+ All Categories
Home > Documents > Mechanical)Systems)) ENGR8903) Winter,2013 · ENGR8903%Mechanical%Systems:%Dr.%Y.%Muzychka...

Mechanical)Systems)) ENGR8903) Winter,2013 · ENGR8903%Mechanical%Systems:%Dr.%Y.%Muzychka...

Date post: 24-Jul-2020
Category:
Upload: others
View: 9 times
Download: 1 times
Share this document with a friend
14
ENGR 8903 Mechanical Systems: Dr. Y. Muzychka Mechanical Systems ENGR 8903 Winter, 2013 Dr. Y. Muzychka EN 3058 1
Transcript
Page 1: Mechanical)Systems)) ENGR8903) Winter,2013 · ENGR8903%Mechanical%Systems:%Dr.%Y.%Muzychka Mechanical)Systems)) ENGR8903) Winter,2013 Dr.%Y.%Muzychka EN3058% 1

ENGR  8903  Mechanical  Systems:  Dr.  Y.  Muzychka  

Mechanical  Systems    ENGR  8903  Winter,  2013  Dr.  Y.  Muzychka  

EN  3058  

1  

Page 2: Mechanical)Systems)) ENGR8903) Winter,2013 · ENGR8903%Mechanical%Systems:%Dr.%Y.%Muzychka Mechanical)Systems)) ENGR8903) Winter,2013 Dr.%Y.%Muzychka EN3058% 1

Course  Outline  •  Major  Topics  Covered:  – System  Modelling  

– OpJmizaJon  – System  SimulaJon  – Thermodynamic  OpJmizaJon  

2  

•  Grade  Scheme:  – Assignments  (3-­‐4)  10%  

– Project          20%  – Midterm        20%  – Final  Exam        50%  

ENGR  8903  Mechanical  Systems:  Dr.  Y.  Muzychka  

Page 3: Mechanical)Systems)) ENGR8903) Winter,2013 · ENGR8903%Mechanical%Systems:%Dr.%Y.%Muzychka Mechanical)Systems)) ENGR8903) Winter,2013 Dr.%Y.%Muzychka EN3058% 1

Important  Dates  •  Dates  to  remember:  –  January  7th,  Lectures  Begin  – February  18th  –  20th,  Mid  Term  Break  – February  14th,  Midterm  –  January  31st,  Project  Part  1  is  Due  – February  28th,  Project  Part  2  is  Due  – April  2nd,  Project  Part  3  is  Due  – Assignments:  January  31,  February  28th,  March  28th    

– April  5th,  Lectures  End  

3  

ENGR  8903  Mechanical  Systems:  Dr.  Y.  Muzychka  

Page 4: Mechanical)Systems)) ENGR8903) Winter,2013 · ENGR8903%Mechanical%Systems:%Dr.%Y.%Muzychka Mechanical)Systems)) ENGR8903) Winter,2013 Dr.%Y.%Muzychka EN3058% 1

IntroducDon  to  Thermal  Design    and  OpDmizaDon  

4  

Page 5: Mechanical)Systems)) ENGR8903) Winter,2013 · ENGR8903%Mechanical%Systems:%Dr.%Y.%Muzychka Mechanical)Systems)) ENGR8903) Winter,2013 Dr.%Y.%Muzychka EN3058% 1

Thermal-­‐Fluid  System  Design  •  Manufacturing  and  Materials  Processing  Systems  •  Energy  Systems  •  Electronics  Cooling  Systems  •  Environmental  and  Safety  Systems  •  Aerospace  Systems  •  TransportaJon  Systems  •  HVAC  Systems  •  Piping  Systems  •  Thermal  Equipment  

5  

ENGR  8903  Mechanical  Systems:  Dr.  Y.  Muzychka  

Page 6: Mechanical)Systems)) ENGR8903) Winter,2013 · ENGR8903%Mechanical%Systems:%Dr.%Y.%Muzychka Mechanical)Systems)) ENGR8903) Winter,2013 Dr.%Y.%Muzychka EN3058% 1

Workable  versus  OpDmal  Systems  •  Workable   System:   is   a   soluJon   to   a   given   problem  which  

performs   the   desired   task   within   some   set   of   prescribed  criteria.  

•  OpDmal   System:   is   one   in   which   the   desired   task   is  performed   within   some   set   of   prescribed   criteria,   but   for  which   a   parJcular   variable   of   interest   such   as   cost   or  energy  input  are  minimized,  or  in  other  cases  where  profit  and  energy  output  are  maximized.  

•  Nearly  OpDmal   System:   implies   that   there   is   some   give   in  the   value   of   the   opJmizaJon   variable,  which   provides   for  an   opJmal   soluJon   under   which   some   of   the   condiJons  may   be   relaxed   without   imparJng   a   huge   penalty   on   the  objecJve  funcJon.  

6  

ENGR  8903  Mechanical  Systems:  Dr.  Y.  Muzychka  

Page 7: Mechanical)Systems)) ENGR8903) Winter,2013 · ENGR8903%Mechanical%Systems:%Dr.%Y.%Muzychka Mechanical)Systems)) ENGR8903) Winter,2013 Dr.%Y.%Muzychka EN3058% 1

7  

ENGR  8903  Mechanical  Systems:  Dr.  Y.  Muzychka  

Page 8: Mechanical)Systems)) ENGR8903) Winter,2013 · ENGR8903%Mechanical%Systems:%Dr.%Y.%Muzychka Mechanical)Systems)) ENGR8903) Winter,2013 Dr.%Y.%Muzychka EN3058% 1

System  IdenDficaDon  •  System:  consists  of  mulJple  units  or   items  which  interact  with   each   other   to   perform   the   desired  task.  

•  Sub-­‐Systems:   are   complete   parts   for   which   a  system  may  be  sub-­‐divided.    

•  Components:  are  independent  units   in  which  the  interacJon   between   its   consJtuents   is   either  absent  or  unimportant.  

•  Process:   refers   to   the   technique  or  methodology  used  in  achieving  the  the  desired  goal.  

8  

ENGR  8903  Mechanical  Systems:  Dr.  Y.  Muzychka  

Page 9: Mechanical)Systems)) ENGR8903) Winter,2013 · ENGR8903%Mechanical%Systems:%Dr.%Y.%Muzychka Mechanical)Systems)) ENGR8903) Winter,2013 Dr.%Y.%Muzychka EN3058% 1

System  IdenDficaDon  System:  Simple  Steam  Power  GeneraJon  Plant  

Components:  Boiler,  Turbine,  Condenser,  Pump,  and  Piping  

Process:  Rankine  Steam  Cycle  

•  In  the  ideal  analysis  model,  each  of  the  four  thermodynamic  states  are   known,   and   it   becomes   a   simple   exercise   to   find   the   power  generaJon  and  thermal  efficiency.  

•  In   an   actual   system   analysis,   real   component   behaviour  (performance)   is  required  to  calculate  the  state  points  and  hence  find  the  power  generaJon  and  thermal  efficiency.    

9  

ENGR  8903  Mechanical  Systems:  Dr.  Y.  Muzychka  

Page 10: Mechanical)Systems)) ENGR8903) Winter,2013 · ENGR8903%Mechanical%Systems:%Dr.%Y.%Muzychka Mechanical)Systems)) ENGR8903) Winter,2013 Dr.%Y.%Muzychka EN3058% 1

Design  Process  Flow  Diagram  

•   Two  other  examples  in  lecture  notes.  

•   No  one  diagram  is  more  or  less  correct.  

•   This  course  focuses  mainly  on  block  3.      

10  

ENGR  8903  Mechanical  Systems:  Dr.  Y.  Muzychka  

Page 11: Mechanical)Systems)) ENGR8903) Winter,2013 · ENGR8903%Mechanical%Systems:%Dr.%Y.%Muzychka Mechanical)Systems)) ENGR8903) Winter,2013 Dr.%Y.%Muzychka EN3058% 1

Example  -­‐  1  •  Using   simple   methods   determine   the   opJmal  locaJon   of   the   circuit   board   which   generates   a  constant   heat   rate   Q   with   mean   board  temperature   Tw,   such   that   either   the   heat  transfer  rate  is  maximum  for  fixed  temperature  or  temperature   is   minimum   for   fixed   heat   transfer  rate.  

11  

ENGR  8903  Mechanical  Systems:  Dr.  Y.  Muzychka  

Page 12: Mechanical)Systems)) ENGR8903) Winter,2013 · ENGR8903%Mechanical%Systems:%Dr.%Y.%Muzychka Mechanical)Systems)) ENGR8903) Winter,2013 Dr.%Y.%Muzychka EN3058% 1

Example  -­‐  2  •  For   the   second   example,   we   will   examine   a   closed   loop  

liquid  cooled  electronics  system.  The  system  consists  of  the  following   components:   a   pump,   a   liquid   cooled   heat   sink,  an   air   cooled   heat   exchanger,   a   storage   vessel   for   the  coolant,   and  piping   for   circulaJng   the   coolant.   In  order   to  undertake   a   system  analysis  we  need   the   characterisJc  of  each   component.   Individually,   we   could   analyze   or   obtain  the  following  informaJon  for  each  component:  

12  

ENGR  8903  Mechanical  Systems:  Dr.  Y.  Muzychka  

Page 13: Mechanical)Systems)) ENGR8903) Winter,2013 · ENGR8903%Mechanical%Systems:%Dr.%Y.%Muzychka Mechanical)Systems)) ENGR8903) Winter,2013 Dr.%Y.%Muzychka EN3058% 1

Example  -­‐  3  •  Let  us  examine  the  simplest  thermal  power  generaJon  cycle  examined  in  thermodynamics.  The  basic  thermal  power   plant   consists   of   five   components:   a   pump,   a  boiler,   a   turbine,   a   condenser,   and   the   piping  connecJng  all  of  these  components.  

13  

ENGR  8903  Mechanical  Systems:  Dr.  Y.  Muzychka  

Page 14: Mechanical)Systems)) ENGR8903) Winter,2013 · ENGR8903%Mechanical%Systems:%Dr.%Y.%Muzychka Mechanical)Systems)) ENGR8903) Winter,2013 Dr.%Y.%Muzychka EN3058% 1

Example  -­‐  3  14  

•  Energy  wheel  for  the  simple  power  plant.    

ENGR  8903  Mechanical  Systems:  Dr.  Y.  Muzychka  


Recommended