+ All Categories
Home > Documents > Measurement of the inelastic cross section in proton-lead ... · CMS-FSQ-13-006 Measurement of the...

Measurement of the inelastic cross section in proton-lead ... · CMS-FSQ-13-006 Measurement of the...

Date post: 25-Aug-2020
Category:
Upload: others
View: 3 times
Download: 0 times
Share this document with a friend
30
EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH (CERN) CERN-PH-EP/2015-210 2015/09/13 CMS-FSQ-13-006 Measurement of the inelastic cross section in proton-lead collisions at s NN = 5.02 TeV The CMS Collaboration * Abstract The inelastic hadronic cross section in proton-lead collisions at a centre-of-mass en- ergy per nucleon pair of 5.02TeV is measured with the CMS detector at the LHC. The data sample, corresponding to an integrated luminosity of L = 12.6 ± 0.4 nb -1 , has been collected with an unbiased trigger for inclusive particle production. The cross section is obtained from the measured number of proton-lead collisions with hadronic activity produced in the pseudorapidity ranges 3 < η < 5 and/or -5 < η < -3, corrected for photon-induced contributions, experimental accep- tance, and other instrumental effects. The inelastic cross section is measured to be σ inel (pPb)= 2061 ± 3 (stat) ± 34 (syst) ± 72 (lumi) mb. Various Monte Carlo genera- tors, commonly used in heavy ion and cosmic ray physics, are found to reproduce the data within uncertainties. The value of σ inel (pPb) is compatible with that expected from the proton-proton cross section at 5.02TeV scaled up within a simple Glauber approach to account for multiple scatterings in the lead nucleus, indicating that fur- ther net nuclear corrections are small. Submitted to Physics Letters B c 2015 CERN for the benefit of the CMS Collaboration. CC-BY-3.0 license * See Appendix A for the list of collaboration members arXiv:submit/1350852 [hep-ex] 13 Sep 2015
Transcript
Page 1: Measurement of the inelastic cross section in proton-lead ... · CMS-FSQ-13-006 Measurement of the inelastic cross section in proton-lead collisions at p s NN = 5.02TeV The CMS Collaboration

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH (CERN)

CERN-PH-EP/2015-2102015/09/13

CMS-FSQ-13-006

Measurement of the inelastic cross section in proton-leadcollisions at √sNN = 5.02 TeV

The CMS Collaboration∗

Abstract

The inelastic hadronic cross section in proton-lead collisions at a centre-of-mass en-ergy per nucleon pair of 5.02 TeV is measured with the CMS detector at the LHC.The data sample, corresponding to an integrated luminosity of L = 12.6± 0.4 nb−1,has been collected with an unbiased trigger for inclusive particle production. Thecross section is obtained from the measured number of proton-lead collisions withhadronic activity produced in the pseudorapidity ranges 3 < η < 5 and/or−5 < η < −3, corrected for photon-induced contributions, experimental accep-tance, and other instrumental effects. The inelastic cross section is measured to beσinel(pPb) = 2061± 3 (stat)± 34 (syst)± 72 (lumi) mb. Various Monte Carlo genera-tors, commonly used in heavy ion and cosmic ray physics, are found to reproduce thedata within uncertainties. The value of σinel(pPb) is compatible with that expectedfrom the proton-proton cross section at 5.02 TeV scaled up within a simple Glauberapproach to account for multiple scatterings in the lead nucleus, indicating that fur-ther net nuclear corrections are small.

Submitted to Physics Letters B

c© 2015 CERN for the benefit of the CMS Collaboration. CC-BY-3.0 license

∗See Appendix A for the list of collaboration members

arX

iv:s

ubm

it/13

5085

2 [

hep-

ex]

13

Sep

2015

Page 2: Measurement of the inelastic cross section in proton-lead ... · CMS-FSQ-13-006 Measurement of the inelastic cross section in proton-lead collisions at p s NN = 5.02TeV The CMS Collaboration
Page 3: Measurement of the inelastic cross section in proton-lead ... · CMS-FSQ-13-006 Measurement of the inelastic cross section in proton-lead collisions at p s NN = 5.02TeV The CMS Collaboration

1

1 IntroductionThe measurement of the inelastic cross section in proton-lead collisions, σinel(pPb), at a centre-of-mass energy per nucleon pair of 5.02 TeV performed by the CMS experiment at the CERNLHC is presented. The inelastic cross section (also called “particle-production” [1] or “absorp-tion” [2] cross section in previous studies) is defined to include all hadronic events, includingcontributions from diffractive processes, except those from the quasi-elastic excitation of thelead nucleus—estimated to amount to about 100 mb for the pPb system [3]. Inelastic electro-magnetic (photon-induced) collisions are also excluded from the measurement.

While being one of the most inclusive observables in hadronic collisions, the inclusive inelasticcross section is one of the least theoretically accessible quantities, as it cannot be determinedfrom first-principles calculations of the theory of the strong interaction, quantum chromody-namics. In proton-proton (pp) and nucleus-nucleus collisions at the LHC, particles producedin hadronic interactions come mostly from the hadronisation of quarks and gluons, either pro-duced in semi-hard scatterings (“minijets”) [4] or emitted at very forward rapidities from ”spec-tator” partons, as well as from soft diffractive processes in ”peripheral” interactions. From themeasured inelastic proton-proton (or nucleon-nucleon) cross section at a given collision en-ergy, one can theoretically derive the corresponding proton-nucleus and nucleus-nucleus crosssections by means of Glauber [5, 6] or Gribov–Regge [7] multiple-scattering approaches thattake into account the known transverse matter profile of nuclei. Key quantities for the exper-imental comparison between nucleus-nucleus and pp collisions—such as the nuclear overlapfunction, the number of nucleon-nucleon collisions and of participant nucleons [8, 9]—are alsocommonly computed through such approaches. Validating the Glauber and Gribov-Regge pre-dictions with proton-nucleus collisions at LHC energies has important implications beyondcollider physics. Such approaches constitute crucial ingredients in the Monte Carlo modellingof cosmic ray air showers at the highest energies [10], for which the inelastic cross sectionsmeasured in the laboratory must be extrapolated over a wide energy range. In fact, the inelas-tic proton-air (mostly proton-nitrogen and proton-oxygen) cross section introduces one of thelargest uncertainties for air shower simulations [11, 12].

The Glauber multiple-collision model, based on the eikonal limit (i.e. straight-line trajectoriesof the colliding nucleons), is the simplest and most economical approach often used to deriveinclusive proton-nucleus quantities from the pp cross sections and, vice versa, to obtain ppcross sections from the cosmic ray measurements [13]. However, some of the approximationsapplied in the model—foremost the absence of short-range nucleon correlations [14] and ofinelastic screening [15]—impact the computed cross section values. This is observed for fixed-target proton-carbon data [16–20] and estimated for collider [21, 22] as well as ultra-high cosmicray [13] energies, where corrections to the proton-air cross section of the order of 10% have beenobtained. Short-range correlations increase the number of nucleon-nucleon collisions at smallimpact parameters yielding a larger nucleus-nucleus cross section. On the other hand, screen-ing affects the number of nucleons that are diffractively excited in the multiple collisions butrevert back to their ground state before the scattering process is completed, thereby reducingthe nuclear cross section. Different implementations of such effects exist in the current hadronicinteraction models [15, 23–29]. A measurement of σinel in pPb collisions at the LHC can test ifthe precision of the standard Glauber calculation is sufficient, and at which energies correctionsto the Glauber approach may become relevant.

Page 4: Measurement of the inelastic cross section in proton-lead ... · CMS-FSQ-13-006 Measurement of the inelastic cross section in proton-lead collisions at p s NN = 5.02TeV The CMS Collaboration

2 3 Event selection and analysis

2 Experimental setup and Monte Carlo simulationsThe measurement presented here is based on pPb data taken with the CMS experiment at theLHC at the beginning of 2013. A detailed description of the apparatus can be found in [30]. Themain detector used in this analysis is the hadron forward (HF) calorimeter that covers the pseu-dorapidity interval 3 < |η| < 5. The calorimeter is composed of quartz fibres in a steel matrixwith a 0.175×0.175 segmentation in the azimuthal angle φ (in radians) and pseudorapidity η.The quartz fibres pick up the Cherenkov light produced by the charged component of showers.This light is then measured by photodetector tubes. The hadronic and electromagnetic signalsof each segment, as derived from fibres of two different lengths, are combined to form a towersignal.

The data used in this analysis comprise an integrated luminosity of L = 12.6± 0.4 nb−1. Thisdataset combines the integrated luminosities of the two possible directions of the proton andlead beams: 5.0± 0.2 nb−1 and 7.6± 0.3 nb−1, for the proton beam going respectively in theclockwise (negative η) and anticlockwise (positive η) direction. The events are collected usingan unbiased trigger, only requiring the presence of both beams in the interaction point, asdetermined by the “Beam Pickup Timing for the eXperiments” (BPTX) devices. Detector noiseis studied with events that are randomly read out in the absence of both beams in the detector.The integrated luminosity is determined with a van der Meer scan [31] for both beam directionsindependently, with an uncertainty of 3.5% [32].

A Monte Carlo event simulation based on a GEANT4 detector description [33] is used to modelthe experimental response and derive the reconstruction efficiencies. Different event genera-tors are used to simulate hadronic proton-nucleus collisions. Three models are based on theGribov-Regge formalism: DPMJET 3.06 [34], EPOS-LHC [25], and QGSJETII–04 [26]; and a fourthone is based on a minijet+Glauber approach: HIJING 1.383 [35]. In addition, particle productionfrom electromagnetic interactions in “ultraperipheral” collisions, at impact parameters largerthan the sum of proton and lead radii, needs to be taken into account [36]. Given the large Pbion charge, and the associated large ”equivalent photon flux” of its electromagnetic field [36],inelastic photon-proton (γp) collisions result in a non-negligible particle production contri-bution. Pure photon-photon interactions, mostly producing exclusive electron-positron pairs,and photon-nucleus interactions (where the photon emitted from the proton collides with thePb ion) have orders-of-magnitude smaller visible cross sections and are neglected. Photon-proton processes are generated with the STARLIGHT programme [37] combined either withDPMJET 3.05 or PYTHIA 6.4.26 [38].

3 Event selection and analysisIn this analysis three types of cross sections are measured: (i) σobs after removal of noiseand pileup, (ii) σvis after further removal of electromagnetic contributions and translation intoa hadron-level quantity, and (iii) σinel including the final extrapolation to the total inelastichadronic cross section. Two different approaches are used to determine the number of inelasticevents: (1) a single-arm event selection that requires a calorimetric energy signal above a giventhreshold in the HF detector either at positive or negative pseudorapidities, and (2) a double-arm event selection that requires a signal above threshold in both HF detectors. The advantageof using these two event selections is to exploit very different sensitivities to diffractive andγp events as well as to detector noise. Denoting by EHF+ (EHF-) the highest energy measuredin an HF tower at positive (negative) pseudorapidity, an event is tagged as a candidate for an

Page 5: Measurement of the inelastic cross section in proton-lead ... · CMS-FSQ-13-006 Measurement of the inelastic cross section in proton-lead collisions at p s NN = 5.02TeV The CMS Collaboration

3

inelastic collision if it has a value of

EHF =

{max(EHF+, EHF-) for single-arm selectionmin(EHF+, EHF-) for double-arm selection

(1)

above a given threshold.

[GeV]HFE1 10 210

Eve

nts

(nor

mal

ised

)

-610

-510

-410

-310

-210

-110

1

10

210 DataHIJING1.383EPOS-LHCQGSJETII-04DPMJET3.06p (STARLIGHT+DPMJET/PYTHIA)γ

Noise

CMS = 5.02 TeVNNspPb,

Single-arm selection

[GeV]HFE1 10 210

Eve

nts

(nor

mal

ised

)

-610

-510

-410

-310

-210

-110

1

10

210 DataHIJING1.383EPOS-LHCQGSJETII-04DPMJET3.06p (STARLIGHT+DPMJET/PYTHIA)γ

Noise

CMS = 5.02 TeVNNspPb,

Double-arm selection

Figure 1: Distribution of the energy deposited in the HF calorimeter (EHF) for the single-arm(left) and double-arm (right) event selections, for a data sample corresponding to 1.31 nb−1

recorded with an unbiased trigger. The contribution from noise is obtained from a random trig-ger normalised to the same number of triggers as that in the collision data. The average num-ber of γp processes simulated with STARLIGHT+DPMJET and STARLIGHT+PYTHIA is treated asbackground and stacked on top. Four hadronic interaction models (EPOS, DPMJET, HIJING, andQGSJETII) are overlaid and normalised to the number of data events with EHF > 10 GeV, wherethe contribution from the background is small. The vertical line represents the threshold energyof 8 GeV (4 GeV) for the single-arm (double-arm) selection used in this analysis.

The observed distribution of EHF is well reproduced by the combined hadronic inelastic, photon-proton, and detector noise contributions as shown in the left (right) panel of Fig. 1 for the single-arm (double-arm) selection. The size of the various contributions to the HF energy depositionis determined from data and simulations. The signal is identified as that coming from hadroniccollisions whereas the backgrounds arise from electromagnetic (em) photon-proton interac-tions and detector noise. The expected number of γp collisions is Nem = femσemL, where femis the fraction of simulated photon-proton events passing the selection and σem is the predictedSTARLIGHT cross section. The number of misidentified events produced by electronic noise inthe detector is Nnoise = N fnoise, where fnoise is the fraction of events read out randomly in theabsence of beams that pass the selection criteria, and N is the number of events recorded withthe unbiased trigger. The estimate of Nnoise includes Nobs+noise = Nobs fnoise events that containalso an observed inelastic collision, where Nobs is the number of observed inelastic events. Thedouble-counted events are explicitly subtracted from Nnoise. The uncertainty on Nnoise is de-rived from variations in different data-taking periods. The background induced by beam-gascollisions is found to be negligible deduced from the fraction of events selected with the triggerindicating the presence of a single beam in the interaction point.

Of the number of inelastic hadronic collisions, Ninel, the ones that are observed by the de-tector and pass the event selection are defined as Nhad. The purity of the event selection is

Page 6: Measurement of the inelastic cross section in proton-lead ... · CMS-FSQ-13-006 Measurement of the inelastic cross section in proton-lead collisions at p s NN = 5.02TeV The CMS Collaboration

4 3 Event selection and analysis

Nhad/ (Nhad + Nem + Nnoise), and the acceptance is given by the ratio εacc = Nhad/Ninel. Boththe purity and the acceptance depend on the energy threshold used for the selection. Higherpurity is achieved for the double-arm selection, since photon-proton interactions lead to a typ-ical final state where most of the secondary products are asymmetrically emitted towards thedirection of the proton beam. Noise events are also suppressed by the coincidence requirement.The acceptance is in general smaller for the double-arm selection due to the smaller chance ofselecting diffractive events characterised by large rapidity gaps devoid of activity in one orboth HF sides.

The dependence of εacc on the HF tower energy threshold is shown in Fig. 2. For the single-armselection the working point is chosen to be EHF > 8 GeV, which is simultaneously optimisedfor 93–94% acceptance and purity. The double-arm selection uses EHF > 4 GeV yielding a99% purity and 91% acceptance. The value εacc for a specific EHF threshold is determined by

Purity0.9 1

acc

∈A

ccep

tanc

e

0.9

1

CMS = 5.02 TeVNNspPb,

Single-arm selection

Double-arm selection

8 GeV6 GeV

10 GeV

4 GeV3 GeV

5 GeV

Figure 2: Acceptance versus purity of the two event selections, as derived from the EPOS andQGSJETII generators. The symbols indicate different values of the EHF thresholds. The chosenthresholds are marked with squares.

averaging over the results of the EPOS and QGSJETII models. The results of HIJING and DPMJET,which do not include nuclear effects for diffraction, are not considered for this purpose.

The uncertainties on the εacc and Nem values are estimated from the maximum absolute differ-ences obtained from the results of different event generators, averaged over a wide EHF inter-val between 2 and 10 GeV. The uncertainties on εacc are 0.05 (0.014) and of Nem/L are 11 mb(0.05 mb) for the single-arm (double-arm) event selections.

In this analysis no vertex reconstruction is performed and the impact of contributions from ad-ditional pileup (PU) collisions recorded in any given event is consistently evaluated with theHF detector. The number of simultaneous collisions is Poisson-distributed with an expectationvalue corresponding to the interaction probability λ. If one collision is selected with probabil-ity εacc, then i simultaneous collisions are selected with probability Pi ≈ 1− (1− εacc)i. The

Page 7: Measurement of the inelastic cross section in proton-lead ... · CMS-FSQ-13-006 Measurement of the inelastic cross section in proton-lead collisions at p s NN = 5.02TeV The CMS Collaboration

5

number of collisions is thus corrected using the factor fPU = εaccλ/∞∑

i=1Pi Poisson(i; λ). The in-

teraction probability λ is calculated recursively from the ratio of the number of inelastic eventsto the number of unbiased triggers. The pileup correction increases the measured cross sectionby 2% for both event selections, and introduces an uncertainty on the final pPb cross sectionthat is smaller than 0.1%.

To facilitate the direct comparison of the results to model predictions, detector level quanti-ties, such as EHF, are translated to hadron-level quantities. For this purpose, pHF is definedequivalently to Eq. (1) but replacing EHF by the largest absolute value among the momenta, |~p|,of all generated final-state particles (with lifetimes above 1 cm/c), within the pseudorapidityintervals of the HF calorimeters (3 < |η| < 5), excluding muons and neutrinos. A correctionfactor cvis, obtained from simulations, is used to translate the measured cross section into ahadron-level quantity, defined by the ratio of the number of visible events, which fulfil a givenrequirement on pHF, to the number of observed events, which pass the selection on EHF. Thus,cvis is larger than unity for requiring pHF > 0, but will approach zero for very high thresholds.The threshold can be chosen freely, and for the present analysis the requirement on the minimalvalue of pHF is chosen such that the fractions of events passing this selection and passing thaton EHF are equal. The factor cvis then becomes equal to unity and has no numerical effect on thecentral value of the derived cross section. This procedure leads to the choice of selecting eventsthat fulfil the requirement pHF > 21.3 GeV/c (11.3 GeV/c) for the single-arm (double-arm) anal-ysis. For the chosen thresholds, the mean of the cvis values of all four hadronic interactionmodels is unity and the slight dependence on models is taken into account as a systematicuncertainty on cvis equal to the standard deviation of the four values.

The values of the acceptance, backgrounds, and correction factors are summarised in Table 1.

Table 1: Central values and uncertainties for the two event selections for noise cross sectioncontribution (Nnoise/L) and the fraction of noise events ( fnoise) as derived from data. Addition-ally, the quantities acceptance (εacc), electromagnetic cross section contribution (Nem/L), andhadron-level correction factor (cvis) as derived from simulations are listed.

Selection Nnoise/L [mb] fnoise εacc Nem/L [mb] cvisSingle-arm 102± 25 (2.0± 0.5)× 10−3 0.939± 0.005 63± 11 1.000± 0.004Double-arm 9± 3 (1.8± 0.8)× 10−4 0.910± 0.014 0.33± 0.05 1.000± 0.002

The number of observed inelastic events, Nobs, is derived from the number of events passingthe event selection, Nsel, and is corrected for noise (Nnoise) double counting (Nobs+noise), andpileup ( fPU) corrections. Dividing this number by the integrated luminosity yields the observedcross section:

σobs =Nobs

L = (Nsel − Nnoise + Nobs+noise)fPU

L . (2)

Using the relation Nobs+noise = Nobs fnoise one obtains

σobs =1L

Nsel − Nnoise

1/ fPU − fnoise. (3)

The visible cross section for hadronic collisions is derived by subtracting the photon-protoncontamination and applying the correction factor cvis. Its numerical value is, by definition,equal to the part of the observed cross section related to hadronic collisions:

σvis =1L

Nsel − Nnoise − Nem

1/ fPU − fnoisecvis. (4)

Page 8: Measurement of the inelastic cross section in proton-lead ... · CMS-FSQ-13-006 Measurement of the inelastic cross section in proton-lead collisions at p s NN = 5.02TeV The CMS Collaboration

6 3 Event selection and analysis

The inelastic cross section is obtained by correcting for the limited detector acceptance (εacc):

σinel =1L

Nsel − Nnoise − Nem

1/ fPU − fnoise

1εacc

. (5)

The ratio of the visible hadronic cross section obtained with the single-arm selection to the oneobtained with the double-arm selection is sensitive to the fraction of diffractive pPb events. Itis found that the measured value of this ratio allows the EPOS diffractive cross section to bescaled up by no more than 1.13 or down by no less than 0.88 from its default value, in orderto be compatible within 2 standard deviations of the data, while for QGSJETII those limits are1.20 and 0.84. This propagates into an εacc(σdiff) uncertainty on σinel, conservatively assumedto be symmetric, of 0.8% (1.1%). For this and the following uncertainties, the first number isrelated to the single-arm selection and the bracketed one to the double-arm selection. Themodel-dependence of the acceptance corrections results in an uncertainty for εacc(models) of0.5% (1.6%) for the two selections, respectively.

Since less than half of the diffractive events, mostly with a high-mass diffractive system, passthe hadron-level selection, the uncertainty on cvis is smaller than that on εacc. The 1 standarddeviation differences found among the four hadronic interaction models on the hadron-levelcorrection, cvis, propagate into uncertainties on σvis of 0.4% (0.2%) for the single-arm (double-arm) selection. The subtraction of photon-proton events (with the Nem uncertainty shown inTable 1), results in an uncertainty of 0.6% (<0.1%) on σinel and σvis. The uncertainty on Nnoisepropagates into a 1.3% (0.2%) uncertainty in the final cross sections. The effect on the eventselection of the radiation damage in the HF fibres is assessed by rescaling the signals of thesimulated HF response to match data in segments of pseudorapidity. The rescaling factors arecalculated using the average response produced by EPOS, HIJING, and QGSJETII. These scalingfactors are found to be consistent with the observed radiation damage of HF and range from 1to 0.67, depending on pseudorapidity. The systematic uncertainty induced on the cross sectionby this approach is estimated by repeating the measurement without the radiation damagecorrection, which introduces an effect of 1.7% (0.8%) on the cross section. The simulated signalscontain the underlying contribution from noise. To test the importance of noise on the eventselection the noise measured from data was added to the simulated signals. As a further checkof the HF tower energy resolution, the cross sections are computed by increasing the selectionthresholds to EHF > 10 GeV (5 GeV). To account for both effects, a systematic uncertainty onthe cross section of 0.6% (0.4%) is added.

Table 2: List of the systematic uncertainties, propagated into the final pPb cross sections, forthe two event selections.

Source of uncertainty Single-arm Double-armNoise subtraction (Nnoise) 1.3% 0.2%Pileup correction ( fPU) <0.1% <0.1%Acceptance (εacc(models)) 0.5% 1.6%Acceptance (εacc(σdiff)) 0.8% 1.1%Hadron-level correction (cvis) 0.4% 0.2%Photon-proton subtraction (Nem) 0.6% <0.1%Detector simulation 1.7% 0.8%HF energy thresholds 0.6% 0.4%Integrated luminosity (L) 3.5% 3.5%

All the different sources of uncertainty of the measurement are listed in Table 2 for the single-arm and double-arm event selections. The three derived cross sections have different system-

Page 9: Measurement of the inelastic cross section in proton-lead ... · CMS-FSQ-13-006 Measurement of the inelastic cross section in proton-lead collisions at p s NN = 5.02TeV The CMS Collaboration

7

atic uncertainties since not all contributions are relevant to each of them. For σinel, all uncer-tainties but the one due to the hadron-level correction contribute. The total uncorrelated sys-tematic uncertainty is therefore 2.5% (2.2%) for the single-arm (double-arm) selection. For σvis,the dominant uncertainty is due to the hadron-level correction instead of the correction for εacc.The value of the uncertainty is therefore reduced to 2.3% (0.9%). The uncertainties for detectorsimulation and photon-proton correction do not contribute to σobs and, hence, its uncertaintybecomes 1.4% (0.5%). For all cross sections, a (dominant) integrated luminosity uncertainty of3.5% is added.

4 Results and summaryThe measured cross sections for both event selections are listed in Table 3, compared to the pre-dictions of the hadronic interaction models DPMJET, EPOS, and QGSJETII. Due to the differentacceptance, the extrapolations from the hadron-level to the inelastic cross section are of dif-ferent magnitude, but the models reproduce well the approximately 65 mb difference betweenthe two selections. The values of the inelastic cross sections obtained from the single-arm anddouble-arm methods differ only by about 4 mb and agree well within the uncertainties.

Table 3: Summary of cross sections obtained from the two different event selections. The accep-tance definition for σvis is based on the production of stable particles within 3 < |η| < 5 withmomentum pHF > 21.3 GeV/c (11.3 GeV/c) for the single-arm (double-arm) event selections.

Selection σobs (mb) σvis (mb) σinel (mb)

DataSingle-arm 2003±76 1937±82 2063±89Double-arm 1873±66 1872±68 2059±85

EPOS-LHCSingle-arm — 1947

2082Double-arm — 1883

QGSJETII–04Single-arm — 2059

2181Double-arm — 1998

DPMJET 3.06Single-arm — 2116

2166Double-arm — 2055

The final σinel value is obtained by taking the weighted average of the measured values in thetwo event selections. The statistical uncertainties and the uncertainty on the luminosity arecorrelated between the selections. The degree of correlation among the remaining systematicuncertainties is much smaller and they are taken as uncorrelated. This yields a final result forthe inelastic hadronic cross section of

σinel(pPb) = 2061± 3 (stat)± 34 (syst)± 72 (lumi) mb.

This result is shown in Fig. 3 compared to other measurements at different centre-of-mass en-ergies and to various theoretical predictions. A pPb cross section was also measured by theALICE Collaboration, amounting to 2090–2120 mb with an uncertainty of 70 mb, with γp con-tributions included and no correction for acceptance applied [41]. A direct comparison to theσobs measured in the analysis presented here is not possible since the two detector acceptancesare different.

The inelastic cross section measured by the CMS experiment is compared to the Glauber-modelprediction (solid curve in Fig. 3) obtained using a pp inelastic cross section at

√s = 5.02 TeV of

70.0± 1.5 mb, derived from the COMPETE parametrisation [42] including the measurement ofthe TOTEM Collaboration at

√s = 7 TeV [43] (where the assigned uncertainty is that measured

Page 10: Measurement of the inelastic cross section in proton-lead ... · CMS-FSQ-13-006 Measurement of the inelastic cross section in proton-lead collisions at p s NN = 5.02TeV The CMS Collaboration

8 4 Results and summary

[GeV]NNs10 210 310

[b]

inel

σ

1.6

1.8

2

2.2

2.4

2.6)-1CMS (12.6 nb

IHEPFNALAvakian et al.QGSJETII-04DPMJET3.06(COMPETE+TOTEM)+GlauberDIPSYEPOS-LHC

CMSpPb collisions

Figure 3: Inelastic hadronic cross sections for pPb collisions as a function of the centre-of-massenergy. The measurement described here (circle, with error bars obtained from the quadraticsum of all uncertainties) is compared to lower energy data (squares and triangles) [2, 39, 40]and to different model predictions (curves).

by the latter). The Glauber calculation yields 2130± 40 mb and is compatible with the mea-surement presented here indicating that effects neglected by the calculation (such as nucleoncorrelations and screening) are either small or approximately cancel out. The experimental re-sult is also consistent with the prediction of the DIPSY model [44, 45] based on a dipole-modelapproach including parton saturation and multiple-scattering. Among the Gribov–Regge mod-els, the EPOS prediction is compatible with the measurement within uncertainties, whereas DP-MJET and QGSJETII predict a value more than 1 standard deviation above the data, with a largerdiscrepancy appearing for the σvis cross sections (Table 3). The EPOS and QGSJETII models arecommonly used for cosmic ray air shower simulations. Thus, at the corresponding cosmicray proton energies of Ecr = s/(2mp) = 1016.1 eV, where mp is the mass of the proton, thereare no indications for data-model deviations above ≈5% in the proton-lead collisions studiedhere (note that this corresponds to an “extreme” nuclear mass number scenario, compared tothe lighter nuclei involved in proton-air interactions). In summary, the measurement of thecross sections in pPb collisions presented here is the first such fully corrected measurement atmulti-TeV energies and, thus, provides important constraints on hadronic interaction modelscommonly used in high-energy heavy ion and cosmic ray physics.

AcknowledgmentsWe congratulate our colleagues in the CERN accelerator departments for the excellent perfor-mance of the LHC and thank the technical and administrative staffs at CERN and at other CMSinstitutes for their contributions to the success of the CMS effort. In addition, we gratefullyacknowledge the computing centres and personnel of the Worldwide LHC Computing Gridfor delivering so effectively the computing infrastructure essential to our analyses. Finally, we

Page 11: Measurement of the inelastic cross section in proton-lead ... · CMS-FSQ-13-006 Measurement of the inelastic cross section in proton-lead collisions at p s NN = 5.02TeV The CMS Collaboration

References 9

acknowledge the enduring support for the construction and operation of the LHC and the CMSdetector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS andFWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS,MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus);MoER, ERC IUT and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA andCNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH(Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Re-public of Korea); LAS (Lithuania); MOE and UM (Malaysia); CINVESTAV, CONACYT, SEP,and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland);FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS and RFBR (Russia); MESTD (Serbia);SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter,IPST, STAR and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine);STFC (United Kingdom); DOE and NSF (USA).

Individuals have received support from the Marie-Curie programme and the European Re-search Council and EPLANET (European Union); the Leventis Foundation; the A. P. SloanFoundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Of-fice; the Fonds pour la Formation a la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); theMinistry of Education, Youth and Sports (MEYS) of the Czech Republic; the Council of Scienceand Industrial Research, India; the HOMING PLUS programme of the Foundation for PolishScience, cofinanced from European Union, Regional Development Fund; the OPUS programmeof the National Science Center (Poland); the Compagnia di San Paolo (Torino); the Consorzioper la Fisica (Trieste); MIUR project 20108T4XTM (Italy); the Thalis and Aristeia programmescofinanced by EU-ESF and the Greek NSRF; the National Priorities Research Program by QatarNational Research Fund; the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chula-longkorn University (Thailand); and the Welch Foundation, contract C-1845.

References[1] R. Engel, T. K. Gaisser, P. Lipari, and T. Stanev, “Proton proton cross-section at

√s similar

to 30 TeV”, Phys. Rev. D 58 (1998) 014019, doi:10.1103/PhysRevD.58.014019,arXiv:hep-ph/9802384.

[2] A. S. Carroll et al., “Absorption cross-sections of π±, K±, p and p on nuclei between60 GeV/c and 280 GeV/c”, Phys. Lett. B 80 (1979) 319,doi:10.1016/0370-2693(79)90226-0.

[3] M. Alvioli et al., “Diffraction on nuclei: effects of nucleon correlations”, Phys. Rev. C 81(2010) 025204, doi:10.1103/PhysRevC.81.025204, arXiv:0911.1382.

[4] I. Sarcevic, S. D. Ellis, and P. Carruthers, “QCD minijet cross-sections”, Phys. Rev. D 40(1989) 1446, doi:10.1103/PhysRevD.40.1446.

[5] R. J. Glauber, “Cross-sections in deuterium at high-energies”, Phys. Rev. 100 (1955) 242,doi:10.1103/PhysRev.100.242.

[6] R. J. Glauber and G. Matthiae, “High-energy scattering of protons by nuclei”, Nucl. Phys.B 21 (1970) 135, doi:10.1016/0550-3213(70)90511-0.

[7] V. N. Gribov, “A reggeon diagram technique”, Sov. Phys. JETP 26 (196) 414.

Page 12: Measurement of the inelastic cross section in proton-lead ... · CMS-FSQ-13-006 Measurement of the inelastic cross section in proton-lead collisions at p s NN = 5.02TeV The CMS Collaboration

10 References

[8] D. d’Enterria, “Hard scattering cross-sections at LHC in the Glauber approach: From ppto pA and AA collisions”, (2003). arXiv:nucl-ex/0302016. Originally published inCERN Yellow Report on ”Hard probes in heavy ion collisions at the LHC”, (2003).

[9] M. L. Miller, K. Reygers, S. J. Sanders, and P. Steinberg, “Glauber modeling in highenergy nuclear collisions”, Ann. Rev. Nucl. Part. Sci. 57 (2007) 205,doi:10.1146/annurev.nucl.57.090506.123020, arXiv:nucl-ex/0701025.

[10] D. d’Enterria et al., “Constraints from the first LHC data on hadronic event generators forultra-high energy cosmic-ray physics”, Astropart. Phys. 35 (2011) 98,doi:10.1016/j.astropartphys.2011.05.002, arXiv:1101.5596.

[11] R. Ulrich, R. Engel, and M. Unger, “Hadronic multiparticle production at ultra-highenergies and extensive air showers”, Phys. Rev. D 83 (2011) 054026,doi:10.1103/PhysRevD.83.054026, arXiv:1010.4310.

[12] R. D. Parsons, C. Bleve, S. S. Ostapchenko, and J. Knapp, “Systematic uncertainties in airshower measurements from high-energy hadronic interaction models”, Astropart. Phys.34 (2011) 832, doi:10.1016/j.astropartphys.2011.02.007, arXiv:1102.4603.

[13] Pierre Auger Collaboration, “Measurement of the proton-air cross-section at√

s = 57 TeVwith the Pierre Auger Observatory”, Phys. Rev. Lett. 109 (2012) 062002,doi:10.1103/PhysRevLett.109.062002, arXiv:1208.1520.

[14] L. L. Frankfurt, M. I. Strikman, D. B. Day, and M. Sargsian, “Evidence for short rangecorrelations from high Q2 (e, e′) reactions”, Phys. Rev. C 48 (1993) 2451,doi:10.1103/PhysRevC.48.2451.

[15] M. L. Good and W. D. Walker, “Diffraction dissociation of beam particles”, Phys. Rev.120 (1960) 1857, doi:10.1103/PhysRev.120.1857.

[16] SELEX Collaboration, “Total cross section measurements with π−, Σ− and protons onnuclei and nucleons around 600 GeV/c”, Nucl. Phys. B 579 (2000) 277,doi:10.1016/S0550-3213(00)00204-2, arXiv:hep-ex/9910052.

[17] G. Bellettini et al., “Proton-nuclei cross sections at 20 GeV”, Nucl. Phys. 79 (1966) 609,doi:10.1016/0029-5582(66)90267-7.

[18] R. P. V. Murthy et al., “Neutron total cross-sections on nuclei at Fermilab energies”, Nucl.Phys. B 92 (1975) 269, doi:10.1016/0550-3213(75)90182-0.

[19] J. Engler et al., “Neutron-nucleus total cross-sections between 8 GeV/c and 21 GeV/c”,Phys. Lett. B 32 (1970) 716, doi:10.1016/0370-2693(70)90453-3.

[20] A. Babaev et al., “The neutron total cross section measurements on protons and nuclei inthe energy range of 28-54 GeV”, Phys. Lett. B 51 (1974) 501,doi:10.1016/0370-2693(74)90321-9.

[21] C. Ciofi degli Atti et al., “Number of collisions in the Glauber model and beyond”, Phys.Rev. C 84 (2011) 025205, doi:10.1103/PhysRevC.84.025205, arXiv:1105.1080.

[22] M. Alvioli et al., “Nucleon momentum distributions, their spin-isospin dependence andshort-range correlations”, Phys. Rev. C 87 (2013) 034603,doi:10.1103/PhysRevC.87.034603, arXiv:1211.0134.

Page 13: Measurement of the inelastic cross section in proton-lead ... · CMS-FSQ-13-006 Measurement of the inelastic cross section in proton-lead collisions at p s NN = 5.02TeV The CMS Collaboration

References 11

[23] N. N. Kalmykov and S. S. Ostapchenko, “The nucleus-nucleus interaction, nuclearfragmentation, and fluctuations of extensive air showers”, Phys. Atom. Nucl. 56 (1993)346.

[24] V. Guzey and M. Strikman, “Proton-nucleus scattering and cross section fluctuations atRHIC and LHC”, Phys. Lett. B 633 (2006) 245,doi:10.1016/j.physletb.2008.04.010, arXiv:hep-ph/0505088.

[25] K. Werner, F.-M. Liu, and T. Pierog, “Parton ladder splitting and the rapidity dependenceof transverse momentum spectra in deuteron-gold collisions at RHIC”, Phys. Rev. C 74(2006) 044902, doi:10.1103/PhysRevC.74.044902, arXiv:hep-ph/0506232.

[26] S. Ostapchenko, “Total and diffractive cross sections in enhanced Pomeron scheme”,Phys. Rev. D 81 (2010) 114028, doi:10.1103/PhysRevD.81.114028,arXiv:1003.0196.

[27] S. Ostapchenko, “Monte Carlo treatment of hadronic interactions in enhanced Pomeronscheme: I. QGSJET-II model”, Phys. Rev. D 83 (2011) 014018,doi:10.1103/PhysRevD.83.014018, arXiv:1010.1869.

[28] L. Frankfurt, G. A. Miller, and M. Strikman, “Evidence for color fluctuations in hadronsfrom coherent nuclear diffraction”, Phys. Rev. Lett. 71 (1993) 2859,doi:10.1103/PhysRevLett.71.2859, arXiv:hep-ph/9309285.

[29] D. R. Harrington, “Triple pomeron matrix model for dispersive corrections to nucleonnucleus total cross-section”, Phys. Rev. C 67 (2003) 064904,doi:10.1103/PhysRevC.67.064904, arXiv:nucl-th/0206032.

[30] CMS Collaboration, “The CMS experiment at the CERN LHC”, JINST 3 (2008) S08004,doi:10.1088/1748-0221/3/08/S08004.

[31] S. van der Meer, “Calibration of the effective beam height in the ISR”, Technical ReportCERN-ISR-PO-68-31. ISR-PO-68-31, CERN, 1968.

[32] CMS Collaboration, “Luminosity calibration for the 2013 proton-lead and proton-protondata taking”, CMS Physics Analysis Summary CMS-PAS-LUM-13-002, CERN, 2014.

[33] GEANT4 Collaboration, “GEANT4—a simulation toolkit”, Nucl. Instrum. Meth. A 506(2003) 250, doi:10.1016/S0168-9002(03)01368-8.

[34] F. W. Bopp, J. Ranft, R. Engel, and S. Roesler, “Antiparticle to particle production ratios inhadron-hadron and d-Au collisions in the DPMJET-III Monte Carlo”, Phys. Rev. C 77(2008) 014904, doi:10.1103/PhysRevC.77.014904, arXiv:hep-ph/0505035.

[35] X.-N. Wang and M. Gyulassy, “HIJING: A Monte Carlo model for multiple jet productionin pp, pA and AA collisions”, Phys. Rev. D 44 (1991) 3501,doi:10.1103/PhysRevD.44.3501.

[36] A. J. Baltz et al., “The physics of ultraperipheral collisions at the LHC”, Phys. Rept. 458(2008) 1, doi:10.1016/j.physrep.2007.12.001, arXiv:0706.3356.

[37] O. Djuvsland and J. Nystrand, “Single and double photonuclear excitations in Pb+Pbcollisions at

√sNN = 2.76 TeV at the CERN Large Hadron Collider”, Phys. Rev. C 83

(2011) 041901, doi:10.1103/PhysRevC.83.041901, arXiv:1011.4908.

Page 14: Measurement of the inelastic cross section in proton-lead ... · CMS-FSQ-13-006 Measurement of the inelastic cross section in proton-lead collisions at p s NN = 5.02TeV The CMS Collaboration

12 References

[38] T. Sjostrand, S. Mrenna, and P. Skands, “PYTHIA 6.4 physics and manual”, JHEP 05(2006) 026, doi:10.1088/1126-6708/2006/05/026, arXiv:hep-ph/0603175.

[39] S. P. Denisov et al., “Absorption cross-sections for pions, kaons, protons and anti-protonson complex nuclei in the 6 to 60 GeV/c momentum range”, Nucl. Phys. B 61 (1973) 62,doi:10.1016/0550-3213(73)90351-9.

[40] V. V. Avakian et al., “Determining inelastic interaction cross-sections for nucleons andpions incident on carbon and lead nuclei at 0.5 TeV–5 TeV”, Bull. Acad. Sci. USSR, Phys.Ser. 50 (1986) 4.

[41] ALICE Collaboration, “Measurement of visible cross sections in proton-lead collisions at√sNN = 5.02 TeV in van der Meer scans with the ALICE detector”, JINST 9 (2014)

P11003, doi:10.1088/1748-0221/9/11/P11003, arXiv:1405.1849.

[42] COMPETE Collaboration, “Benchmarks for the forward observables at RHIC, theTevatron Run II and the LHC”, Phys. Rev. Lett. 89 (2002) 201801,doi:10.1103/PhysRevLett.89.201801, arXiv:hep-ph/0206172.

[43] TOTEM Collaboration, “Luminosity-independent measurements of total, elastic andinelastic cross-sections at

√s = 7 TeV”, Europhys. Lett. 101 (2013) 21004,

doi:10.1209/0295-5075/101/21004.

[44] E. Avsar, G. Gustafson, and L. Lonnblad, “Energy conservation and saturation in small-xevolution”, JHEP 07 (2005) 062, doi:10.1088/1126-6708/2005/07/062,arXiv:hep-ph/0503181.

[45] C. Flensburg, G. Gustafson, and L. Lonnblad, “Inclusive and exclusive observables fromdipoles in high energy collisions”, JHEP 08 (2011) 103,doi:10.1007/JHEP08(2011)103, arXiv:1103.4321.

Page 15: Measurement of the inelastic cross section in proton-lead ... · CMS-FSQ-13-006 Measurement of the inelastic cross section in proton-lead collisions at p s NN = 5.02TeV The CMS Collaboration

13

A The CMS CollaborationYerevan Physics Institute, Yerevan, ArmeniaV. Khachatryan, A.M. Sirunyan, A. Tumasyan

Institut fur Hochenergiephysik der OeAW, Wien, AustriaW. Adam, E. Asilar, T. Bergauer, J. Brandstetter, E. Brondolin, M. Dragicevic, J. Ero, M. Flechl,M. Friedl, R. Fruhwirth1, V.M. Ghete, C. Hartl, N. Hormann, J. Hrubec, M. Jeitler1, V. Knunz,A. Konig, M. Krammer1, I. Kratschmer, D. Liko, T. Matsushita, I. Mikulec, D. Rabady2,B. Rahbaran, H. Rohringer, J. Schieck1, R. Schofbeck, J. Strauss, W. Treberer-Treberspurg,W. Waltenberger, C.-E. Wulz1

National Centre for Particle and High Energy Physics, Minsk, BelarusV. Mossolov, N. Shumeiko, J. Suarez Gonzalez

Universiteit Antwerpen, Antwerpen, BelgiumS. Alderweireldt, T. Cornelis, E.A. De Wolf, X. Janssen, A. Knutsson, J. Lauwers, S. Luyckx,S. Ochesanu, R. Rougny, M. Van De Klundert, H. Van Haevermaet, P. Van Mechelen, N. VanRemortel, A. Van Spilbeeck

Vrije Universiteit Brussel, Brussel, BelgiumS. Abu Zeid, F. Blekman, J. D’Hondt, N. Daci, I. De Bruyn, K. Deroover, N. Heracleous,J. Keaveney, S. Lowette, L. Moreels, A. Olbrechts, Q. Python, D. Strom, S. Tavernier, W. VanDoninck, P. Van Mulders, G.P. Van Onsem, I. Van Parijs

Universite Libre de Bruxelles, Bruxelles, BelgiumP. Barria, C. Caillol, B. Clerbaux, G. De Lentdecker, H. Delannoy, G. Fasanella, L. Favart,A.P.R. Gay, A. Grebenyuk, T. Lenzi, A. Leonard, T. Maerschalk, A. Marinov, L. Pernie,A. Randle-conde, T. Reis, T. Seva, C. Vander Velde, P. Vanlaer, R. Yonamine, F. Zenoni, F. Zhang3

Ghent University, Ghent, BelgiumK. Beernaert, L. Benucci, A. Cimmino, S. Crucy, D. Dobur, A. Fagot, G. Garcia, M. Gul,J. Mccartin, A.A. Ocampo Rios, D. Poyraz, D. Ryckbosch, S. Salva, M. Sigamani, N. Strobbe,M. Tytgat, W. Van Driessche, E. Yazgan, N. Zaganidis

Universite Catholique de Louvain, Louvain-la-Neuve, BelgiumS. Basegmez, C. Beluffi4, O. Bondu, S. Brochet, G. Bruno, R. Castello, A. Caudron, L. Ceard,G.G. Da Silveira, C. Delaere, D. Favart, L. Forthomme, A. Giammanco5, J. Hollar, A. Jafari,P. Jez, M. Komm, V. Lemaitre, A. Mertens, C. Nuttens, L. Perrini, A. Pin, K. Piotrzkowski,A. Popov6, L. Quertenmont, M. Selvaggi, M. Vidal Marono

Universite de Mons, Mons, BelgiumN. Beliy, G.H. Hammad

Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, BrazilW.L. Alda Junior, G.A. Alves, L. Brito, M. Correa Martins Junior, C. Hensel, C. Mora Herrera,A. Moraes, M.E. Pol, P. Rebello Teles

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, BrazilE. Belchior Batista Das Chagas, W. Carvalho, J. Chinellato7, A. Custodio, E.M. Da Costa,D. De Jesus Damiao, C. De Oliveira Martins, S. Fonseca De Souza, L.M. Huertas Guativa,H. Malbouisson, D. Matos Figueiredo, L. Mundim, H. Nogima, W.L. Prado Da Silva,A. Santoro, A. Sznajder, E.J. Tonelli Manganote7, A. Vilela Pereira

Page 16: Measurement of the inelastic cross section in proton-lead ... · CMS-FSQ-13-006 Measurement of the inelastic cross section in proton-lead collisions at p s NN = 5.02TeV The CMS Collaboration

14 A The CMS Collaboration

Universidade Estadual Paulista a, Universidade Federal do ABC b, Sao Paulo, BrazilS. Ahujaa, C.A. Bernardesb, A. De Souza Santosb, S. Dograa, T.R. Fernandez Perez Tomeia,E.M. Gregoresb, P.G. Mercadanteb, C.S. Moona,8, S.F. Novaesa, Sandra S. Padulaa, D. RomeroAbad, J.C. Ruiz Vargas

Institute for Nuclear Research and Nuclear Energy, Sofia, BulgariaA. Aleksandrov, V. Genchev†, R. Hadjiiska, P. Iaydjiev, S. Piperov, M. Rodozov, S. Stoykova,G. Sultanov, M. Vutova

University of Sofia, Sofia, BulgariaA. Dimitrov, I. Glushkov, L. Litov, B. Pavlov, P. Petkov

Institute of High Energy Physics, Beijing, ChinaM. Ahmad, J.G. Bian, G.M. Chen, H.S. Chen, M. Chen, T. Cheng, R. Du, C.H. Jiang, R. Plestina9,F. Romeo, S.M. Shaheen, J. Tao, C. Wang, Z. Wang, H. Zhang

State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, ChinaC. Asawatangtrakuldee, Y. Ban, Q. Li, S. Liu, Y. Mao, S.J. Qian, D. Wang, Z. Xu, W. Zou

Universidad de Los Andes, Bogota, ColombiaC. Avila, A. Cabrera, L.F. Chaparro Sierra, C. Florez, J.P. Gomez, B. Gomez Moreno,J.C. Sanabria

University of Split, Faculty of Electrical Engineering, Mechanical Engineering and NavalArchitecture, Split, CroatiaN. Godinovic, D. Lelas, D. Polic, I. Puljak, P.M. Ribeiro Cipriano

University of Split, Faculty of Science, Split, CroatiaZ. Antunovic, M. Kovac

Institute Rudjer Boskovic, Zagreb, CroatiaV. Brigljevic, K. Kadija, J. Luetic, S. Micanovic, L. Sudic

University of Cyprus, Nicosia, CyprusA. Attikis, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis, H. Rykaczewski

Charles University, Prague, Czech RepublicM. Bodlak, M. Finger10, M. Finger Jr.10

Academy of Scientific Research and Technology of the Arab Republic of Egypt, EgyptianNetwork of High Energy Physics, Cairo, EgyptA.A. Abdelalim11, A. Mahrous12, A. Radi13,14

National Institute of Chemical Physics and Biophysics, Tallinn, EstoniaB. Calpas, M. Kadastik, M. Murumaa, M. Raidal, A. Tiko, C. Veelken

Department of Physics, University of Helsinki, Helsinki, FinlandP. Eerola, J. Pekkanen, M. Voutilainen

Helsinki Institute of Physics, Helsinki, FinlandJ. Harkonen, V. Karimaki, R. Kinnunen, T. Lampen, K. Lassila-Perini, S. Lehti, T. Linden,P. Luukka, T. Maenpaa, T. Peltola, E. Tuominen, J. Tuominiemi, E. Tuovinen, L. Wendland

Lappeenranta University of Technology, Lappeenranta, FinlandJ. Talvitie, T. Tuuva

Page 17: Measurement of the inelastic cross section in proton-lead ... · CMS-FSQ-13-006 Measurement of the inelastic cross section in proton-lead collisions at p s NN = 5.02TeV The CMS Collaboration

15

DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, FranceM. Besancon, F. Couderc, M. Dejardin, D. Denegri, B. Fabbro, J.L. Faure, C. Favaro, F. Ferri,S. Ganjour, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, E. Locci, M. Machet,J. Malcles, J. Rander, A. Rosowsky, M. Titov, A. Zghiche

Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, FranceI. Antropov, S. Baffioni, F. Beaudette, P. Busson, L. Cadamuro, E. Chapon, C. Charlot, T. Dahms,O. Davignon, N. Filipovic, A. Florent, R. Granier de Cassagnac, S. Lisniak, L. Mastrolorenzo,P. Mine, I.N. Naranjo, M. Nguyen, C. Ochando, G. Ortona, P. Paganini, S. Regnard, R. Salerno,J.B. Sauvan, Y. Sirois, T. Strebler, Y. Yilmaz, A. Zabi

Institut Pluridisciplinaire Hubert Curien, Universite de Strasbourg, Universite de HauteAlsace Mulhouse, CNRS/IN2P3, Strasbourg, FranceJ.-L. Agram15, J. Andrea, A. Aubin, D. Bloch, J.-M. Brom, M. Buttignol, E.C. Chabert,N. Chanon, C. Collard, E. Conte15, X. Coubez, J.-C. Fontaine15, D. Gele, U. Goerlach,C. Goetzmann, A.-C. Le Bihan, J.A. Merlin2, K. Skovpen, P. Van Hove

Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules,CNRS/IN2P3, Villeurbanne, FranceS. Gadrat

Universite de Lyon, Universite Claude Bernard Lyon 1, CNRS-IN2P3, Institut de PhysiqueNucleaire de Lyon, Villeurbanne, FranceS. Beauceron, C. Bernet, G. Boudoul, E. Bouvier, C.A. Carrillo Montoya, J. Chasserat, R. Chierici,D. Contardo, B. Courbon, P. Depasse, H. El Mamouni, J. Fan, J. Fay, S. Gascon, M. Gouzevitch,B. Ille, F. Lagarde, I.B. Laktineh, M. Lethuillier, L. Mirabito, A.L. Pequegnot, S. Perries, J.D. RuizAlvarez, D. Sabes, L. Sgandurra, V. Sordini, M. Vander Donckt, P. Verdier, S. Viret, H. Xiao

Georgian Technical University, Tbilisi, GeorgiaT. Toriashvili16

Tbilisi State University, Tbilisi, GeorgiaI. Bagaturia17

RWTH Aachen University, I. Physikalisches Institut, Aachen, GermanyC. Autermann, S. Beranek, M. Edelhoff, L. Feld, A. Heister, M.K. Kiesel, K. Klein, M. Lipinski,A. Ostapchuk, M. Preuten, F. Raupach, S. Schael, J.F. Schulte, T. Verlage, H. Weber, B. Wittmer,V. Zhukov6

RWTH Aachen University, III. Physikalisches Institut A, Aachen, GermanyM. Ata, M. Brodski, E. Dietz-Laursonn, D. Duchardt, M. Endres, M. Erdmann, S. Erdweg,T. Esch, R. Fischer, A. Guth, T. Hebbeker, C. Heidemann, K. Hoepfner, D. Klingebiel,S. Knutzen, P. Kreuzer, M. Merschmeyer, A. Meyer, P. Millet, M. Olschewski, K. Padeken,P. Papacz, T. Pook, M. Radziej, H. Reithler, M. Rieger, F. Scheuch, L. Sonnenschein, D. Teyssier,S. Thuer

RWTH Aachen University, III. Physikalisches Institut B, Aachen, GermanyV. Cherepanov, Y. Erdogan, G. Flugge, H. Geenen, M. Geisler, F. Hoehle, B. Kargoll, T. Kress,Y. Kuessel, A. Kunsken, J. Lingemann2, A. Nehrkorn, A. Nowack, I.M. Nugent, C. Pistone,O. Pooth, A. Stahl

Deutsches Elektronen-Synchrotron, Hamburg, GermanyM. Aldaya Martin, I. Asin, N. Bartosik, O. Behnke, U. Behrens, A.J. Bell, K. Borras,A. Burgmeier, A. Cakir, L. Calligaris, A. Campbell, S. Choudhury, F. Costanza, C. Diez

Page 18: Measurement of the inelastic cross section in proton-lead ... · CMS-FSQ-13-006 Measurement of the inelastic cross section in proton-lead collisions at p s NN = 5.02TeV The CMS Collaboration

16 A The CMS Collaboration

Pardos, G. Dolinska, S. Dooling, T. Dorland, G. Eckerlin, D. Eckstein, T. Eichhorn, G. Flucke,E. Gallo, J. Garay Garcia, A. Geiser, A. Gizhko, P. Gunnellini, J. Hauk, M. Hempel18, H. Jung,A. Kalogeropoulos, O. Karacheban18, M. Kasemann, P. Katsas, J. Kieseler, C. Kleinwort, I. Korol,W. Lange, J. Leonard, K. Lipka, A. Lobanov, W. Lohmann18, R. Mankel, I. Marfin18, I.-A. Melzer-Pellmann, A.B. Meyer, G. Mittag, J. Mnich, A. Mussgiller, S. Naumann-Emme, A. Nayak,E. Ntomari, H. Perrey, D. Pitzl, R. Placakyte, A. Raspereza, B. Roland, M.O. Sahin, P. Saxena,T. Schoerner-Sadenius, M. Schroder, C. Seitz, S. Spannagel, K.D. Trippkewitz, R. Walsh,C. Wissing

University of Hamburg, Hamburg, GermanyV. Blobel, M. Centis Vignali, A.R. Draeger, J. Erfle, E. Garutti, K. Goebel, D. Gonzalez,M. Gorner, J. Haller, M. Hoffmann, R.S. Hoing, A. Junkes, R. Klanner, R. Kogler, T. Lapsien,T. Lenz, I. Marchesini, D. Marconi, D. Nowatschin, J. Ott, F. Pantaleo2, T. Peiffer, A. Perieanu,N. Pietsch, J. Poehlsen, D. Rathjens, C. Sander, H. Schettler, P. Schleper, E. Schlieckau,A. Schmidt, J. Schwandt, M. Seidel, V. Sola, H. Stadie, G. Steinbruck, H. Tholen, D. Troendle,E. Usai, L. Vanelderen, A. Vanhoefer

Institut fur Experimentelle Kernphysik, Karlsruhe, GermanyM. Akbiyik, C. Barth, C. Baus, J. Berger, C. Boser, E. Butz, T. Chwalek, F. Colombo, W. DeBoer, A. Descroix, A. Dierlamm, S. Fink, F. Frensch, M. Giffels, A. Gilbert, F. Hartmann2,S.M. Heindl, U. Husemann, F. Kassel2, I. Katkov6, A. Kornmayer2, P. Lobelle Pardo, B. Maier,H. Mildner, M.U. Mozer, T. Muller, Th. Muller, M. Plagge, G. Quast, K. Rabbertz, S. Rocker,F. Roscher, H.J. Simonis, F.M. Stober, R. Ulrich, J. Wagner-Kuhr, S. Wayand, M. Weber, T. Weiler,C. Wohrmann, R. Wolf

Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi,GreeceG. Anagnostou, G. Daskalakis, T. Geralis, V.A. Giakoumopoulou, A. Kyriakis, D. Loukas,A. Psallidas, I. Topsis-Giotis

University of Athens, Athens, GreeceA. Agapitos, S. Kesisoglou, A. Panagiotou, N. Saoulidou, E. Tziaferi

University of Ioannina, Ioannina, GreeceI. Evangelou, G. Flouris, C. Foudas, P. Kokkas, N. Loukas, N. Manthos, I. Papadopoulos,E. Paradas, J. Strologas

Wigner Research Centre for Physics, Budapest, HungaryG. Bencze, C. Hajdu, A. Hazi, P. Hidas, D. Horvath19, F. Sikler, V. Veszpremi, G. Vesztergombi20,A.J. Zsigmond

Institute of Nuclear Research ATOMKI, Debrecen, HungaryN. Beni, S. Czellar, J. Karancsi21, J. Molnar, Z. Szillasi

University of Debrecen, Debrecen, HungaryM. Bartok22, A. Makovec, P. Raics, Z.L. Trocsanyi, B. Ujvari

National Institute of Science Education and Research, Bhubaneswar, IndiaP. Mal, K. Mandal, N. Sahoo, S.K. Swain

Panjab University, Chandigarh, IndiaS. Bansal, S.B. Beri, V. Bhatnagar, R. Chawla, R. Gupta, U.Bhawandeep, A.K. Kalsi, A. Kaur,M. Kaur, R. Kumar, A. Mehta, M. Mittal, N. Nishu, J.B. Singh, G. Walia

Page 19: Measurement of the inelastic cross section in proton-lead ... · CMS-FSQ-13-006 Measurement of the inelastic cross section in proton-lead collisions at p s NN = 5.02TeV The CMS Collaboration

17

University of Delhi, Delhi, IndiaAshok Kumar, Arun Kumar, A. Bhardwaj, B.C. Choudhary, R.B. Garg, A. Kumar, S. Malhotra,M. Naimuddin, K. Ranjan, R. Sharma, V. Sharma

Saha Institute of Nuclear Physics, Kolkata, IndiaS. Banerjee, S. Bhattacharya, K. Chatterjee, S. Dey, S. Dutta, Sa. Jain, N. Majumdar, A. Modak,K. Mondal, S. Mukherjee, S. Mukhopadhyay, A. Roy, D. Roy, S. Roy Chowdhury, S. Sarkar,M. Sharan

Bhabha Atomic Research Centre, Mumbai, IndiaA. Abdulsalam, R. Chudasama, D. Dutta, V. Jha, V. Kumar, A.K. Mohanty2, L.M. Pant,P. Shukla, A. Topkar

Tata Institute of Fundamental Research, Mumbai, IndiaT. Aziz, S. Banerjee, S. Bhowmik23, R.M. Chatterjee, R.K. Dewanjee, S. Dugad, S. Ganguly,S. Ghosh, M. Guchait, A. Gurtu24, G. Kole, S. Kumar, B. Mahakud, M. Maity23, G. Majumder,K. Mazumdar, S. Mitra, G.B. Mohanty, B. Parida, T. Sarkar23, K. Sudhakar, N. Sur, B. Sutar,N. Wickramage25

Indian Institute of Science Education and Research (IISER), Pune, IndiaS. Chauhan, S. Dube, S. Sharma

Institute for Research in Fundamental Sciences (IPM), Tehran, IranH. Bakhshiansohi, H. Behnamian, S.M. Etesami26, A. Fahim27, R. Goldouzian, M. Khakzad,M. Mohammadi Najafabadi, M. Naseri, S. Paktinat Mehdiabadi, F. Rezaei Hosseinabadi,B. Safarzadeh28, M. Zeinali

University College Dublin, Dublin, IrelandM. Felcini, M. Grunewald

INFN Sezione di Bari a, Universita di Bari b, Politecnico di Bari c, Bari, ItalyM. Abbresciaa ,b, C. Calabriaa,b, C. Caputoa,b, S.S. Chhibraa,b, A. Colaleoa, D. Creanzaa,c,L. Cristellaa,b, N. De Filippisa ,c, M. De Palmaa ,b, L. Fiorea, G. Iasellia ,c, G. Maggia,c, M. Maggia,G. Minielloa ,b, S. Mya ,c, S. Nuzzoa ,b, A. Pompilia ,b, G. Pugliesea ,c, R. Radognaa ,b, A. Ranieria,G. Selvaggia,b, L. Silvestrisa ,2, R. Vendittia,b, P. Verwilligena

INFN Sezione di Bologna a, Universita di Bologna b, Bologna, ItalyG. Abbiendia, C. Battilana2, A.C. Benvenutia, D. Bonacorsia,b, S. Braibant-Giacomellia ,b,L. Brigliadoria ,b, R. Campaninia,b, P. Capiluppia,b, A. Castroa ,b, F.R. Cavalloa, G. Codispotia ,b,M. Cuffiania ,b, G.M. Dallavallea, F. Fabbria, A. Fanfania,b, D. Fasanellaa ,b, P. Giacomellia,C. Grandia, L. Guiduccia ,b, S. Marcellinia, G. Masettia, A. Montanaria, F.L. Navarriaa ,b,A. Perrottaa, A.M. Rossia ,b, T. Rovellia ,b, G.P. Sirolia ,b, N. Tosia ,b, R. Travaglinia ,b

INFN Sezione di Catania a, Universita di Catania b, CSFNSM c, Catania, ItalyG. Cappelloa, M. Chiorbolia,b, S. Costaa,b, F. Giordanoa, R. Potenzaa,b, A. Tricomia,b, C. Tuvea ,b

INFN Sezione di Firenze a, Universita di Firenze b, Firenze, ItalyG. Barbaglia, V. Ciullia ,b, C. Civininia, R. D’Alessandroa ,b, E. Focardia ,b, S. Gonzia ,b, V. Goria ,b,P. Lenzia ,b, M. Meschinia, S. Paolettia, G. Sguazzonia, A. Tropianoa,b, L. Viliania,b

INFN Laboratori Nazionali di Frascati, Frascati, ItalyL. Benussi, S. Bianco, F. Fabbri, D. Piccolo

INFN Sezione di Genova a, Universita di Genova b, Genova, ItalyV. Calvellia ,b, F. Ferroa, M. Lo Veterea,b, M.R. Mongea ,b, E. Robuttia, S. Tosia ,b

Page 20: Measurement of the inelastic cross section in proton-lead ... · CMS-FSQ-13-006 Measurement of the inelastic cross section in proton-lead collisions at p s NN = 5.02TeV The CMS Collaboration

18 A The CMS Collaboration

INFN Sezione di Milano-Bicocca a, Universita di Milano-Bicocca b, Milano, ItalyL. Brianza, M.E. Dinardoa ,b, S. Fiorendia ,b, S. Gennaia, R. Gerosaa,b, A. Ghezzia,b, P. Govonia ,b,S. Malvezzia, R.A. Manzonia,b, B. Marzocchia ,b ,2, D. Menascea, L. Moronia, M. Paganonia ,b,D. Pedrinia, S. Ragazzia ,b, N. Redaellia, T. Tabarelli de Fatisa ,b

INFN Sezione di Napoli a, Universita di Napoli ’Federico II’ b, Napoli, Italy, Universita dellaBasilicata c, Potenza, Italy, Universita G. Marconi d, Roma, ItalyS. Buontempoa, N. Cavalloa,c, S. Di Guidaa,d ,2, M. Espositoa,b, F. Fabozzia,c, A.O.M. Iorioa ,b,G. Lanzaa, L. Listaa, S. Meolaa,d ,2, M. Merolaa, P. Paoluccia ,2, C. Sciaccaa,b, F. Thyssen

INFN Sezione di Padova a, Universita di Padova b, Padova, Italy, Universita di Trento c,Trento, ItalyP. Azzia,2, N. Bacchettaa, M. Bellatoa, L. Benatoa ,b, A. Bolettia ,b, A. Brancaa,b, M. Dall’Ossoa,b ,2,T. Dorigoa, F. Fanzagoa, F. Gonellaa, A. Gozzelinoa, K. Kanishcheva ,c, S. Lacapraraa,M. Margonia,b, G. Marona ,29, A.T. Meneguzzoa,b, M. Michelottoa, F. Montecassianoa,M. Passaseoa, J. Pazzinia ,b, M. Pegoraroa, N. Pozzobona ,b, P. Ronchesea,b, F. Simonettoa ,b,E. Torassaa, M. Tosia ,b, M. Zanetti, P. Zottoa ,b, A. Zucchettaa ,b ,2

INFN Sezione di Pavia a, Universita di Pavia b, Pavia, ItalyA. Braghieria, A. Magnania, P. Montagnaa ,b, S.P. Rattia,b, V. Rea, C. Riccardia ,b, P. Salvinia, I. Vaia,P. Vituloa ,b

INFN Sezione di Perugia a, Universita di Perugia b, Perugia, ItalyL. Alunni Solestizia,b, M. Biasinia,b, G.M. Bileia, D. Ciangottinia ,b ,2, L. Fanoa ,b, P. Laricciaa ,b,G. Mantovania,b, M. Menichellia, A. Sahaa, A. Santocchiaa,b, A. Spieziaa,b

INFN Sezione di Pisa a, Universita di Pisa b, Scuola Normale Superiore di Pisa c, Pisa, ItalyK. Androsova,30, P. Azzurria, G. Bagliesia, J. Bernardinia, T. Boccalia, G. Broccoloa,c, R. Castaldia,M.A. Cioccia ,30, R. Dell’Orsoa, S. Donatoa,c ,2, G. Fedi, L. Foaa,c†, A. Giassia, M.T. Grippoa,30,F. Ligabuea,c, T. Lomtadzea, L. Martinia ,b, A. Messineoa ,b, F. Pallaa, A. Rizzia ,b, A. Savoy-Navarroa ,31, A.T. Serbana, P. Spagnoloa, P. Squillaciotia,30, R. Tenchinia, G. Tonellia ,b,A. Venturia, P.G. Verdinia

INFN Sezione di Roma a, Universita di Roma b, Roma, ItalyL. Baronea ,b, F. Cavallaria, G. D’imperioa ,b ,2, D. Del Rea,b, M. Diemoza, S. Gellia ,b, C. Jordaa,E. Longoa,b, F. Margarolia,b, P. Meridiania, F. Michelia ,b, G. Organtinia ,b, R. Paramattia,F. Preiatoa,b, S. Rahatloua ,b, C. Rovellia, F. Santanastasioa ,b, P. Traczyka,b ,2

INFN Sezione di Torino a, Universita di Torino b, Torino, Italy, Universita del PiemonteOrientale c, Novara, ItalyN. Amapanea,b, R. Arcidiaconoa ,c,2, S. Argiroa ,b, M. Arneodoa,c, R. Bellana ,b, C. Biinoa,N. Cartigliaa, M. Costaa ,b, R. Covarellia,b, A. Deganoa,b, N. Demariaa, L. Fincoa,b ,2, C. Mariottia,S. Masellia, E. Migliorea ,b, V. Monacoa ,b, E. Monteila ,b, M. Musicha, M.M. Obertinoa ,b,L. Pachera,b, N. Pastronea, M. Pelliccionia, G.L. Pinna Angionia ,b, F. Raveraa,b, A. Romeroa ,b,M. Ruspaa,c, R. Sacchia,b, A. Solanoa,b, A. Staianoa, U. Tamponia, P.P. Trapania ,b

INFN Sezione di Trieste a, Universita di Trieste b, Trieste, ItalyS. Belfortea, V. Candelisea ,b ,2, M. Casarsaa, F. Cossuttia, G. Della Riccaa,b, B. Gobboa, C. LaLicataa,b, M. Maronea ,b, A. Schizzia,b, T. Umera,b, A. Zanettia

Kangwon National University, Chunchon, KoreaS. Chang, A. Kropivnitskaya, S.K. Nam

Page 21: Measurement of the inelastic cross section in proton-lead ... · CMS-FSQ-13-006 Measurement of the inelastic cross section in proton-lead collisions at p s NN = 5.02TeV The CMS Collaboration

19

Kyungpook National University, Daegu, KoreaD.H. Kim, G.N. Kim, M.S. Kim, D.J. Kong, S. Lee, Y.D. Oh, A. Sakharov, D.C. Son

Chonbuk National University, Jeonju, KoreaJ.A. Brochero Cifuentes, H. Kim, T.J. Kim, M.S. Ryu

Chonnam National University, Institute for Universe and Elementary Particles, Kwangju,KoreaS. Song

Korea University, Seoul, KoreaS. Choi, Y. Go, D. Gyun, B. Hong, M. Jo, H. Kim, Y. Kim, B. Lee, K. Lee, K.S. Lee, S. Lee,S.K. Park, Y. Roh

Seoul National University, Seoul, KoreaH.D. Yoo

University of Seoul, Seoul, KoreaM. Choi, H. Kim, J.H. Kim, J.S.H. Lee, I.C. Park, G. Ryu

Sungkyunkwan University, Suwon, KoreaY. Choi, Y.K. Choi, J. Goh, D. Kim, E. Kwon, J. Lee, I. Yu

Vilnius University, Vilnius, LithuaniaA. Juodagalvis, J. Vaitkus

National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, MalaysiaI. Ahmed, Z.A. Ibrahim, J.R. Komaragiri, M.A.B. Md Ali32, F. Mohamad Idris33, W.A.T. WanAbdullah, M.N. Yusli

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, MexicoE. Casimiro Linares, H. Castilla-Valdez, E. De La Cruz-Burelo, I. Heredia-de La Cruz34,A. Hernandez-Almada, R. Lopez-Fernandez, A. Sanchez-Hernandez

Universidad Iberoamericana, Mexico City, MexicoS. Carrillo Moreno, F. Vazquez Valencia

Benemerita Universidad Autonoma de Puebla, Puebla, MexicoS. Carpinteyro, I. Pedraza, H.A. Salazar Ibarguen

Universidad Autonoma de San Luis Potosı, San Luis Potosı, MexicoA. Morelos Pineda

University of Auckland, Auckland, New ZealandD. Krofcheck

University of Canterbury, Christchurch, New ZealandP.H. Butler, S. Reucroft

National Centre for Physics, Quaid-I-Azam University, Islamabad, PakistanA. Ahmad, M. Ahmad, Q. Hassan, H.R. Hoorani, W.A. Khan, T. Khurshid, M. Shoaib

National Centre for Nuclear Research, Swierk, PolandH. Bialkowska, M. Bluj, B. Boimska, T. Frueboes, M. Gorski, M. Kazana, K. Nawrocki,K. Romanowska-Rybinska, M. Szleper, P. Zalewski

Page 22: Measurement of the inelastic cross section in proton-lead ... · CMS-FSQ-13-006 Measurement of the inelastic cross section in proton-lead collisions at p s NN = 5.02TeV The CMS Collaboration

20 A The CMS Collaboration

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, PolandG. Brona, K. Bunkowski, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski, M. Misiura,M. Olszewski, M. Walczak

Laboratorio de Instrumentacao e Fısica Experimental de Partıculas, Lisboa, PortugalP. Bargassa, C. Beirao Da Cruz E Silva, A. Di Francesco, P. Faccioli, P.G. Ferreira Parracho,M. Gallinaro, N. Leonardo, L. Lloret Iglesias, F. Nguyen, J. Rodrigues Antunes, J. Seixas,O. Toldaiev, D. Vadruccio, J. Varela, P. Vischia

Joint Institute for Nuclear Research, Dubna, RussiaS. Afanasiev, P. Bunin, M. Gavrilenko, I. Golutvin, I. Gorbunov, A. Kamenev, V. Karjavin,V. Konoplyanikov, A. Lanev, A. Malakhov, V. Matveev35, P. Moisenz, V. Palichik, V. Perelygin,S. Shmatov, S. Shulha, N. Skatchkov, V. Smirnov, A. Zarubin

Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), RussiaV. Golovtsov, Y. Ivanov, V. Kim36, E. Kuznetsova, P. Levchenko, V. Murzin, V. Oreshkin,I. Smirnov, V. Sulimov, L. Uvarov, S. Vavilov, A. Vorobyev

Institute for Nuclear Research, Moscow, RussiaYu. Andreev, A. Dermenev, S. Gninenko, N. Golubev, A. Karneyeu, M. Kirsanov, N. Krasnikov,A. Pashenkov, D. Tlisov, A. Toropin

Institute for Theoretical and Experimental Physics, Moscow, RussiaV. Epshteyn, V. Gavrilov, N. Lychkovskaya, V. Popov, I. Pozdnyakov, G. Safronov,A. Spiridonov, E. Vlasov, A. Zhokin

National Research Nuclear University ’Moscow Engineering Physics Institute’ (MEPhI),Moscow, RussiaA. Bylinkin

P.N. Lebedev Physical Institute, Moscow, RussiaV. Andreev, M. Azarkin37, I. Dremin37, M. Kirakosyan, A. Leonidov37, G. Mesyats, S.V. Rusakov,A. Vinogradov

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow,RussiaA. Baskakov, A. Belyaev, E. Boos, A. Ershov, A. Gribushin, L. Khein, V. Klyukhin, O. Kodolova,I. Lokhtin, O. Lukina, I. Myagkov, S. Obraztsov, S. Petrushanko, V. Savrin, A. Snigirev

State Research Center of Russian Federation, Institute for High Energy Physics, Protvino,RussiaI. Azhgirey, I. Bayshev, S. Bitioukov, V. Kachanov, A. Kalinin, D. Konstantinov, V. Krychkine,V. Petrov, R. Ryutin, A. Sobol, L. Tourtchanovitch, S. Troshin, N. Tyurin, A. Uzunian, A. Volkov

University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade,SerbiaP. Adzic38, M. Ekmedzic, J. Milosevic, V. Rekovic

Centro de Investigaciones Energeticas Medioambientales y Tecnologicas (CIEMAT),Madrid, SpainJ. Alcaraz Maestre, E. Calvo, M. Cerrada, M. Chamizo Llatas, N. Colino, B. De La Cruz,A. Delgado Peris, D. Domınguez Vazquez, A. Escalante Del Valle, C. Fernandez Bedoya,J.P. Fernandez Ramos, J. Flix, M.C. Fouz, P. Garcia-Abia, O. Gonzalez Lopez, S. Goy Lopez,J.M. Hernandez, M.I. Josa, E. Navarro De Martino, A. Perez-Calero Yzquierdo, J. Puerta Pelayo,A. Quintario Olmeda, I. Redondo, L. Romero, M.S. Soares

Page 23: Measurement of the inelastic cross section in proton-lead ... · CMS-FSQ-13-006 Measurement of the inelastic cross section in proton-lead collisions at p s NN = 5.02TeV The CMS Collaboration

21

Universidad Autonoma de Madrid, Madrid, SpainC. Albajar, J.F. de Troconiz, M. Missiroli, D. Moran

Universidad de Oviedo, Oviedo, SpainH. Brun, J. Cuevas, J. Fernandez Menendez, S. Folgueras, I. Gonzalez Caballero, E. PalenciaCortezon, J.M. Vizan Garcia

Instituto de Fısica de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, SpainI.J. Cabrillo, A. Calderon, J.R. Castineiras De Saa, P. De Castro Manzano, J. Duarte Campderros,M. Fernandez, G. Gomez, A. Graziano, A. Lopez Virto, J. Marco, R. Marco, C. Martinez Rivero,F. Matorras, F.J. Munoz Sanchez, J. Piedra Gomez, T. Rodrigo, A.Y. Rodrıguez-Marrero, A. Ruiz-Jimeno, L. Scodellaro, I. Vila, R. Vilar Cortabitarte

CERN, European Organization for Nuclear Research, Geneva, SwitzerlandD. Abbaneo, E. Auffray, G. Auzinger, M. Bachtis, P. Baillon, A.H. Ball, D. Barney, A. Benaglia,J. Bendavid, L. Benhabib, J.F. Benitez, G.M. Berruti, P. Bloch, A. Bocci, A. Bonato, C. Botta,H. Breuker, T. Camporesi, G. Cerminara, S. Colafranceschi39, M. D’Alfonso, D. d’Enterria,A. Dabrowski, V. Daponte, A. David, M. De Gruttola, F. De Guio, A. De Roeck, S. De Visscher,E. Di Marco, M. Dobson, M. Dordevic, T. du Pree, N. Dupont, A. Elliott-Peisert, G. Franzoni,W. Funk, D. Gigi, K. Gill, D. Giordano, M. Girone, F. Glege, R. Guida, S. Gundacker, M. Guthoff,J. Hammer, M. Hansen, P. Harris, J. Hegeman, V. Innocente, P. Janot, H. Kirschenmann,M.J. Kortelainen, K. Kousouris, K. Krajczar, P. Lecoq, C. Lourenco, M.T. Lucchini, N. Magini,L. Malgeri, M. Mannelli, A. Martelli, L. Masetti, F. Meijers, S. Mersi, E. Meschi, F. Moortgat,S. Morovic, M. Mulders, M.V. Nemallapudi, H. Neugebauer, S. Orfanelli40, L. Orsini, L. Pape,E. Perez, A. Petrilli, G. Petrucciani, A. Pfeiffer, D. Piparo, A. Racz, G. Rolandi41, M. Rovere,M. Ruan, H. Sakulin, C. Schafer, C. Schwick, A. Sharma, P. Silva, M. Simon, P. Sphicas42,D. Spiga, J. Steggemann, B. Stieger, M. Stoye, Y. Takahashi, D. Treille, A. Triossi, A. Tsirou,G.I. Veres20, N. Wardle, H.K. Wohri, A. Zagozdzinska43, W.D. Zeuner

Paul Scherrer Institut, Villigen, SwitzerlandW. Bertl, K. Deiters, W. Erdmann, R. Horisberger, Q. Ingram, H.C. Kaestli, D. Kotlinski,U. Langenegger, D. Renker, T. Rohe

Institute for Particle Physics, ETH Zurich, Zurich, SwitzerlandF. Bachmair, L. Bani, L. Bianchini, M.A. Buchmann, B. Casal, G. Dissertori, M. Dittmar,M. Donega, M. Dunser, P. Eller, C. Grab, C. Heidegger, D. Hits, J. Hoss, G. Kasieczka,W. Lustermann, B. Mangano, A.C. Marini, M. Marionneau, P. Martinez Ruiz del Arbol,M. Masciovecchio, D. Meister, P. Musella, F. Nessi-Tedaldi, F. Pandolfi, J. Pata, F. Pauss,L. Perrozzi, M. Peruzzi, M. Quittnat, M. Rossini, A. Starodumov44, M. Takahashi, V.R. Tavolaro,K. Theofilatos, R. Wallny

Universitat Zurich, Zurich, SwitzerlandT.K. Aarrestad, C. Amsler45, L. Caminada, M.F. Canelli, V. Chiochia, A. De Cosa, C. Galloni,A. Hinzmann, T. Hreus, B. Kilminster, C. Lange, J. Ngadiuba, D. Pinna, P. Robmann, F.J. Ronga,D. Salerno, S. Taroni, Y. Yang

National Central University, Chung-Li, TaiwanM. Cardaci, K.H. Chen, T.H. Doan, C. Ferro, Sh. Jain, R. Khurana, M. Konyushikhin, C.M. Kuo,W. Lin, Y.J. Lu, R. Volpe, S.S. Yu

National Taiwan University (NTU), Taipei, TaiwanR. Bartek, P. Chang, Y.H. Chang, Y.W. Chang, Y. Chao, K.F. Chen, P.H. Chen, C. Dietz, F. Fiori,

Page 24: Measurement of the inelastic cross section in proton-lead ... · CMS-FSQ-13-006 Measurement of the inelastic cross section in proton-lead collisions at p s NN = 5.02TeV The CMS Collaboration

22 A The CMS Collaboration

U. Grundler, W.-S. Hou, Y. Hsiung, Y.F. Liu, R.-S. Lu, M. Minano Moya, E. Petrakou, J.F. Tsai,Y.M. Tzeng

Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, ThailandB. Asavapibhop, K. Kovitanggoon, G. Singh, N. Srimanobhas, N. Suwonjandee

Cukurova University, Adana, TurkeyA. Adiguzel, S. Cerci46, C. Dozen, I. Dumanoglu, S. Girgis, G. Gokbulut, Y. Guler, E. Gurpinar,I. Hos, E.E. Kangal47, A. Kayis Topaksu, G. Onengut48, K. Ozdemir49, S. Ozturk50, B. Tali46,H. Topakli50, M. Vergili, C. Zorbilmez

Middle East Technical University, Physics Department, Ankara, TurkeyI.V. Akin, B. Bilin, S. Bilmis, B. Isildak51, G. Karapinar52, U.E. Surat, M. Yalvac, M. Zeyrek

Bogazici University, Istanbul, TurkeyE.A. Albayrak53, E. Gulmez, M. Kaya54, O. Kaya55, T. Yetkin56

Istanbul Technical University, Istanbul, TurkeyK. Cankocak, S. Sen57, F.I. Vardarlı

Institute for Scintillation Materials of National Academy of Science of Ukraine, Kharkov,UkraineB. Grynyov

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, UkraineL. Levchuk, P. Sorokin

University of Bristol, Bristol, United KingdomR. Aggleton, F. Ball, L. Beck, J.J. Brooke, E. Clement, D. Cussans, H. Flacher, J. Goldstein,M. Grimes, G.P. Heath, H.F. Heath, J. Jacob, L. Kreczko, C. Lucas, Z. Meng, D.M. Newbold58,S. Paramesvaran, A. Poll, T. Sakuma, S. Seif El Nasr-storey, S. Senkin, D. Smith, V.J. Smith

Rutherford Appleton Laboratory, Didcot, United KingdomK.W. Bell, A. Belyaev59, C. Brew, R.M. Brown, D.J.A. Cockerill, J.A. Coughlan, K. Harder,S. Harper, E. Olaiya, D. Petyt, C.H. Shepherd-Themistocleous, A. Thea, L. Thomas, I.R. Tomalin,T. Williams, W.J. Womersley, S.D. Worm

Imperial College, London, United KingdomM. Baber, R. Bainbridge, O. Buchmuller, A. Bundock, D. Burton, S. Casasso, M. Citron,D. Colling, L. Corpe, N. Cripps, P. Dauncey, G. Davies, A. De Wit, M. Della Negra, P. Dunne,A. Elwood, W. Ferguson, J. Fulcher, D. Futyan, G. Hall, G. Iles, G. Karapostoli, M. Kenzie,R. Lane, R. Lucas58, L. Lyons, A.-M. Magnan, S. Malik, J. Nash, A. Nikitenko44, J. Pela,M. Pesaresi, K. Petridis, D.M. Raymond, A. Richards, A. Rose, C. Seez, A. Tapper, K. Uchida,M. Vazquez Acosta60, T. Virdee, S.C. Zenz

Brunel University, Uxbridge, United KingdomJ.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, D. Leggat, D. Leslie, I.D. Reid, P. Symonds,L. Teodorescu, M. Turner

Baylor University, Waco, USAA. Borzou, K. Call, J. Dittmann, K. Hatakeyama, A. Kasmi, H. Liu, N. Pastika

The University of Alabama, Tuscaloosa, USAO. Charaf, S.I. Cooper, C. Henderson, P. Rumerio

Page 25: Measurement of the inelastic cross section in proton-lead ... · CMS-FSQ-13-006 Measurement of the inelastic cross section in proton-lead collisions at p s NN = 5.02TeV The CMS Collaboration

23

Boston University, Boston, USAA. Avetisyan, T. Bose, C. Fantasia, D. Gastler, P. Lawson, D. Rankin, C. Richardson, J. Rohlf,J. St. John, L. Sulak, D. Zou

Brown University, Providence, USAJ. Alimena, E. Berry, S. Bhattacharya, D. Cutts, N. Dhingra, A. Ferapontov, A. Garabedian,U. Heintz, E. Laird, G. Landsberg, Z. Mao, M. Narain, S. Sagir, T. Sinthuprasith

University of California, Davis, Davis, USAR. Breedon, G. Breto, M. Calderon De La Barca Sanchez, S. Chauhan, M. Chertok, J. Conway,R. Conway, P.T. Cox, R. Erbacher, M. Gardner, W. Ko, R. Lander, M. Mulhearn, D. Pellett, J. Pilot,F. Ricci-Tam, S. Shalhout, J. Smith, M. Squires, D. Stolp, M. Tripathi, S. Wilbur, R. Yohay

University of California, Los Angeles, USAR. Cousins, P. Everaerts, C. Farrell, J. Hauser, M. Ignatenko, D. Saltzberg, E. Takasugi, V. Valuev,M. Weber

University of California, Riverside, Riverside, USAK. Burt, R. Clare, J. Ellison, J.W. Gary, G. Hanson, J. Heilman, M. Ivova PANEVA, P. Jandir,E. Kennedy, F. Lacroix, O.R. Long, A. Luthra, M. Malberti, M. Olmedo Negrete, A. Shrinivas,H. Wei, S. Wimpenny

University of California, San Diego, La Jolla, USAJ.G. Branson, G.B. Cerati, S. Cittolin, R.T. D’Agnolo, A. Holzner, R. Kelley, D. Klein, J. Letts,I. Macneill, D. Olivito, S. Padhi, M. Pieri, M. Sani, V. Sharma, S. Simon, M. Tadel, A. Vartak,S. Wasserbaech61, C. Welke, F. Wurthwein, A. Yagil, G. Zevi Della Porta

University of California, Santa Barbara, Santa Barbara, USAD. Barge, J. Bradmiller-Feld, C. Campagnari, A. Dishaw, V. Dutta, K. Flowers, M. Franco Sevilla,P. Geffert, C. George, F. Golf, L. Gouskos, J. Gran, J. Incandela, C. Justus, N. Mccoll, S.D. Mullin,J. Richman, D. Stuart, I. Suarez, W. To, C. West, J. Yoo

California Institute of Technology, Pasadena, USAD. Anderson, A. Apresyan, A. Bornheim, J. Bunn, Y. Chen, J. Duarte, A. Mott, H.B. Newman,C. Pena, M. Pierini, M. Spiropulu, J.R. Vlimant, S. Xie, R.Y. Zhu

Carnegie Mellon University, Pittsburgh, USAV. Azzolini, A. Calamba, B. Carlson, T. Ferguson, Y. Iiyama, M. Paulini, J. Russ, M. Sun,H. Vogel, I. Vorobiev

University of Colorado Boulder, Boulder, USAJ.P. Cumalat, W.T. Ford, A. Gaz, F. Jensen, A. Johnson, M. Krohn, T. Mulholland, U. Nauenberg,J.G. Smith, K. Stenson, S.R. Wagner

Cornell University, Ithaca, USAJ. Alexander, A. Chatterjee, J. Chaves, J. Chu, S. Dittmer, N. Eggert, N. Mirman, G. NicolasKaufman, J.R. Patterson, A. Rinkevicius, A. Ryd, L. Skinnari, L. Soffi, W. Sun, S.M. Tan,W.D. Teo, J. Thom, J. Thompson, J. Tucker, Y. Weng, P. Wittich

Fermi National Accelerator Laboratory, Batavia, USAS. Abdullin, M. Albrow, J. Anderson, G. Apollinari, L.A.T. Bauerdick, A. Beretvas, J. Berryhill,P.C. Bhat, G. Bolla, K. Burkett, J.N. Butler, H.W.K. Cheung, F. Chlebana, S. Cihangir, V.D. Elvira,I. Fisk, J. Freeman, E. Gottschalk, L. Gray, D. Green, S. Grunendahl, O. Gutsche, J. Hanlon,D. Hare, R.M. Harris, J. Hirschauer, B. Hooberman, Z. Hu, S. Jindariani, M. Johnson, U. Joshi,A.W. Jung, B. Klima, B. Kreis, S. Kwan†, S. Lammel, J. Linacre, D. Lincoln, R. Lipton,

Page 26: Measurement of the inelastic cross section in proton-lead ... · CMS-FSQ-13-006 Measurement of the inelastic cross section in proton-lead collisions at p s NN = 5.02TeV The CMS Collaboration

24 A The CMS Collaboration

T. Liu, R. Lopes De Sa, J. Lykken, K. Maeshima, J.M. Marraffino, V.I. Martinez Outschoorn,S. Maruyama, D. Mason, P. McBride, P. Merkel, K. Mishra, S. Mrenna, S. Nahn, C. Newman-Holmes, V. O’Dell, K. Pedro, O. Prokofyev, G. Rakness, E. Sexton-Kennedy, A. Soha,W.J. Spalding, L. Spiegel, L. Taylor, S. Tkaczyk, N.V. Tran, L. Uplegger, E.W. Vaandering,C. Vernieri, M. Verzocchi, R. Vidal, H.A. Weber, A. Whitbeck, F. Yang, H. Yin

University of Florida, Gainesville, USAD. Acosta, P. Avery, P. Bortignon, D. Bourilkov, A. Carnes, M. Carver, D. Curry, S. Das, G.P. DiGiovanni, R.D. Field, M. Fisher, I.K. Furic, J. Hugon, J. Konigsberg, A. Korytov, J.F. Low,P. Ma, K. Matchev, H. Mei, P. Milenovic62, G. Mitselmakher, L. Muniz, D. Rank, R. Rossin,L. Shchutska, M. Snowball, D. Sperka, J. Wang, S. Wang, J. Yelton

Florida International University, Miami, USAS. Hewamanage, S. Linn, P. Markowitz, G. Martinez, J.L. Rodriguez

Florida State University, Tallahassee, USAA. Ackert, J.R. Adams, T. Adams, A. Askew, J. Bochenek, B. Diamond, J. Haas, S. Hagopian,V. Hagopian, K.F. Johnson, A. Khatiwada, H. Prosper, V. Veeraraghavan, M. Weinberg

Florida Institute of Technology, Melbourne, USAV. Bhopatkar, M. Hohlmann, H. Kalakhety, D. Mareskas-palcek, T. Roy, F. Yumiceva

University of Illinois at Chicago (UIC), Chicago, USAM.R. Adams, L. Apanasevich, D. Berry, R.R. Betts, I. Bucinskaite, R. Cavanaugh, O. Evdokimov,L. Gauthier, C.E. Gerber, D.J. Hofman, P. Kurt, C. O’Brien, I.D. Sandoval Gonzalez,C. Silkworth, P. Turner, N. Varelas, Z. Wu, M. Zakaria

The University of Iowa, Iowa City, USAB. Bilki63, W. Clarida, K. Dilsiz, S. Durgut, R.P. Gandrajula, M. Haytmyradov, V. Khristenko,J.-P. Merlo, H. Mermerkaya64, A. Mestvirishvili, A. Moeller, J. Nachtman, H. Ogul, Y. Onel,F. Ozok53, A. Penzo, C. Snyder, P. Tan, E. Tiras, J. Wetzel, K. Yi

Johns Hopkins University, Baltimore, USAI. Anderson, B.A. Barnett, B. Blumenfeld, D. Fehling, L. Feng, A.V. Gritsan, P. Maksimovic,C. Martin, K. Nash, M. Osherson, M. Swartz, M. Xiao, Y. Xin

The University of Kansas, Lawrence, USAP. Baringer, A. Bean, G. Benelli, C. Bruner, J. Gray, R.P. Kenny III, D. Majumder, M. Malek,M. Murray, D. Noonan, S. Sanders, R. Stringer, Q. Wang, J.S. Wood

Kansas State University, Manhattan, USAI. Chakaberia, A. Ivanov, K. Kaadze, S. Khalil, M. Makouski, Y. Maravin, A. Mohammadi,L.K. Saini, N. Skhirtladze, I. Svintradze, S. Toda

Lawrence Livermore National Laboratory, Livermore, USAD. Lange, F. Rebassoo, D. Wright

University of Maryland, College Park, USAC. Anelli, A. Baden, O. Baron, A. Belloni, B. Calvert, S.C. Eno, C. Ferraioli, J.A. Gomez,N.J. Hadley, S. Jabeen, R.G. Kellogg, T. Kolberg, J. Kunkle, Y. Lu, A.C. Mignerey, Y.H. Shin,A. Skuja, M.B. Tonjes, S.C. Tonwar

Massachusetts Institute of Technology, Cambridge, USAA. Apyan, R. Barbieri, A. Baty, K. Bierwagen, S. Brandt, W. Busza, I.A. Cali, Z. Demiragli, L. DiMatteo, G. Gomez Ceballos, M. Goncharov, D. Gulhan, G.M. Innocenti, M. Klute, D. Kovalskyi,

Page 27: Measurement of the inelastic cross section in proton-lead ... · CMS-FSQ-13-006 Measurement of the inelastic cross section in proton-lead collisions at p s NN = 5.02TeV The CMS Collaboration

25

Y.S. Lai, Y.-J. Lee, A. Levin, P.D. Luckey, C. Mcginn, C. Mironov, X. Niu, C. Paus, D. Ralph,C. Roland, G. Roland, J. Salfeld-Nebgen, G.S.F. Stephans, K. Sumorok, M. Varma, D. Velicanu,J. Veverka, J. Wang, T.W. Wang, B. Wyslouch, M. Yang, V. Zhukova

University of Minnesota, Minneapolis, USAB. Dahmes, A. Finkel, A. Gude, P. Hansen, S. Kalafut, S.C. Kao, K. Klapoetke, Y. Kubota,Z. Lesko, J. Mans, S. Nourbakhsh, N. Ruckstuhl, R. Rusack, N. Tambe, J. Turkewitz

University of Mississippi, Oxford, USAJ.G. Acosta, S. Oliveros

University of Nebraska-Lincoln, Lincoln, USAE. Avdeeva, K. Bloom, S. Bose, D.R. Claes, A. Dominguez, C. Fangmeier, R. Gonzalez Suarez,R. Kamalieddin, J. Keller, D. Knowlton, I. Kravchenko, J. Lazo-Flores, F. Meier, J. Monroy,F. Ratnikov, J.E. Siado, G.R. Snow

State University of New York at Buffalo, Buffalo, USAM. Alyari, J. Dolen, J. George, A. Godshalk, I. Iashvili, J. Kaisen, A. Kharchilava, A. Kumar,S. Rappoccio

Northeastern University, Boston, USAG. Alverson, E. Barberis, D. Baumgartel, M. Chasco, A. Hortiangtham, A. Massironi,D.M. Morse, D. Nash, T. Orimoto, R. Teixeira De Lima, D. Trocino, R.-J. Wang, D. Wood,J. Zhang

Northwestern University, Evanston, USAK.A. Hahn, A. Kubik, N. Mucia, N. Odell, B. Pollack, A. Pozdnyakov, M. Schmitt, S. Stoynev,K. Sung, M. Trovato, M. Velasco, S. Won

University of Notre Dame, Notre Dame, USAA. Brinkerhoff, N. Dev, M. Hildreth, C. Jessop, D.J. Karmgard, N. Kellams, K. Lannon, S. Lynch,N. Marinelli, F. Meng, C. Mueller, Y. Musienko35, T. Pearson, M. Planer, A. Reinsvold, R. Ruchti,G. Smith, N. Valls, M. Wayne, M. Wolf, A. Woodard

The Ohio State University, Columbus, USAL. Antonelli, J. Brinson, B. Bylsma, L.S. Durkin, S. Flowers, A. Hart, C. Hill, R. Hughes,K. Kotov, T.Y. Ling, B. Liu, W. Luo, D. Puigh, M. Rodenburg, B.L. Winer, H.W. Wulsin

Princeton University, Princeton, USAO. Driga, P. Elmer, J. Hardenbrook, P. Hebda, S.A. Koay, P. Lujan, D. Marlow, T. Medvedeva,M. Mooney, J. Olsen, C. Palmer, P. Piroue, X. Quan, H. Saka, D. Stickland, C. Tully, J.S. Werner,A. Zuranski

University of Puerto Rico, Mayaguez, USAS. Malik

Purdue University, West Lafayette, USAV.E. Barnes, D. Benedetti, D. Bortoletto, L. Gutay, M.K. Jha, M. Jones, K. Jung, M. Kress,D.H. Miller, N. Neumeister, F. Primavera, B.C. Radburn-Smith, X. Shi, I. Shipsey, D. Silvers,J. Sun, A. Svyatkovskiy, F. Wang, W. Xie, L. Xu, J. Zablocki

Purdue University Calumet, Hammond, USAN. Parashar, J. Stupak

Page 28: Measurement of the inelastic cross section in proton-lead ... · CMS-FSQ-13-006 Measurement of the inelastic cross section in proton-lead collisions at p s NN = 5.02TeV The CMS Collaboration

26 A The CMS Collaboration

Rice University, Houston, USAA. Adair, B. Akgun, Z. Chen, K.M. Ecklund, F.J.M. Geurts, M. Guilbaud, W. Li, B. Michlin,M. Northup, B.P. Padley, R. Redjimi, J. Roberts, J. Rorie, Z. Tu, J. Zabel

University of Rochester, Rochester, USAB. Betchart, A. Bodek, P. de Barbaro, R. Demina, Y. Eshaq, T. Ferbel, M. Galanti, A. Garcia-Bellido, P. Goldenzweig, J. Han, A. Harel, O. Hindrichs, A. Khukhunaishvili, G. Petrillo,M. Verzetti

The Rockefeller University, New York, USAL. Demortier

Rutgers, The State University of New Jersey, Piscataway, USAS. Arora, A. Barker, J.P. Chou, C. Contreras-Campana, E. Contreras-Campana, D. Duggan,D. Ferencek, Y. Gershtein, R. Gray, E. Halkiadakis, D. Hidas, E. Hughes, S. Kaplan,R. Kunnawalkam Elayavalli, A. Lath, S. Panwalkar, M. Park, S. Salur, S. Schnetzer, D. Sheffield,S. Somalwar, R. Stone, S. Thomas, P. Thomassen, M. Walker

University of Tennessee, Knoxville, USAM. Foerster, G. Riley, K. Rose, S. Spanier, A. York

Texas A&M University, College Station, USAO. Bouhali65, A. Castaneda Hernandez, M. Dalchenko, M. De Mattia, A. Delgado, S. Dildick,R. Eusebi, W. Flanagan, J. Gilmore, T. Kamon66, V. Krutelyov, R. Montalvo, R. Mueller,I. Osipenkov, Y. Pakhotin, R. Patel, A. Perloff, J. Roe, A. Rose, A. Safonov, A. Tatarinov,K.A. Ulmer2

Texas Tech University, Lubbock, USAN. Akchurin, C. Cowden, J. Damgov, C. Dragoiu, P.R. Dudero, J. Faulkner, S. Kunori,K. Lamichhane, S.W. Lee, T. Libeiro, S. Undleeb, I. Volobouev

Vanderbilt University, Nashville, USAE. Appelt, A.G. Delannoy, S. Greene, A. Gurrola, R. Janjam, W. Johns, C. Maguire, Y. Mao,A. Melo, P. Sheldon, B. Snook, S. Tuo, J. Velkovska, Q. Xu

University of Virginia, Charlottesville, USAM.W. Arenton, S. Boutle, B. Cox, B. Francis, J. Goodell, R. Hirosky, A. Ledovskoy, H. Li, C. Lin,C. Neu, E. Wolfe, J. Wood, F. Xia

Wayne State University, Detroit, USAC. Clarke, R. Harr, P.E. Karchin, C. Kottachchi Kankanamge Don, P. Lamichhane, J. Sturdy

University of Wisconsin, Madison, USAD.A. Belknap, D. Carlsmith, M. Cepeda, A. Christian, S. Dasu, L. Dodd, S. Duric, E. Friis,B. Gomber, R. Hall-Wilton, M. Herndon, A. Herve, P. Klabbers, A. Lanaro, A. Levine, K. Long,R. Loveless, A. Mohapatra, I. Ojalvo, T. Perry, G.A. Pierro, G. Polese, I. Ross, T. Ruggles,T. Sarangi, A. Savin, A. Sharma, N. Smith, W.H. Smith, D. Taylor, N. Woods

†: Deceased1: Also at Vienna University of Technology, Vienna, Austria2: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland3: Also at State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing,China4: Also at Institut Pluridisciplinaire Hubert Curien, Universite de Strasbourg, Universite deHaute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France

Page 29: Measurement of the inelastic cross section in proton-lead ... · CMS-FSQ-13-006 Measurement of the inelastic cross section in proton-lead collisions at p s NN = 5.02TeV The CMS Collaboration

27

5: Also at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia6: Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University,Moscow, Russia7: Also at Universidade Estadual de Campinas, Campinas, Brazil8: Also at Centre National de la Recherche Scientifique (CNRS) - IN2P3, Paris, France9: Also at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France10: Also at Joint Institute for Nuclear Research, Dubna, Russia11: Also at Zewail City of Science and Technology, Zewail, Egypt12: Also at Helwan University, Cairo, Egypt13: Also at British University in Egypt, Cairo, Egypt14: Now at Ain Shams University, Cairo, Egypt15: Also at Universite de Haute Alsace, Mulhouse, France16: Also at Tbilisi State University, Tbilisi, Georgia17: Also at Ilia State University, Tbilisi, Georgia18: Also at Brandenburg University of Technology, Cottbus, Germany19: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary20: Also at Eotvos Lorand University, Budapest, Hungary21: Also at University of Debrecen, Debrecen, Hungary22: Also at Wigner Research Centre for Physics, Budapest, Hungary23: Also at University of Visva-Bharati, Santiniketan, India24: Now at King Abdulaziz University, Jeddah, Saudi Arabia25: Also at University of Ruhuna, Matara, Sri Lanka26: Also at Isfahan University of Technology, Isfahan, Iran27: Also at University of Tehran, Department of Engineering Science, Tehran, Iran28: Also at Plasma Physics Research Center, Science and Research Branch, Islamic AzadUniversity, Tehran, Iran29: Also at Laboratori Nazionali di Legnaro dell’INFN, Legnaro, Italy30: Also at Universita degli Studi di Siena, Siena, Italy31: Also at Purdue University, West Lafayette, USA32: Also at International Islamic University of Malaysia, Kuala Lumpur, Malaysia33: Also at Malaysian Nuclear Agency, MOSTI, Kajang, Malaysia34: Also at Consejo Nacional de Ciencia y Tecnologıa, Mexico city, Mexico35: Also at Institute for Nuclear Research, Moscow, Russia36: Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia37: Also at National Research Nuclear University ’Moscow Engineering PhysicsInstitute’ (MEPhI), Moscow, Russia38: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia39: Also at Facolta Ingegneria, Universita di Roma, Roma, Italy40: Also at National Technical University of Athens, Athens, Greece41: Also at Scuola Normale e Sezione dell’INFN, Pisa, Italy42: Also at University of Athens, Athens, Greece43: Also at Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland44: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia45: Also at Albert Einstein Center for Fundamental Physics, Bern, Switzerland46: Also at Adiyaman University, Adiyaman, Turkey47: Also at Mersin University, Mersin, Turkey48: Also at Cag University, Mersin, Turkey49: Also at Piri Reis University, Istanbul, Turkey50: Also at Gaziosmanpasa University, Tokat, Turkey

Page 30: Measurement of the inelastic cross section in proton-lead ... · CMS-FSQ-13-006 Measurement of the inelastic cross section in proton-lead collisions at p s NN = 5.02TeV The CMS Collaboration

28 A The CMS Collaboration

51: Also at Ozyegin University, Istanbul, Turkey52: Also at Izmir Institute of Technology, Izmir, Turkey53: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey54: Also at Marmara University, Istanbul, Turkey55: Also at Kafkas University, Kars, Turkey56: Also at Yildiz Technical University, Istanbul, Turkey57: Also at Hacettepe University, Ankara, Turkey58: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom59: Also at School of Physics and Astronomy, University of Southampton, Southampton,United Kingdom60: Also at Instituto de Astrofısica de Canarias, La Laguna, Spain61: Also at Utah Valley University, Orem, USA62: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences,Belgrade, Serbia63: Also at Argonne National Laboratory, Argonne, USA64: Also at Erzincan University, Erzincan, Turkey65: Also at Texas A&M University at Qatar, Doha, Qatar66: Also at Kyungpook National University, Daegu, Korea


Recommended