+ All Categories
Home > Documents > me_598_-_lecture_19_-_epi_growth_techniques.20110415.4da845fa8362c5.71732161

me_598_-_lecture_19_-_epi_growth_techniques.20110415.4da845fa8362c5.71732161

Date post: 03-Apr-2018
Category:
Upload: yasir-ali
View: 219 times
Download: 0 times
Share this document with a friend

of 20

Transcript
  • 7/28/2019 me_598_-_lecture_19_-_epi_growth_techniques.20110415.4da845fa8362c5.71732161

    1/20

    Epitaxial GrowthTechniques

    598XL

  • 7/28/2019 me_598_-_lecture_19_-_epi_growth_techniques.20110415.4da845fa8362c5.71732161

    2/20

    Crystal Growth

    Advancement in crystal growth techniques is one of the majorfactors responsible for semiconductor technology momentum today. LEDs Lasers Detectors

    Solar Cells HBT, HEMT, .

    Thermodynamics Chemical reactions Phase diagrams

    Figure of merit: material quality, uniformity and controllability Thickness Composition Interface Doping

    Defects

  • 7/28/2019 me_598_-_lecture_19_-_epi_growth_techniques.20110415.4da845fa8362c5.71732161

    3/20

    Deposition Techniques

    Epitaxial growth techniques: epi definition LPE HVPE MOCVD MBE

    Deposition of dielectric films or polycrystalsemiconductors

    PECVD Evaporation Sputtering

    ALD

  • 7/28/2019 me_598_-_lecture_19_-_epi_growth_techniques.20110415.4da845fa8362c5.71732161

    4/20

    Hot HCl (g) + Ga (l) ------> GaCl (g)

    GaCl (g) + NH3 (g) -------> GaN (s) + HCl (g) + H2 (g)

    Hydride gaseous sourceMetal liquid atomic source

    Fast growth rate (> 100 um/h)Surface defects for non-nitride materials Oxford Instruments

  • 7/28/2019 me_598_-_lecture_19_-_epi_growth_techniques.20110415.4da845fa8362c5.71732161

    5/20

    MBE Inventor:

    Bell Lab, Alfred Cho

    UHV : 10-11 torr

    Not thermodynamic equilibriumcondition Governed by the kinetics of the

    surface process

    Solid atomic source effusioncell-controlled vapor pressure

    Shutters Substrate-heated GSMBE and MOMBE (CBE) Slower growth rate

    Better thickness andheterojunction control

    Lower growth temperature High cost

  • 7/28/2019 me_598_-_lecture_19_-_epi_growth_techniques.20110415.4da845fa8362c5.71732161

    6/20

    RHEED 5- 50 keV

    Glancing angleincidence

    Surface sensitive

    ML

    Rice U.

    UHV

    in situ monitoring

  • 7/28/2019 me_598_-_lecture_19_-_epi_growth_techniques.20110415.4da845fa8362c5.71732161

    7/20

    MOCVD Nomenclature

    MOCVD OMVPE MOVPE OMCVD AP-MOCVD LP-MOCVD

    Most widely used epitaxial technique at commercial scale Major components:

    Gas handling system Reactor chamber Heating system Exhaust system

  • 7/28/2019 me_598_-_lecture_19_-_epi_growth_techniques.20110415.4da845fa8362c5.71732161

    8/20

    Vacuum and

    Exhaust

    system

    Gas handle

    system

    ComputerControl

    Reactor

    MOCVD Growth System

  • 7/28/2019 me_598_-_lecture_19_-_epi_growth_techniques.20110415.4da845fa8362c5.71732161

    9/20

    A MOVD growth system

  • 7/28/2019 me_598_-_lecture_19_-_epi_growth_techniques.20110415.4da845fa8362c5.71732161

    10/20

    Gas Handling System

    Sources: Metalorganics (MO) or alkyls: TMGa, TEGa, TMAl, TMIn, DMZn, etc. Bubbler Partial pressure of the MO in the bubbler:

    Log[p(torr)]=B-A/T

    Hydride: AsH3, PH3, NH3, Si2H6 Cylinder Gas cabinet

    Carrier gas: H2 or N2 H2 purifier Valves, MFCs, tubes, pumps etc. Purity, cleanness, leak-tight

  • 7/28/2019 me_598_-_lecture_19_-_epi_growth_techniques.20110415.4da845fa8362c5.71732161

    11/20

    MOCVD Gas Handling System

    Aixtro

  • 7/28/2019 me_598_-_lecture_19_-_epi_growth_techniques.20110415.4da845fa8362c5.71732161

    12/20

    MOCVD: gas handling system

  • 7/28/2019 me_598_-_lecture_19_-_epi_growth_techniques.20110415.4da845fa8362c5.71732161

    13/20

    Metalorganic (MO) Compound

    Vapor pressure: Determines the concentration of source

    material in the reactor and the deposition rate. Too low: difficult to transport the source into

    the deposition zone and to achieve reasonable

    growth rates.

    Too high: may raise safety concerns

    Liquid vs solid MO sources: easier to control

    the delivery from a liquid than from a solid.

    Log[p(torr)]=B-A/T

  • 7/28/2019 me_598_-_lecture_19_-_epi_growth_techniques.20110415.4da845fa8362c5.71732161

    14/20

    Vapor pressure of most common MO compounds

    Compound P at 298 K

    (torr)

    A B Melt point

    (oC)

    (Al(CH3)3)2

    TMAl 14.2 2780 10.48 15

    Al(C2H

    5)3

    TEAl 0.041 3625 10.78 -52.5

    Ga(CH3)3

    TMGa 238 1825 8.50 -15.8

    Ga(C2H5)3 TEGa 4.79 2530 9.19 -82.5

    In(CH3)3

    TMIn 1.75 2830 9.74 88

    In(C2H

    5)3

    TEIn 0.31 2815 8.94 -32

    Zn(C2H

    5)2

    DEZn 8.53 2190 8.28 -28

    Mg(C5H

    5)2

    Cp2Mg 0.05 3556 10.56 175

    Log[p(torr)]=B-A/T

  • 7/28/2019 me_598_-_lecture_19_-_epi_growth_techniques.20110415.4da845fa8362c5.71732161

    15/20

    The mole flow rate of MO sources andAlloy Composition

    The flow rate:

    F (mol/min)=p MO/p Bubbler*[flow rate (ml/min)]/22400(mol/ml)

    Alloys composition:

    e.g the Al% in AlxGa1-xAs can be estimated byx Al=FAl/(FAl+ F Ga)

    IF the pyrolysis and incorporation efficiencies of

    Al and Ga sources are the same.

    Gas phase ratio vs solid phase ratio needs to be calibrated!

  • 7/28/2019 me_598_-_lecture_19_-_epi_growth_techniques.20110415.4da845fa8362c5.71732161

    16/20

    Example: MOCVD growth of GaN and related materials

  • 7/28/2019 me_598_-_lecture_19_-_epi_growth_techniques.20110415.4da845fa8362c5.71732161

    17/20

    Example: MOCVD growth of GaN and related materials

    Georgia Tech

  • 7/28/2019 me_598_-_lecture_19_-_epi_growth_techniques.20110415.4da845fa8362c5.71732161

    18/20

    In situ Monitoring in MOCVD

  • 7/28/2019 me_598_-_lecture_19_-_epi_growth_techniques.20110415.4da845fa8362c5.71732161

    19/20

    Control Parameters Temperature

    Pressure Growth rate

    V/III ratio

    Doping

    Growth pulse

    Substrate orientation Desorption condition

    Black box?

  • 7/28/2019 me_598_-_lecture_19_-_epi_growth_techniques.20110415.4da845fa8362c5.71732161

    20/20

    Comparison of Epitaxial

    Techniques

    Growth method time features limit

    LPE

    (Liquid phaseepitaxy)

    1963 Growth from

    supersaturatedsolution onto substrate

    Limited substrate areas

    and poor control over thegrowth of very thin

    layers

    HVPE

    (Hydride vapor

    phase epitaxy

    1958 Use metal halide as

    transport agents to

    grow

    No Al contained

    compound,

    thick layer

    MBE

    (Molecular Beam

    Epitaxy)

    1958

    1967

    Deposit epilayer at

    ultrahigh vacuum

    Slow and Hard to grow

    materials with high

    vapor pressure

    MOCVD

    (Metal-Organic

    Chemical Vapor

    Deposition)

    1968 Use metalorganic

    compounds as the

    sources

    Some of the sources like

    AsH3 are very toxic.