent of subject attention to deviant stimul

Amplitude of the response is unaffected by subject task and stimulus relevance

Latency of the MMN is in the 100 to 300 ms region

There are frontal lobe contributions to the response

Smaller differences between standard and deviant stimuli produce clearest

MMN responses and minimize contamination with other late responses

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 98 Thank You! … Questions?

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________


Recommended