+ All Categories
Home > Documents > ME3122E - Tutorial Solution 5

ME3122E - Tutorial Solution 5

Date post: 30-Oct-2014
Category:
Upload: linshaodun
View: 3,311 times
Download: 11 times
Share this document with a friend
Description:
ME3122E - Tutorial Solution 5
21
1 NATIONAL UNIVERSITY OF SINGAPORE Department Mechanical Engineering ME 3122E – Heat Transfer (2012-13) Solution to Practice Problems 1. The steady state temperature distribution in a one dimensional wall of thermal conductivity 50 W/m.K and thickness 50 mm is observed to be T( o C) = a + bx 2 , where a = 200 o C, b = -2000 o C/m 2 , and x in metres. (a) What is the heat generation rate Μ‡ in the wall? (b) Determine the heat fluxes at the two wall faces. In what manner are these heat fluxes related to the heat generation rate? (a) The appropriate form of the heat equation for steady-state, one-dimensional conditions with constant properties is: = Μ‡ βˆ’ οΏ½ οΏ½ Substituting the prescribed temperature distribution, = Μ‡ βˆ’ οΏ½ ( + 2 ) οΏ½ = = Μ‡ βˆ’ [2]= βˆ’2 = Μ‡ βˆ’ 2(βˆ’2000 / 2 ) Γ— 50 . = . Γ— /
Transcript
Page 1: ME3122E - Tutorial Solution 5

1

NATIONAL UNIVERSITY OF SINGAPORE Department Mechanical Engineering

ME 3122E – Heat Transfer (2012-13)

Solution to Practice Problems

1. The steady state temperature distribution in a one dimensional wall of thermal conductivity 50 W/m.K and thickness 50 mm is observed to be T(oC) = a + bx2, where a = 200 oC, b = -2000oC/m2, and x in metres. (a) What is the heat generation rate οΏ½οΏ½ in the wall? (b) Determine the heat fluxes at the two wall faces. In what manner are these heat fluxes related to the heat generation rate? (a) The appropriate form of the heat equation for steady-state, one-dimensional conditions with constant properties is:

π‘ž =βˆ’ π‘˜π‘‘π‘‘π‘₯

�𝑑𝑇𝑑π‘₯οΏ½

Substituting the prescribed temperature distribution,

π‘ž =βˆ’ π‘˜π‘‘π‘‘π‘₯

�𝑑(π‘Ž + 𝑏π‘₯2)

𝑑π‘₯οΏ½ = π‘ž =βˆ’ π‘˜

𝑑𝑑π‘₯

[2𝑏π‘₯] = βˆ’2π‘π‘˜

π‘ž =βˆ’ 2(βˆ’2000π‘œπΆ/π‘š2) Γ— 50π‘Šπ‘š.𝐾

= 𝟐.𝟎 Γ— πŸπŸŽπŸ“π‘Ύ/π’ŽπŸ‘

Page 2: ME3122E - Tutorial Solution 5

2

(b) The heat fluxes at the wall faces can be evaluated from Fourier’s law,

π‘ž"π‘₯ = βˆ’π‘˜ οΏ½

𝑑𝑇𝑑π‘₯οΏ½π‘₯

Using the temperature distribution T(x) to evaluate the gradient, find

π‘ž"π‘₯ = βˆ’π‘˜

𝑑(π‘Ž + 𝑏π‘₯2)𝑑π‘₯

= βˆ’2π‘˜π‘π‘₯ The fluxes at x = 0 and x = L are then

𝒒"𝒙(𝟎) = 𝟎

π‘ž"π‘₯(𝐿) = βˆ’2π‘˜π‘πΏ = βˆ’2 Γ— 50

π‘Šπ‘š.𝐾

Γ— (βˆ’2000π‘œπΆ/π‘š2) Γ— 0.050π‘š

𝒒"𝒙(𝑳) = 𝟏𝟎,𝟎𝟎𝟎 𝑾/π’ŽπŸ

From an overall energy balance on the wall, it follows that, for a unit area,

π‘ž"π‘₯(0) βˆ’ π‘ž"

π‘₯(𝐿) + π‘žοΏ½οΏ½ = 0

οΏ½οΏ½ =π‘ž"

π‘₯(𝐿) βˆ’ π‘ž"π‘₯(0)

𝐿=

10,000 π‘Š/π‘š2 βˆ’ 00.050

= 2.0 Γ— 105π‘Š/π‘š3 2. A thin electrical heater is inserted between a long circular rod and a concentric tube with inner and outer radii of 20 and 40 mm. The rod (A) has a thermal conductivity of kA = 0.15 W/m.K, while the tube (B) has a thermal conductivity of kB = 1.5 W/m.K and its outer surface is subjected to convection with a fluid of temperature T∞ = -15oC and heat transfer coefficient 50 W/m2.K. The thermal contact resistance between the cylinder surface and the heater is negligible.

(a) Determine the electrical power per unit length of the cylinders (W/m) that is required to maintain the outer surface of the cylinder B at 5oC

(b) What is the temperature at the centre of cylinder A?

Page 3: ME3122E - Tutorial Solution 5

3

(a) Perform an energy balance on the composite system to determine the power required to maintain T(r2) = Ts = 5oC

π‘žπ‘’π‘™π‘’π‘π‘‘π‘Ÿπ‘–π‘βˆ’ π‘žπ‘π‘œπ‘›π‘£ = 0

π‘žπ‘’π‘™π‘’π‘π‘‘π‘Ÿπ‘–π‘ = π‘žπ‘π‘œπ‘›π‘£ = β„Ž Γ— 2πœ‹π‘Ÿ2 Γ— (𝑇𝑠 βˆ’ π‘‡βˆž)

π‘žπ‘’π‘™π‘’π‘π‘‘π‘Ÿπ‘–π‘ =50π‘Šπ‘š2.𝐾

Γ— 2πœ‹ Γ— 0.04 Γ— οΏ½5 βˆ’ (βˆ’15)οΏ½ = πŸπŸ“πŸ.𝟐 𝑾/π’Ž (b) The inner rod is isothermal, that is T(0) = T(r1) Representing cylinder B by a thermal circuit,

π‘žβ€² =

𝑇(π‘Ÿ1) βˆ’ 𝑇𝑠𝑅′𝐡

𝑅′𝐡 = 𝑙𝑛 οΏ½π‘Ÿ2π‘Ÿ1οΏ½ /2πœ‹π‘˜π΅

Therefore,

𝑇(π‘Ÿ1) = 𝑇𝑠+(π‘žβ€² Γ— 𝑅′𝐡) = 5π‘œπΆ + οΏ½251π‘Šπ‘š

×𝑙𝑛 οΏ½40

20οΏ½2πœ‹ Γ— 1.5

οΏ½ = 23.5π‘œπΆ

Hence, 𝑇(0) = 𝑇(π‘Ÿ1) = πŸπŸ‘.πŸ“π’π‘ͺ Note that π‘˜π΄ has no influence on the temperature 𝑇(0) 3. Steel ball bearings are required to be subjected to heat treatment to obtain the desired surface characteristics. The balls are heated to a temperature of 650Β°C and then quenched

Page 4: ME3122E - Tutorial Solution 5

4

in a pool of oil that has a temperature 55Β°C. The ball bearings have a diameter of 40 mm. The convective heat transfer coefficient between the ball bearings and oil is 300 W/m2. K Determine a) The length of time that the bearings must remain in the oil before their temperature drops to 200Β°C, b) Total amount of heat removed from each bearing during this time interval, and c) Instantaneous heat transfer rate from the bearings when they are first placed in the oil and when they reach 200Β°C.The properties of steel ball bearings are as follows: k =50 W/m.K; 𝛼= k/ρCp = 1.3x10-5 m2/s Given: 𝑇𝑖 = 650π‘œπΆ,π‘‡βˆž = 55π‘œπΆ, 𝑇 = 200π‘œπΆ (a) Using the lumped heat capacity method,

𝑙𝑛 �𝑇 βˆ’ π‘‡βˆžπ‘‡π‘– βˆ’ π‘‡βˆž

οΏ½ = οΏ½βˆ’β„Žπ΄π‘‘πœŒπΆπ‘‰

� (𝟏)

𝑑 = 𝑙𝑛 �𝑇 βˆ’ π‘‡βˆžπ‘‡π‘– βˆ’ π‘‡βˆž

οΏ½Γ— οΏ½πœŒπΆπ‘‰βˆ’β„Žπ΄

οΏ½ = 𝑙𝑛 �𝑇 βˆ’ π‘‡βˆžπ‘‡π‘– βˆ’ π‘‡βˆž

οΏ½ Γ— οΏ½π‘Ÿπ‘˜

βˆ’3 ∝ β„ŽοΏ½ , �∡

𝑉𝐴

=π‘Ÿ3οΏ½

Time required for the cooling of the bearings,

𝑑 = 𝑙𝑛 οΏ½200 βˆ’ 55650 βˆ’ 55

οΏ½ Γ— οΏ½0.02 Γ— 50

βˆ’3 Γ— 1.3 Γ— 10βˆ’5 Γ— 300οΏ½ = 𝟏𝟐𝟎 𝒔

(b) Total amount of heat removed,

π»π‘‘π‘œπ‘‘π‘Žπ‘™ = οΏ½ β„Žπ΄(𝑇 βˆ’ π‘‡βˆž)𝑑𝑑𝑑

0

Using equation (1) to replace (𝑇 βˆ’ π‘‡βˆž),

π»π‘‘π‘œπ‘‘π‘Žπ‘™ = οΏ½ β„Žπ΄(𝑇𝑖 βˆ’ π‘‡βˆž)𝑒π‘₯𝑝 οΏ½βˆ’3 ∝ β„Žπ‘‘π‘Ÿπ‘˜

οΏ½ 𝑑𝑑𝑑

0

after the integration,

π»π‘‘π‘œπ‘‘π‘Žπ‘™ = οΏ½π‘Ÿπ‘˜π΄3 ∝

(π‘‡βˆž βˆ’ 𝑇𝑖)οΏ½ �𝑒π‘₯𝑝 οΏ½βˆ’3 ∝ β„Žπ‘‘π‘Ÿπ‘˜

οΏ½ βˆ’ 1οΏ½

Page 5: ME3122E - Tutorial Solution 5

5

π»π‘‘π‘œπ‘‘π‘Žπ‘™

= οΏ½0.02 Γ— 50 Γ— 4πœ‹ Γ— 0.022 Γ— (55 βˆ’ 650)

3 Γ— 1.3 Γ— 10βˆ’5οΏ½ �𝑒π‘₯𝑝 οΏ½

βˆ’3 Γ— 1.3 Γ— 10βˆ’5 Γ— 300 Γ— 1200.02 Γ— 50

οΏ½

βˆ’ 1οΏ½ = πŸ“.πŸ•πŸ– Γ— πŸπŸŽπŸ’π‘±

c) Instantaneous heat transfer rate from the bearings when they are first placed in the oil and when they reach 200Β°C.

π‘„π‘‘π‘Ÿπ‘Žπ‘›π‘ π‘“π‘’π‘Ÿπ‘Ÿπ‘’π‘‘ = β„Žπ΄(𝑇𝑖 βˆ’ π‘‡βˆž)𝑒π‘₯𝑝 οΏ½βˆ’3 ∝ β„Žπ‘‘π‘Ÿπ‘˜

οΏ½ Heat transfer rate from the bearings when they are first placed, that is when t = 0,

π‘„π‘‘π‘Ÿπ‘Žπ‘›π‘ π‘“π‘’π‘Ÿπ‘Ÿπ‘’π‘‘ = β„Žπ΄(𝑇𝑖 βˆ’ π‘‡βˆž)𝑒π‘₯𝑝(0) = β„Žπ΄(𝑇𝑖 βˆ’ π‘‡βˆž)

π‘„π‘‘π‘Ÿπ‘Žπ‘›π‘ π‘“π‘’π‘Ÿπ‘Ÿπ‘’π‘‘ = 300 Γ— 4πœ‹ Γ— 0.022 Γ— (650 βˆ’ 55) = πŸ–πŸ—πŸ• 𝑾 Heat transfer rate from the bearings when they reach 200Β°C, that is when t = 120 s, π‘„π‘‘π‘Ÿπ‘Žπ‘›π‘ π‘“π‘’π‘Ÿπ‘Ÿπ‘’π‘‘ = 300 Γ— 4πœ‹ Γ— 0.022 Γ— (650 βˆ’ 55)𝑒π‘₯𝑝 οΏ½βˆ’3Γ—1.3Γ—10βˆ’5Γ—300Γ—120

0.02Γ—50οΏ½=220.6 W

4. The extent to which the tip condition affects the thermal performance of a fin depends on the fin geometry and thermal conductivity, as well as the convection coefficient. Consider an alloyed aluminium (k = 180 W/m.K) rectangular fin whose base temperature is 100 oC. The fin is exposed to a fluid of temperature T∞ = 25 oC and a uniform convection coefficient of h = 100 W/m2.K may be assumed for the fin surface.

For a fin of length L = 10 mm, thickness t = 1 mm, and width wΒ»t, determine the fin heat transfer rate per unit width, fin efficiency and effectiveness for cases of convection heat transfer and adiabatic fin tips. Contrast your results with those based on an infinite fin approximation.

Page 6: ME3122E - Tutorial Solution 5

6

π‘š = οΏ½β„Žπ‘ƒπ‘˜π΄

= οΏ½100π‘Šπ‘š2.𝐾 Γ— (2π‘š + 0.002π‘š)180π‘Šπ‘š.𝐾 Γ— (1π‘š Γ— 0.001π‘š)

= 33.34 π‘šβˆ’1

𝑀 = βˆšπ‘˜π΄π‘ƒβ„Žπœƒπ‘ = οΏ½180π‘Šπ‘š.𝐾

Γ— (1π‘š Γ— 0.001π‘š) Γ— (2π‘š + 0.002π‘š) Γ—100π‘Šπ‘š2.𝐾

= 450 π‘Š/π‘š

Case A: convection heat transfer from fin tip

π‘žπ‘“ = π‘€π‘ π‘–π‘›β„Žπ‘šπΏ + (β„Ž/π‘šπ‘˜)π‘π‘œπ‘ β„Žπ‘šπΏπ‘ π‘–π‘›β„Žπ‘šπΏ + (β„Ž/π‘šπ‘˜)π‘π‘œπ‘ β„Žπ‘šπΏ

= 450 π‘Š/π‘š0.340 + 0.0167 Γ— 1.0571.057 + 0.0167 Γ— 0.340

= πŸπŸ“πŸπ‘Ύ/π’Ž

πœ‚π‘“ =π‘žπ‘“

β„Ž(2𝐿 + 𝑑)πœƒπ‘=

151 π‘Š/π‘š100 π‘Š/π‘š2 Γ— (2 Γ— 0.01π‘š + 0.001π‘š) Γ— 75π‘œπΆ

= 𝟎.πŸ—πŸ”

πœ€π‘“ =π‘žπ‘“β„Žπ‘‘πœƒπ‘

=151 π‘Š/π‘š

100 π‘Š/π‘š2 Γ— 0.001π‘š Γ— 75π‘œπΆ= 𝟐𝟎.𝟏

Case B: adiabatic fin tip

π‘žπ‘“ = 𝑀 π‘‘π‘Žπ‘›β„Žπ‘šπΏ = 450π‘Šπ‘š

Γ— 0.321 = πŸπŸ’πŸ’ 𝑾/π’Ž

πœ‚π‘“ =π‘‘π‘Žπ‘›β„Žπ‘šπΏπ‘šπΏ

=0.3210.333

= 𝟎.πŸ—πŸ”πŸ’

πœ€π‘“ =π‘žπ‘“β„Žπ‘‘πœƒπ‘

=144 π‘Š/π‘š

100 π‘Š/π‘š2 Γ— 0.001π‘š Γ— 75π‘œπΆ= πŸπŸ—.𝟐

Case C: Very long fin (𝐿 β†’ ∞) π‘žπ‘“ = 𝑀 = πŸ’πŸ“πŸŽ 𝑾/π’Ž, πœ‚π‘“ = 𝟎

πœ€π‘“ =π‘žπ‘“β„Žπ‘‘πœƒπ‘

=450 π‘Š/π‘š

100 π‘Š/π‘š2 Γ— 0.001π‘š Γ— 75π‘œπΆ= πŸ”πŸŽ.𝟎

Page 7: ME3122E - Tutorial Solution 5

7

5. Consider the right-circular cylinder of diameter D, length L, and the area A1, A2 and A3 representing the base, inner, and top surfaces, respectively.

(a) Show that the view factor between the base of the cylinder and the inner surface has the form F12 = 2H[(1+H2)1/2-H], where H = L/D

(b) Show that the view factor for the inner surface to itself has the form F22 = 1+H-(1+H2)1/2

Given: Right-circular cylinder of diameter D, length L and the areas A

1, A

2, and A

3 representing he base, inner lateral and top surfaces, respectively. (a) Show that the view factor between the base of the cylinder and the inner lateral surface has he form F12 = 2H[(1+H2)1/2-H]

(a) Relation for F

12, base-to-inner lateral surface. Apply the summation rule to A

1,

noting that F11

= 0 𝐹11 + 𝐹12 + 𝐹13 = 𝟏 , ∴ 𝐹12 = 1 βˆ’ 𝐹13

For the given configuration, 𝑅𝑖 = π‘Ÿπ‘–πΏ

, 𝑅𝑗 = π‘Ÿπ‘—πΏ

, 𝑆 = 1 + 1+𝑅𝑗2

𝑅𝑖2 (1)

𝐹𝑖𝑗 =1

2 �𝑆 βˆ’ �𝑆2 βˆ’ 4 οΏ½π‘Ÿπ‘—π‘Ÿπ‘–οΏ½2οΏ½οΏ½12

(2)

Using equations (1) and (2) with i = 1, j = 3,

𝐹13 = 12

�𝑆 βˆ’ �𝑆2 βˆ’ 4 �𝐷3𝐷1οΏ½2οΏ½οΏ½

12 and 𝑆 = 1 + 1+𝑅32

𝑅12, 𝑆 = 2 + 1

𝑅2= 4𝐻2 + 2 (3)

Page 8: ME3122E - Tutorial Solution 5

8

where R1

= R3

= R = D/2L and H = L/D. Combining Eqs. (2) and (3) with Eq. (1), find after some manipulation

𝐹12 = 1 βˆ’12

{4𝐻2 + 2 βˆ’ [(4𝐻2 + 2)2 βˆ’ 4]}12

𝐹12 = 2𝐻 οΏ½(1 + 𝐻2)1/2 βˆ’ 𝐻� (4) b) Relation for F

22, inner lateral surface. Apply summation rule on A

2, recognizing that

F23

= F21

,

𝐹21 + 𝐹22 + 𝐹23 = 1 ∴ 𝐹22 = 1 βˆ’ 2𝐹21 (5) Apply reciprocity between A

1 and A

2,

𝐹21 = �𝐴1𝐴2� 𝐹12 (6)

and substituting into Eq. (5), and using area expressions

𝐹22 = 1 βˆ’ 2𝐹21

𝐹22 = 1 βˆ’ 2 �𝐴1𝐴2οΏ½ 𝐹12 = 1 βˆ’ 2 οΏ½

𝐷4𝐿�𝐹12 = 1 βˆ’ οΏ½

12𝐻

�𝐹12

where A

1 = Ο€D

2/4 and A

2 = Ο€DL.

Substituting from Eq. (4) for F

12, find

𝐹22 = 1 βˆ’ οΏ½1

2𝐻�2𝐻�(1 + 𝐻2)1/2 βˆ’ 𝐻� = 1 + 𝐻 βˆ’ (1 + 𝐻2)1/2

6. A certain surface maintained at 1400 K has the following spectral emissive characteristics:

Ρ λ = 0.08 0 < λ < 0.5μm, Ρ λ = 0.4 0.6 < λ < 5μm Ρ λ = 0.7 5 < λ < ∞

Calculate the emissive power of the surface.

Page 9: ME3122E - Tutorial Solution 5

9

For the given spectral emissive characteristics,

πœ–π‘‡ = οΏ½ πœ–πœ†πΈπœ†,𝑏(𝑇)𝐸𝑏(𝑇)

π‘‘πœ† =∞

0οΏ½ πœ–πœ†

πΈπœ†,𝑏(𝑇)𝐸𝑏(𝑇)

π‘‘πœ† +πœ†1

0οΏ½ πœ–πœ†

πΈπœ†,𝑏(𝑇)𝐸𝑏(𝑇)

π‘‘πœ† +πœ†2

πœ†1οΏ½ πœ–πœ†

πΈπœ†,𝑏(𝑇)𝐸𝑏(𝑇)

π‘‘πœ†βˆž

πœ†2

= οΏ½ πœ–1πΈπœ†,𝑏(𝑇)𝐸𝑏(𝑇)

π‘‘πœ† +0.6πœ‡π‘š

0οΏ½ πœ–2

πΈπœ†,𝑏(𝑇)𝐸𝑏(𝑇)

π‘‘πœ† +5πœ‡π‘š

0.6πœ‡π‘šοΏ½ πœ–3

πΈπœ†,𝑏(𝑇)𝐸𝑏(𝑇)

π‘‘πœ†βˆž

5πœ‡π‘š

= οΏ½πœ–1�𝐹(0.6𝑇) βˆ’ 𝐹(0𝑇)οΏ½οΏ½+οΏ½πœ–2�𝐹(5𝑇) βˆ’ 𝐹(0.6𝑇)οΏ½οΏ½ + οΏ½πœ–3�𝐹(βˆžπ‘‡) βˆ’ 𝐹(5𝑇)οΏ½οΏ½ = οΏ½0.08�𝐹(0.6𝑇) βˆ’ 𝐹(0𝑇)οΏ½οΏ½+οΏ½0.4�𝐹(5𝑇) βˆ’ 𝐹(0.6𝑇)οΏ½οΏ½ + οΏ½0.7�𝐹(βˆžπ‘‡) βˆ’ 𝐹(5𝑇)οΏ½οΏ½

= 0.08[0.000016 βˆ’ 0.000]+0.4[0.808109 βˆ’ 0.000016] + 0.7[1 βˆ’ 0.808109] πœ–π‘‡ = 0.00000128+0.32323 + 0.13432 = 0.4575 𝐸 = πœŽπœ–π‘‡π‘‡4 = 5.67 Γ— 10βˆ’8 Γ— 0.4575 Γ— 14004 = 𝟎.πŸ—πŸ—πŸ”πŸ“πŸ Γ— πŸπŸŽπŸ“ 𝐖/𝐦𝟐 7. An opaque surface, 2m by 2m, is maintained at 400 K and is simultaneously exposed to solar irradiation with G = 1200 W/m2. The surface is diffuse and its spectral absorptivity is Ξ±Ξ» = 0, 0.8, 0 and 0.9 for 0 ≀ Ξ» ≀ 0.5ΞΌm, 0.5 < Ξ» ≀ 1ΞΌm, 1 ΞΌm < Ξ» ≀ 2ΞΌm and Ξ» > 2ΞΌm, respectively. Determine the absorbed irradiation, emissive power, radiosity, and net radiation heat transfer from the surface. Assuming: (1) Opaque, diffuse surface behavior, (2) Spectral distribution of solar radiation corresponds to emission from a blackbody at 5800 K.

The absorptivity to solar irradiation is

𝛼𝑆 = οΏ½π›Όπœ†πΊπœ†πΊ

π‘‘πœ† =∞

0οΏ½

π›Όπœ†πΈπœ†,𝑏(5800𝐾)𝐸𝑏

π‘‘πœ†βˆž

0

Page 10: ME3122E - Tutorial Solution 5

10

= οΏ½ 𝛼1πΈπœ†,𝑏(𝑇)𝐸𝑏(𝑇)

π‘‘πœ† +0.5πœ‡π‘š

0οΏ½ 𝛼2

πΈπœ†,𝑏(𝑇)𝐸𝑏(𝑇)

π‘‘πœ† +1πœ‡π‘š

0.5πœ‡π‘šοΏ½ 𝛼3

πΈπœ†,𝑏(𝑇)𝐸𝑏(𝑇)

π‘‘πœ†2πœ‡π‘š

1πœ‡π‘š

+ οΏ½ 𝛼4πΈπœ†,𝑏(𝑇)𝐸𝑏(𝑇)

π‘‘πœ†βˆž

2πœ‡π‘š

= �𝛼1�𝐹(0.5𝑇) βˆ’ 𝐹(0𝑇)οΏ½οΏ½+�𝛼2�𝐹(1𝑇) βˆ’ 𝐹(0.5𝑇)οΏ½οΏ½ + �𝛼3�𝐹(2𝑇) βˆ’ 𝐹(1𝑇)οΏ½οΏ½ + �𝛼4�𝐹(βˆžπ‘‡) βˆ’ 𝐹(2𝑇)οΏ½οΏ½ = οΏ½0.0�𝐹(0.5𝑇) βˆ’ 𝐹(0𝑇)οΏ½οΏ½+οΏ½0.8�𝐹(1𝑇) βˆ’ 𝐹(0.5𝑇)οΏ½οΏ½ + οΏ½0.0�𝐹(2𝑇) βˆ’ 𝐹(1𝑇)οΏ½οΏ½ + οΏ½0.9�𝐹(βˆžπ‘‡) βˆ’ 𝐹(2𝑇)οΏ½οΏ½

= [0.8(0.72 βˆ’ 0.25)] + [0.9(1.0 βˆ’ 0.94)] = 0.43

πΊπ‘†π‘Žπ‘π‘ π‘œπ‘Ÿπ‘π‘’π‘‘ = 𝛼𝑆 Γ— 𝐺𝑆 = 0.43 Γ— 1200 = πŸ“πŸπŸ“ 𝑾/π’ŽπŸ The emissivity

πœ– = οΏ½πœ–πœ†πΈπœ†,𝑏(400𝐾)

πΈπ‘π‘‘πœ†

∞

0

= οΏ½ πœ–1πΈπœ†,𝑏(𝑇)𝐸𝑏(𝑇)

π‘‘πœ† +0.5πœ‡π‘š

0οΏ½ πœ–2

πΈπœ†,𝑏(𝑇)𝐸𝑏(𝑇)

π‘‘πœ† +1πœ‡π‘š

0.5πœ‡π‘šοΏ½ πœ–3

πΈπœ†,𝑏(𝑇)𝐸𝑏(𝑇)

π‘‘πœ†2πœ‡π‘š

1πœ‡π‘š

+ οΏ½ πœ–4πΈπœ†,𝑏(𝑇)𝐸𝑏(𝑇)

π‘‘πœ†βˆž

2πœ‡π‘š

πœ– = �𝛼1�𝐹(0.5 Γ— 400) βˆ’ 𝐹(0 Γ— 400)οΏ½οΏ½+�𝛼2�𝐹(1 Γ— 400) βˆ’ 𝐹(0.5 Γ— 400)οΏ½οΏ½ +�𝛼3�𝐹(2 Γ— 400) βˆ’ 𝐹(1 Γ— 400)οΏ½οΏ½ + �𝛼4�𝐹(βˆžπ‘‡) βˆ’ 𝐹(2 Γ— 400)οΏ½οΏ½ = 0+0 + 0 + [0.9(1.0 βˆ’ 0.000016)]=0.9 𝐸 = πœŽπœ–π‘‡4 = 5.67 Γ— 10βˆ’8 Γ— 0.9 Γ— 4004 = πŸπŸ‘πŸŽπŸ” 𝐖/𝐦𝟐 The radiosity is : 𝐽 = 𝐸 + πœŒπ‘ πΊπ‘ = 𝐸 + (1 βˆ’ 𝛼𝑠)𝐺𝑠 = 1306 + 0.57 Γ— 1200 =πŸπŸ—πŸ—πŸπ–/𝐦𝟐 The net radiation transfer from the surface is: π‘žπ‘›π‘’π‘‘ = (𝐸 βˆ’ 𝛼𝑠𝐺𝑠)𝐴𝑠 = (1306 βˆ’ 515) Γ— 4 = πŸ‘πŸπŸ”πŸ’ 𝐖 Note: Unless 3164 W are supplied to the surface by other means (for example, by

Page 11: ME3122E - Tutorial Solution 5

11

8. A cryogenic fluid at 100 K is transported through a pipe 15 mm OD (outer diameter) installed in a circular duct. The emittance of the outer surface of this pipe is 0.25. (a) This 15 mm OD pipe is encased by another pipe of 25 mm OD and the space between them is evacuated. The emittance of the inner surface of this pipe is 0.35. Find the heat gain by the cryogenic fluid per unit length when outer pipe is at 280 K. (b) To reduce heat gain, a cylindrical radiation shield of 20 mm OD is inserted between the two tubes stated in (a). Both sides of this tube have an emittance of 0.06. Find the equilibrium temperature of this radiation shield and reduction of heat gain by the fluid.

(a)

π‘žπ‘œβˆ’π‘– =πœŽοΏ½π‘‡π‘œ4 βˆ’ 𝑇𝑖4οΏ½

1 βˆ’ πœ–π‘–πœ–π‘–π΄π‘–

+ 1π΄π‘–πΉπ‘–π‘œ

+ 1 βˆ’ πœ–π‘œπœ–π‘œπ΄π‘œ

π‘žπ‘œβˆ’π‘– =5.67 Γ— 10βˆ’8(2804 βˆ’ 1004)

1 βˆ’ 0.250.25 Γ— πœ‹ Γ— 0.015 + 1

πœ‹ Γ— 0.015 Γ— 1 + 1 βˆ’ 0.350.35 Γ— πœ‹ Γ— 0.025

π‘žπ‘œβˆ’π‘– =342.84

63.69 + 21.23 + 23.66= πŸ‘.πŸπŸ“ 𝑾/π’Ž

Di = 15 mm Ti = 100 K Ξ΅i = 0.25

Do = 25 mm

Ξ΅o = 0.35

Ds = 20 mm Ξ΅s = 0.06 To = 280 K

Page 12: ME3122E - Tutorial Solution 5

12

(b) Additional resistances due to the radiation shield

1 βˆ’ πœ–π‘ πœ–π‘ π΄π‘ 

+1 βˆ’ πœ–π‘ πœ–π‘ π΄π‘ 

+1

π΄π‘ πΉπ‘ π‘œ

1 βˆ’ 0.06

0.06 Γ— πœ‹ Γ— 0.02+

1 βˆ’ 0.350.06 Γ— πœ‹ Γ— 0.02

+1

πœ‹ Γ— 0.02 Γ— 1= 514.86 π‘šβˆ’1

π‘žπ‘œβˆ’π‘–,𝑛𝑒𝑀 =342.84

63.69 + 21.23 + 23.66 + 514.86= 0.55 π‘Š/π‘š

% Reduction in heat gain = οΏ½3.15βˆ’0.553.15

οΏ½Γ— 100 = πŸ–πŸ. .πŸ“ %

9. An electric air heater consists of a horizontal array of thin metal strips that are each 10 mm long in the direction of an air stream that is in parallel flow over the top of the strips. Each strip is 0.2 m wide, and 25 strips are arranged side by side, forming a continuous and smooth surface over which the air flows at 2 m/s. During operation, each strip is maintained at 500oC and the air is at 25oC. What is the rate of convection heat transfer from the (i) first strip? (ii) The fifth strip? (iii) The tenth strip? and (iv) All the strips? Properties of air at at (500 + 25)/2 oC = 535.5 K: ¡ = 2.849 x 10-5, k = 0.04357 W/m.K Pr = 0.68, ρ = 0.6418 kg/m3

(i) The location of transition is determined from:

π‘₯𝑐 =π‘…π‘’π‘πœ‡πœŒπ‘’βˆž

=5 Γ— 105 Γ— 2.849 Γ— 10βˆ’5

0.6418 Γ— 2= 11.09 π‘š

Since xc >>L=0.25 m, the air flow is laminar over the entire heater. For the first strip,

Page 13: ME3122E - Tutorial Solution 5

13

π‘ž1 = β„Ž1οΏ½οΏ½οΏ½ Γ— (βˆ†πΏ Γ— 𝑀) Γ— (𝑇𝑠 βˆ’ π‘‡βˆž)

β„Ž1οΏ½οΏ½οΏ½ =π‘˜βˆ†πΏ

Γ— 0.664 Γ— 𝑅𝑒0.5 Γ— π‘ƒπ‘Ÿ0.33

β„Ž1οΏ½οΏ½οΏ½ =0.0429

0.01Γ— 0.664 Γ— οΏ½

0.6418 Γ— 0.01 Γ— 22.849 Γ— 10βˆ’5

οΏ½0.5

Γ— 0.680.33 = 53.23 π‘Š/π‘š2.𝐾

π‘ž1 = 53.23 Γ— (0.01 Γ— 0.2) Γ— (500 βˆ’ 25) = πŸ“πŸŽ.πŸ“πŸ”π‘Ύ (ii) The fifth strip, π‘ž5 = π‘ž0βˆ’5 βˆ’ π‘ž0βˆ’4 π‘ž5 = β„ŽοΏ½0βˆ’5(5βˆ†πΏ Γ— 𝑀) Γ— (𝑇𝑠 βˆ’ π‘‡βˆž) βˆ’ β„ŽοΏ½0βˆ’4(4βˆ†πΏ Γ— 𝑀) Γ— (𝑇𝑠 βˆ’ π‘‡βˆž) π‘ž5 = (5β„ŽοΏ½0βˆ’5 βˆ’ 4β„ŽοΏ½0βˆ’4)(βˆ†πΏ Γ— 𝑀) Γ— (𝑇𝑠 βˆ’ π‘‡βˆž)

β„ŽοΏ½0βˆ’5 =0.0429

0.05Γ— 0.664 Γ— οΏ½

0.6418 Γ— 0.05 Γ— 22.849 Γ— 10βˆ’5

οΏ½0.5

Γ— 0.680.33 = 23.80 π‘Š/π‘š2.𝐾

β„ŽοΏ½0βˆ’4 =0.0429

0.04Γ— 0.664 Γ— οΏ½

0.6418 Γ— 0.04 Γ— 22.849 Γ— 10βˆ’5

οΏ½0.5

Γ— 0.680.33 = 26.61 π‘Š/π‘š2.𝐾 π‘ž5 = (5 Γ— 23.80 βˆ’ 4 Γ— 26.61)(0.01 Γ— 0.2) Γ— (500 βˆ’ 25) = 𝟏𝟏.πŸ—πŸ‘ 𝑾 (iii) The tenth strip, π‘ž10 = π‘ž0βˆ’10 βˆ’ π‘ž0βˆ’9 π‘ž10 = β„ŽοΏ½0βˆ’10(10βˆ†πΏ Γ— 𝑀) Γ— (𝑇𝑠 βˆ’ π‘‡βˆž) βˆ’ β„ŽοΏ½0βˆ’9(9βˆ†πΏ Γ— 𝑀) Γ— (𝑇𝑠 βˆ’ π‘‡βˆž) π‘ž5 = (10β„ŽοΏ½0βˆ’5 βˆ’ 9β„ŽοΏ½0βˆ’4)(βˆ†πΏ Γ— 𝑀) Γ— (𝑇𝑠 βˆ’ π‘‡βˆž)

β„ŽοΏ½0βˆ’10 =0.0429

0.1Γ— 0.664 Γ— οΏ½

0.6418 Γ— 0.1 Γ— 22.849 Γ— 10βˆ’5

οΏ½0.5

Γ— 0.680.33 = 16.83 π‘Š/π‘š2.𝐾

β„ŽοΏ½0βˆ’9 =0.0429

0.09Γ— 0.664 Γ— οΏ½

0.6418 Γ— 0.09 Γ— 22.849 Γ— 10βˆ’5

οΏ½0.5

Γ— 0.680.33 = 17.74 π‘Š/π‘š2.𝐾 π‘ž10 = (10 Γ— 16.83 βˆ’ 9 Γ— 17.74)(0.01 Γ— 0.2) Γ— (500 βˆ’ 25) = πŸ–.𝟐𝟎 𝑾 (iii) For the entire heater π‘ž5 = (10β„ŽοΏ½0βˆ’5 βˆ’ 9β„ŽοΏ½0βˆ’4)(βˆ†πΏ Γ— 𝑀) Γ— (𝑇𝑠 βˆ’ π‘‡βˆž)

Page 14: ME3122E - Tutorial Solution 5

14

β„ŽοΏ½0βˆ’25 =0.0429

0.25Γ— 0.664 Γ— οΏ½

0.6418 Γ— 0.25 Γ— 22.849 Γ— 10βˆ’5

οΏ½0.5

Γ— 0.680.33 = 10.64 π‘Š/π‘š2.𝐾 π‘ž1 = β„ŽοΏ½0βˆ’25 Γ— (25βˆ†πΏ Γ— 𝑀) Γ— (𝑇𝑠 βˆ’ π‘‡βˆž) = 10.64 Γ— 25 Γ— 0.01 Γ— 0.2 Γ— (500 βˆ’ 25)

= πŸπŸ“πŸ.πŸ• 𝑾 10. Consider a flat plate subject to parallel flow (top and bottom) characterized by u∞ = 5 m/s, T∞ = 20oC. Determine the average convective heat transfer coefficient, convective heat transfer rate, and drag force associated with an L = 2 m long, w = 2 m wide flat plate for air flow and surface temperatures of Ts = 50oC and 80oC.

Properties of air at (50 + 20)/2 oC = 308 K: Β΅ = 1.846 x 10-5, k = 0.02624 W/m.K, 𝐢𝑝 = 1.0049 π‘˜π½/π‘˜π‘”.𝐾, Pr = 0.707, ρ = 1.177 kg/m3

𝑅𝑒2π‘š =1.177 Γ— 2 Γ— 51.846 Γ— 10βˆ’5

= 6.4 Γ— 105 > 5 Γ— 105 therefore, the flow is turbulent at the end of the plate.

β„ŽοΏ½ =0.02624

2.0Γ— [0.37(6.4 Γ— 105)0.8 βˆ’ 871] Γ— 0.7070.33 = πŸ–.πŸ–πŸ“ 𝑾/π’ŽπŸ.𝑲

π‘žπ‘π‘œπ‘›π‘£ = β„ŽοΏ½π΄(𝑇𝑠 βˆ’ π‘‡βˆž) = 8.85 Γ— 2 Γ— 2 Γ— (50 βˆ’ 20) = πŸπŸŽπŸ”πŸ 𝑾

We have information involving frictional force as follows:

𝑆𝑑� π‘ƒπ‘Ÿ2/3 =𝐢𝑓���2

, 𝐢𝑓��� =𝜏

12πœŒπ‘’

2, 𝜏 =

𝐹2𝐴

, 𝑆𝑑� =β„ŽοΏ½

πœŒπΆπ‘π‘’βˆž

Ts = 50, 80oC

Page 15: ME3122E - Tutorial Solution 5

15

𝑆𝑑� =β„ŽοΏ½

πœŒπΆπ‘π‘’βˆž=

8.851.177 Γ— 1.0049 Γ— 1000 Γ— 5

= 0.0015

𝐢𝑓��� = 2𝑆𝑑� π‘ƒπ‘Ÿ2/3 = 2 Γ— 0.0015 Γ— 0.7070.33 = 0.00238

𝜏 = 𝐢𝑓��� Γ—12πœŒπ‘’2 = 0.00238 Γ— 0.5 Γ— 1.177 Γ— 5 Γ— 5 = 0.035 𝑁/π‘š2

𝐹 = 2𝜏𝐴 = 2 Γ— 0.035 Γ— 2 Γ— 2 = 𝟎.πŸπŸ– 𝑡

Note: Similarly, you can find out the above for the case of surface temperature 80oC 11. Water at 35oC enters a square tube of sides 2 cm with a velocity of 3 cm/s and exit with a temperature of 55oC. The wall of the square tube is maintained at a uniform temperature of 80oC. Neglecting entrance effect, determine the length of the tube required. Properties of water at (55 + 35)/2 oC = 45oC: Β΅ = 594 x 10-6, k = 0.638 W/m.K, 𝐢𝑝 =4.181 π‘˜π½/π‘˜π‘”.𝐾, Pr = 3.89, ρ = 990.19 kg/m3

𝑅𝑒𝐷 =4mΟ€DΞΌ

= 6.4 Γ— 105 > 5 Γ— 105

m = A Γ— u Γ— ρ = 4 Γ— 10βˆ’4 Γ— 3 Γ— 10βˆ’2 Γ— 990.19 = 0.01189 kg/s

D =4AP

=4 Γ— 4 Γ— 10βˆ’4

8 Γ— 10βˆ’2= 2 Γ— 10βˆ’2 m

𝑅𝑒𝐷 =4mΟ€DΞΌ

=4 Γ— 0.01189

Ο€ Γ— 2 Γ— 10βˆ’2 Γ— 594 Γ— 10βˆ’6= 1274

𝑁𝑒���� = 2.976 (𝑡𝒐𝒕𝒆: π’•π’‰π’Šπ’” π’Šπ’π’‡π’π’“π’Žπ’‚π’•π’Šπ’π’ π’˜π’Šπ’π’ 𝒃𝒆 π’‘π’“π’π’—π’Šπ’…π’†π’… )

𝑁𝑒���� =hοΏ½Dk

= 2.976

hοΏ½ =0.638 Γ— 2.976

2 Γ— 10βˆ’2= 94.93 π‘Š/π‘š2.𝐾

Also, from an energy balance, we can write: m𝐢𝑝(βˆ†π‘‡)π‘€π‘Žπ‘‘π‘’π‘Ÿ = hPL(βˆ†π‘‡)𝐿𝑀𝑇𝐷 (1)

Page 16: ME3122E - Tutorial Solution 5

16

(βˆ†π‘‡)𝐿𝑀𝑇𝐷 =(βˆ†π‘‡1 βˆ’ βˆ†π‘‡2)

ln οΏ½βˆ†π‘‡1βˆ†π‘‡2οΏ½

=(45 βˆ’ 25)

ln οΏ½4525οΏ½

= 34.02π‘œC

Therefore from (1), m𝐢𝑝(βˆ†π‘‡)π‘€π‘Žπ‘‘π‘’π‘Ÿ = hοΏ½PL(βˆ†π‘‡)𝐿𝑀𝑇𝐷 0.01189 Γ— 4181 Γ— 20 = 94.93 Γ— 8 Γ— 10βˆ’2 Γ— L Γ— 34.02 Required tube length, L = 3.84 m 12. Steam condensing on the outer surface of a thin walled circular tube of diameter 40 mm and length L = 6 m maintains a uniform outer surface temperature of 100oC. Water flows through a tube at a rate of 0.3 kg/s, and is heated from 25oC to 65oC. Determine the average convection coefficient associated with the water heating. Properties of water at (65 + 25)/2 oC = 45oC: Β΅ = 594 x 10-6, k = 0.638 W/m.K, 𝐢𝑝 =4.181 π‘˜π½/π‘˜π‘”.𝐾, Pr = 3.89, ρ = 990.19 kg/m3

𝑅𝑒𝐷 =4mΟ€DΞΌ

= 6.4 Γ— 105 > 5 Γ— 105

𝑅𝑒𝐷 =4mΟ€DΞΌ

=4 Γ— 0.3

Ο€ Γ— 40 Γ— 10βˆ’3 Γ— 594 Γ— 10βˆ’6= 16,084 > 2300

Therefore, the flow is turbulent, and

80 oC

35 oC

55 oC

Ξ”T1

Ξ”T2

Page 17: ME3122E - Tutorial Solution 5

17

β„ŽοΏ½ =π‘˜π·

0.023𝑅𝑒𝐷0.8π‘ƒπ‘Ÿ0.33

β„ŽοΏ½ =0.638

40 Γ— 10βˆ’3Γ— 0.023 Γ— (16,084)0.8 Γ— (3.89)0.33 = πŸπŸ‘πŸ‘πŸ 𝑾/π’ŽπŸ.𝑲

13. Check the dimensions for Grashof Number and rearrange it to express it as Gr = (Inertia force/Viscous force). (Buoyancy force/Viscous force)

πΊπ‘Ÿπ‘Žπ‘ β„Žπ‘œπ‘“ π‘π‘’π‘šπ‘π‘’π‘Ÿ,πΊπ‘Ÿ =gΞ²Ξ”TL3

Ξ½2

Checking the dimension,

πΊπ‘Ÿ =οΏ½m

s2οΏ½ οΏ½1KοΏ½ (K)(m)3

οΏ½m2

s οΏ½2 = οΏ½

ms2οΏ½ Γ— οΏ½

1KοΏ½ Γ— (K) Γ— (m)3 Γ— οΏ½

s2

m4οΏ½ = 1

πΌπ‘›π‘’π‘Ÿπ‘‘π‘–π‘Ž π‘“π‘œπ‘Ÿπ‘π‘’ = πœŒπ‘’2

π‘‰π‘–π‘ π‘π‘œπ‘’π‘  π‘“π‘œπ‘Ÿπ‘π‘’ = πœ‡π‘‘π‘’π‘‘π‘¦

= πœ‡π‘’πΏ

π΅π‘’π‘œπ‘¦π‘Žπ‘›π‘π‘¦ π‘“π‘œπ‘Ÿπ‘π‘’ = πœŒπ‘”β„Ž = πœŒπ‘”Ξ²Ξ”T𝐿, Ξ² = 1

Ξ”T

πΊπ‘Ÿπ‘Žπ‘ β„Žπ‘œπ‘“ π‘π‘’π‘šπ‘π‘’π‘Ÿ π‘šπ‘œπ‘‘π‘–π‘“π‘–π‘’π‘‘ 𝑒π‘₯π‘π‘Ÿπ‘’π‘ π‘ π‘–π‘œπ‘›,πΊπ‘Ÿ =gΞ²Ξ”TL3

οΏ½πœ‡ΟοΏ½2 =

gΞ²Ξ”TL3ρ2u2

πœ‡2u2

πΊπ‘Ÿ =gΞ²Ξ”TL3ρ2

πœ‡2=

(ρgΞ²Ξ”TL). (ρu2)

οΏ½πœ‡ 𝑒𝐿� . οΏ½πœ‡ 𝑒𝐿�

Therefore, Gr = (Inertia force/Viscous force). (Buoyancy force/Viscous force) 14. A vertical plate is maintained at 40oC in 20oC still air. Determine (a) The height at which the boundary layer will turn turbulent if turbulence set in at GrPr = 109

(b) The value of boundary layer thickness (c) The value of average convection coefficient

Page 18: ME3122E - Tutorial Solution 5

18

(a) The height at which the boundary layer will turn turbulent if turbulence set in at GrPr = 109

Properties of air at (40 + 20)/2 oC = 303K: ¡ = 1.846 x 10-5, k = 0.02624 W/m.K Pr = 0.707, ρ = 1.177 kg/m3

πΊπ‘Ÿ =gΞ²Ξ”TL3ρ2

πœ‡2, Ξ² =

1303

= 0.0033 Kβˆ’1

πΊπ‘Ÿπ‘ƒπ‘Ÿ =gΞ²Ξ”TL3ρ2Pr

πœ‡2= 109

L = οΏ½109πœ‡2

gΞ²Ξ”Tρ2PrοΏ½1/3

= οΏ½109 Γ— (1.846 Γ— 10βˆ’5)2

9.81 Γ— 0.0033 Γ— 20 Γ— 1.1772 Γ— 0.707οΏ½1/3

= 𝟎.πŸ–πŸπŸ’ π’Ž

(b) For laminar boundary layer for natural convection heat transfer,

𝛿π‘₯

= 3.93Prβˆ’1/2(0.952 + Pr)1/4Grxβˆ’1/4

πΊπ‘Ÿπ‘₯ =gΞ²Ξ”TL3ρ2

πœ‡2=

9.81 Γ— 0.0033 Γ— 20 Γ— 0.8143 Γ— 1.1772

(1.846 Γ— 10βˆ’5)2 = 1.42 Γ— 109

𝛿 = 3.93LPrβˆ’1/2(0.952 + Pr)1/4Grxβˆ’1/4

𝛿 = 3.93 Γ— 0.814 Γ— 0.707βˆ’12 Γ— (0.952 + 0.707)

14 Γ— (1.42 Γ— 109)βˆ’

14 = 0.0222 m

= 𝟐𝟐.𝟐 𝐦𝐦

(c) Average convection coefficient, β„Ž οΏ½ = 4

3β„Žπ‘₯

𝑁𝑒π‘₯ =β„Žπ‘₯πΏπ‘˜

= 0.508Pr1/2(0.952 + Pr)βˆ’1/4Grx1/4

∴ β„Žπ‘₯ =π‘˜πΏ

0.508Pr1/2(0.952 + Pr)βˆ’1/4Grx1/4

∴ β„Žπ‘₯ =0.02624

0.814Γ— 0.508 Γ— 0.707

12(0.952 + 0.707)βˆ’

14 Γ— (1.42 Γ— 109)

14

= 2.36 π‘Š/π‘š2.𝐾

Page 19: ME3122E - Tutorial Solution 5

19

β„ŽοΏ½ =43

Γ— 2.36 = πŸ‘.πŸπŸ’ 𝑾/π’ŽπŸ.𝑲 15. A vertical plate 4 m high and 1 m wide is maintained at 60oC in still air at 0oC. Determine the value of average convection coefficient and heat transfer rate from the vertical plate. Properties of air at (60 + 0)/2 oC = 303 K: Β΅ = 1.846 x 10-5, k = 0.02624 W/m.K Pr = 0.707, ρ = 1.177 kg/m3

πΊπ‘Ÿπ‘ƒπ‘Ÿ =gΞ²Ξ”TL3ρ2Pr

πœ‡2

πΊπ‘Ÿπ‘ƒπ‘Ÿ =9.81 Γ— 0.0033 Γ— 60 Γ— 43 Γ— 1.1772 Γ— 0.707

(1.846 Γ— 10βˆ’5)2 = 3.57 Γ— 1011

𝑁𝑒����𝑓 =β„ŽοΏ½π‘“πΏπ‘˜

= 0.021(πΊπ‘Ÿπ‘ƒπ‘Ÿ)0.4

β„ŽοΏ½π‘“ =0.02624

4Γ— 0.021 Γ— (3.57 Γ— 1011)0.4 = πŸ“.πŸ•πŸ” 𝑾/π’ŽπŸ.𝑲

π‘ž = β„ŽοΏ½π‘“π΄(𝑇𝑠 βˆ’ π‘‡βˆž) = 5.76 Γ— 4 Γ— 1 Γ— (60 βˆ’ 0) = πŸπŸ‘πŸ–πŸ.πŸ’ 𝑾 16. The condenser of a large steam power plant contains 1000 brass tubes (k = 110 W/m.K). The tubes are of thin wall construction with D = 25 mm and steam condenses on their outer surface with an associated convection coefficient of 10,000 W/m2.K. (a) If the cooling water from a large lake is pumped through the condenser tubes at 400 kg/s, what is the overall heat transfer coefficient? Properties of the water may be assumed as ΞΌ = 960 x 10-6 kg/m.s, k = 0.60 W/m.K and Pr = 6.6. (b) If water is extracted from the lake at 23oC and 10 kg/s of steam at 0.5 bars are to be condensed, what is the corresponding temperature of the water leaving the condenser? The specific heat of the water is 4180 J/kg.K (a) Outside heat transfer coefficient, ho = 10,000 W/m2.K

1π‘ˆ

=1β„Žπ‘–

+1β„Žπ‘œ

Page 20: ME3122E - Tutorial Solution 5

20

𝑅𝑒𝐷 =4 Γ— mΟ€DΞΌ

=4 Γ— (400/1000)

Ο€ Γ— 0.025 Γ— 960 Γ— 10βˆ’6= 21,231 > 2300

Therefore, the flow is turbulent.

β„Žπ‘– =0.60

0.025Γ— 0.023 Γ— (21,231)0.8 Γ— (6.6)0.33 = 2978 π‘Š/π‘š2.𝐾

1π‘ˆ

=1β„Žπ‘–

+1β„Žπ‘œ

=1

2978+

110,000

= 0.0004358 π‘š2.𝐾/π‘Š

∴ π‘ˆ = πŸπŸπŸ—πŸ“ 𝑾/π’ŽπŸ.𝑲 (b) From the steam table, for 0.5 bar, hfg = 2305 kJ/kg = 2305 x 103 J/kg Energy balance in the heat exchanger gives,

οΏ½mtotal πΆπ‘βˆ†π‘‡οΏ½water = msteam Γ— hfg

[400 Γ— 4180 Γ— (π‘‡π‘œπ‘’π‘‘ βˆ’ 23)]water = 10 Γ— 2305 Γ— 103

π‘‡π‘œπ‘’π‘‘ = πŸ‘πŸ•π’π‚ 17. Exhaust gas from a furnace is used to preheat the combustion air supplied to the furnace burners. The gas which has a flow rate of 15 kg/s and an inlet temperature of 820 oC, passes through a bundle of tubes, while the air, which has a flow rate of 10 kg/s and an inlet temperature of 27oC is in cross flow over the tubes. The tubes are unfinned, and the overall heat transfer coefficient is 100 W/m2.K. Determine the total tube surface area required to achieve an air outlet temperature of 577oC. The exhaust gas and the air may each be assumed to have a specific heat of 1075 J/kg.K. Using usual notations and πœ– βˆ’ π‘π‘‡π‘ˆ π‘šπ‘’π‘‘β„Žπ‘œπ‘‘:

𝐢𝑐 = π‘šπ‘π‘π‘,𝑐 = 10 Γ— 1.075 = 10.75 = πΆπ‘šπ‘–π‘›

πΆβ„Ž = π‘šβ„Žπ‘π‘,β„Ž = 15 Γ— 1.075 = 16.13 == πΆπ‘šπ‘Žπ‘₯

Page 21: ME3122E - Tutorial Solution 5

21

πΆπ‘šπ‘–π‘›πΆπ‘šπ‘Žπ‘₯

=10.7516.13

= 0.666

πœ– =𝑇𝑐,π‘œ βˆ’ 𝑇𝑐,𝑖

π‘‡β„Ž,𝑖 βˆ’ 𝑇𝑐,𝑖=

577 βˆ’ 27820 βˆ’ 27

= 0.694

Using πœ– βˆ’ π‘π‘‡π‘ˆ chart for one fluid mixed and the other unmixed,

π‘π‘‡π‘ˆ = 2.3 = π‘ˆπ΄πΆπ‘šπ‘–π‘›

𝐴 =2.3 Γ— 10.75 Γ— 1000

100= πŸπŸ’πŸ•.πŸπŸ“ π’ŽπŸ


Recommended