+ All Categories
Home > Documents > mechanics of solids week 12 lectures

mechanics of solids week 12 lectures

Date post: 03-Jun-2018
Category:
Upload: flynn-gould
View: 231 times
Download: 1 times
Share this document with a friend

of 16

Transcript
  • 8/12/2019 mechanics of solids week 12 lectures

    1/16

  • 8/12/2019 mechanics of solids week 12 lectures

    2/16

    Week 12 - Review 2013 (Part 1)

    2

    Cylindrical Pressure Vessels

    Axial Stress(or Longitudinal Stress):

    t

    Prxx

    2

    Hoop Stress (or Cir cumferential Stress - higher):

    tyy

    Pr

    Example 2For a thin-walled pressurised vessel with internal pressureP, give the equation for von Mises and

    Tresca failure criteria, respectively. Determine which is more critical.

    Soln:Principal stresses: Since there is no shear stress in the infinitesimal element, the direct

    stressed are the principal stresses: 2Pr

    1 t

    yy , t

    xx2

    Pr2 , 03

    Tresca criterion: Y 20231 or: YY 5.02/ von Mises criterion:

    Y 3)20()0()2(2

    1)()()(

    2

    1 222213

    232

    221

    YY 5774.03/ YY 5774.05.0 , Therefore, Tresca criterion is more critical.

    Thus: ,22

    Pr Y

    t

    r

    tYY

    r

    tP

    2

    2(note vm criteria: ,

    2

    Pr33 Y

    t

    r

    tYP

    3

    2 )

    Stress in any direction (3D)

    Knowing direction cosines of a plane (l,m,n):

    n

    m

    l

    zzzyzx

    yzyyyx

    xzxyxx

    nz

    ny

    nx

    3D Stresses with coordinate rotation

    Toldnew RR

    T

    zzzyzx

    yzyyyx

    xzxyxx

    ttttnt

    ttttnt

    ntntnn

    nml

    nml

    nml

    nml

    nml

    nml

    ''''''

    '''

    ''''''

    '''

    '''''''''

    ''''''

    '''

    Example 3: As in Example1, rotate the coordinate from left to right configuration

    Soln:Right coordinate is rotated 180 about y-axis: The direction cosines are:

    ''''''

    '''

    00)180cos(

    ''''''

    '''

    nml

    nml

    nml

    nml

    nml

    R

    Toldnew RR

    302515

    25205

    15510

    ''''''

    '''

    302515

    25205

    15510

    ''''''

    ''''''

    T

    T

    nml

    nml

    nml

    nml

    nml

    nml

    RR

    xxP

    t Sectioned plane

    r

    x

    y

    xx

    yy

  • 8/12/2019 mechanics of solids week 12 lectures

    3/16

    Week 12 - Review 2013 (Part 1)

    3

    Principal stresses and maximum shear stresses in 3D

    p

    p

    p

    p

    p

    p

    zzzyzx

    yzyyyx

    xzxyxx

    n

    m

    l

    n

    m

    l

    0

    p

    p

    p

    zzzyzx

    yzyyyx

    xzxyxx

    n

    m

    l

    To have non-vanish solution, the coefficient determinant must be zero, i.e.

    0

    zzzyzx

    yzyyyx

    xzxyxx

    or 0322

    13 III

    These three roots are the principal stresses: 1, 2, 3: ( 321 )

    Stress Invariants

    First invariant: zzyyxxI 1

    Second invariant: 2222 )()()( zxyzxyxxzzzzyyyyxxI

    Third invariant: 222

    3 2 xyzzzxyyyzxxzxyzxyzzyyxxI Principal direction cosines

    1

    0

    222

    nml

    n

    m

    l

    p

    p

    p

    zzzyzx

    yzyyyx

    xzxyxx

    e.g.

    1

    0

    0

    21

    21

    21

    1121

    1111

    nml

    nml

    nml

    yzyyyx

    xzyxxx

    Example 4: In a plane stress problem, the stress components are MPaxx 10 ,

    MPayy 20 , MPaxy 10 . Determine the stress invariants and principal stresses.

    Soln: Stress tensor in a plane stress status:

    000

    0

    0

    yyxy

    xyxx

    3020101 yyxxzzyyxxI

    100102010)()()()( 22222

    2 xyyyxxzxyzxyxxzzzzyyyyxxI

    02 2223 xyzzzxyyyzxxzxyzxyzzyyxxI 0)10030(010030 232332

    21

    3 III

    82.3

    18.26

    2

    10014)30()30( 2

    0 Rank them and one can thus obtain: 0,82.3,18.26 321

    Equilibrium Equation of Motion

    Cartesian: 3D

    zzzzzyzx

    yyyzyyyx

    xxxzxyxx

    afzyx

    afzyx

    afzyx

    2D

    0

    0

    yx

    yx

    yyyx

    xyxx

  • 8/12/2019 mechanics of solids week 12 lectures

    4/16

    Week 12 - Review 2013 (Part 1)

    4

    Cylindrical system:

    zzrzzzzrz

    rzr

    rrrrrzrrr

    afrzrr

    afrzrr

    afrzrr

    1

    21

    1

    Example 5: The stress components are 22 4/,0, yhcqxy xyyyxx . Determine cand stress distribution in the boundary (if body force = 0).

    Soln: Substitute the stress components into the equilibrium equation:

    024

    )( 2

    2

    cyqyy

    hc

    yqxy

    xyx

    xyxx

    2

    qc

    To plot the boundary distribution, we separate the different stress components:

    xx : qlylxx xxxx )(,0)0(

    xy :

    2

    22

    2

    42)(,

    42)0( y

    hqlxy

    hqx xyxy

    0242

    )2

    (,0242

    )2

    (

    2222

    hhqhy

    hhqhy xyxy

    Chapter 2 Displacement and Strain

    Definition:

    Direct strain:0

    0

    l

    ll , Shear strain:

    2

    1tan

    2

    1

    Strain tensor:

    zzzyzx

    xzyyyx

    xzxyxx

    Strain Variant and Principal Strain

    1stvariant: Dilatation or Volume strain: zzyyxxI 1

    2nd

    variant:222

    2 )()()( zxyzxyxxzzzzyyyyxxI

    3rd

    variant: 2223 2 xyzzzxyyyzxxzxyzxyzzyyxxI Principal strains can be found from 032

    21

    3 III

    Strain Rosette

    l

    lhq

    2

    lh

    q

    2

    x

    y

    l

    x

    y

    2

    4lh

    q2

    4lh

    q

    123x

    y

    1

    23

  • 8/12/2019 mechanics of solids week 12 lectures

    5/16

    Week 12 - Review 2013 (Part 1)

    5

    3332

    32

    3

    2222

    22

    2

    1112

    12

    1

    sincos2sincos

    sincos2sincos

    sincos2sincos

    xyyyxx

    xyyyxx

    xyyyxx

    Example 6: A plane stressproblem as shown, determine the strain tensor (E=200GPa and

    Poissons ratio =0.3) (From the strain rosette measurement:44 102,101 BCA ) (Exam 2009, Quiz 2010)

    Soln:Find xx , xy and yy

    xxxyyyxx

    xyyyxxnnA

    0sin0cos20sin0cos

    sincos2sincos)0(

    22

    22

    4101 Axx

    yyxyyyxx

    xyyyxxnnC

    10210

    90sin90cos290sin90cos)90(

    22

    22

    4

    101

    Cyy

    xyyyxxxyyyxx

    xyyyxxnnB

    2

    1

    2

    1

    2

    2

    2

    22

    2

    2

    2

    2

    45sin45cos245sin45cos)45(

    22

    22

    444 1011011022

    1 yyxxBxy

    01

    211

    yyxxzzzz

    E

    444 108571.0101101

    3.01

    3.0

    1

    yyxxzz

    Thus the strain state (or namely strain tensor): 4108571.000

    011

    011

    3D Displacement-Strain relation

    Cartesian:

    xw

    zu

    zv

    yw

    yu

    xv

    z

    w

    y

    v

    x

    u

    zxyzxy

    zzyyxx

    21;

    21;

    21

    ,,

    Cylindrical:

    z

    w

    r

    uv

    r

    r

    u

    zz

    rr

    1

    x

    w

    z

    u

    z

    vw

    r

    r

    vu

    rr

    v

    zr

    z

    r

    2

    1

    1

    2

    1

    1

    2

    1

    Computability Conditions

    x

    y

    45

    P A

    BC

    Strain Rosette

  • 8/12/2019 mechanics of solids week 12 lectures

    6/16

    Week 12 - Review 2013 (Part 1)

    6

    xzxz

    zyzy

    yxyx

    zxzzxx

    yzyyzz

    xyxxyy

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    yxzyxz

    xzyxzy

    zyxzyx

    zzxyzxzy

    yyzxyzxy

    xxzyxyzx

    2

    2

    2

    2

    2

    2

    Example 7: Check if the finite element shape function for 3D 4-node (tet) elements can

    satisfy the compatibility condition.

    zcycxccw

    zbybxbbv

    zayaxaau

    3210

    3210

    3210

    Soln:Normal strain:

    33210

    23210

    13210

    )(

    )(

    )(

    czcycxcczz

    w

    bzbybxbb

    yy

    v

    azayaxaaxx

    u

    zz

    yy

    xx

    Shear strain:

    1332103210

    3232103210

    2132103210

    2

    1)()(

    2

    1

    2

    1

    2

    1)()(

    2

    1

    2

    1

    2

    1)()(

    2

    1

    2

    1

    cazcycxccx

    zayaxaazx

    w

    z

    u

    bczbybxbbz

    zcycxccyz

    v

    y

    w

    abzayaxaay

    zbybxbbxy

    u

    x

    v

    zx

    yz

    xy

    All strain are constants, the displacement should satisfy the computability equations.

    Chapter 3 Stress-Strain RelationshipGeneralised Hookes law

    zx

    yz

    xy

    zz

    yy

    xx

    zx

    yz

    xy

    zz

    yy

    xx

    CCCCCC

    CCCCCC

    CCCCCC

    CCCCCC

    CCCCCC

    CCCCCC

    666564636261

    565554535251

    464544434241

    363534333231

    262524232221

    161514131211

    constant matrix [C] is symmetrical and only 21 components of [C] are independent.

    In principal planes:

    3

    2

    1

    333231

    232221

    131211

    3

    2

    1

    CCC

    CCC

    CCC

    or

    133

    122

    111

    2

    2

    2

    I

    I

    I

    In general planes:

    1

    1

    1

    2

    2

    2

    I

    I

    I

    zzzz

    yyyy

    xxxx

    zxzx

    yzyz

    xyxy

    2

    2

    2

    Isotropic materials(need twoindependent material constants)From strain to determine stress:

  • 8/12/2019 mechanics of solids week 12 lectures

    7/16

    Week 12 - Review 2013 (Part 1)

    7

    yyxxzzzz

    xxzzyyyy

    zzyyxxxx

    E

    E

    E

    1211

    1211

    1211

    zxzxzx

    yzyzyz

    xyxyxy

    G

    E

    GE

    GE

    21

    21

    21

    From stress to determine strain:

    yyxxzzzz

    xxzzyyyy

    zzyyxxxx

    E

    E

    E

    1

    1

    1

    GE

    GE

    GE

    zxzxzx

    yzyzyz

    xyxyxy

    2

    12

    12

    1

    Relationship between material properties

    From Lames constants to find E and

    )23(E

    2

    From E and to find Lames constants

    12

    E

    211

    E

    Poissons ratio

    In practice: 5.00 ; In theory 5.01 When 0 , axial tension will cause a transverse shrinkage and vice verse.When 0 , axial tension will cause zero transverse deformation.

    Shear Modulus G

    12

    EG

    When 1 G , which means that such material is impossible to shear, or in otherwords, such materials is rigid in shear.

    Bulk Modulus K

    11321321

    )21(3)(

    )21(3)(

    3

    1KII

    EE

    where constant)21(3

    E

    K is called bulk modulus, which is a measure of volume change

    of a material when it is undergoing hydrostatic stress

    10

    00

    0

    0 )1( IV

    VVV

    VVzzyyxx

    zzyyxx

    When 5.0 K , which means that such material is incompressible, like Rubber499.0 .

    Example 8: The material (rubber) is pressed in p within a

    frictionless container as shown. Determine pressure qfrom the

    container and volume change. If change rubber into rigid body

    or incompressible body, what is the volume change?

    p

    q

    q q

    x

    y

    z

    o

    x

    y

    z

    o

    y

    z

    o

    Rigid body

    rubber

  • 8/12/2019 mechanics of solids week 12 lectures

    8/16

    Week 12 - Review 2013 (Part 1)

    8

    Soln: From theHookes law:

    xxzzyyyy

    zzyyxxxx

    E

    E

    10

    10

    0

    0

    xxzzyy

    zzyyxx

    0 zzyyzzyy

    01)1( 2 zzyy pzzyy

    11

    pppzzyyxx

    11 pq yyxx

    1

    Volume change:

    )1(

    )21)(1(

    )1(

    2

    )1(

    )1(1

    )1(

    21

    100

    22

    10

    0

    E

    ppp

    E

    pp

    E

    EI

    V

    VVyyxxzzzzzzyyxx

    Rigid body,E, 0)1(

    )21)(1(

    p

    Incompressible body, 0.5, 0)5.01(

    )5.021)(5.01(

    E

    p

    Thermal Effect Only affect the normal strain (not shear strain)

    TE

    T

    E

    TE

    yyxxzzzz

    xxzzyyyy

    zzyyxxxx

    1

    1

    1

    zxzx

    yzyz

    xyxy

    G

    G

    G

    2

    12

    12

    1

    Example 9: Write the Hookes law for plane tress and plane strain problem with a temperature

    change of T and thermal expansion coefficient ? (Quiz 2011)

    Plan stress:

    xy

    yy

    xx

    xy

    yy

    xx

    T

    TE

    2/)1(00

    01

    01

    1 2

    Plane strain:

    xy

    yy

    xx

    xy

    yy

    xx

    T

    TE

    2/)21(00

    01

    01

    )21)(1(

    Example 10: As shown in a small hole in a thin solid under a uniform tension. If change the

    material from mild steel (E=210GPa) to aluminium (E=70GPa) and assume their Poisson ratios

    are almost the same in FEA, which of the following calculation should be right (Quiz 2012).

    (a)Al

    ASteel

    A ,, andAl

    AyySteel

    Ayy ,,3

    (b) AlASteel

    A ,, 3 andAl

    AyySteel

    Ayy ,,

    (c) AlASteel

    A ,, 3 andAlyy

    Steelyy 3

    (d) AlASteelA ,, and AlyySteelyy

    a

    ux=0

    uy=0

    2m

    2m

    A

    B

  • 8/12/2019 mechanics of solids week 12 lectures

    9/16

    Week 12 - Review 2013 (Part 1)

    9

    Since 2cos3

    12

    12 4

    4

    2

    2

    r

    aT

    r

    aTis irrelative to materials, thus replacement

    technique ofEand does not affect the stress results when change from p stress to p strain.According to Hookes law, the strain is however related to Youngs modulus.

    Chapter 4 Modelling and Solution

    Unknowns (15):

    6 stresses: zxyzxyzzyyxx ,,,,, 6 strains: zxyzxyzzyyxx ,,,,, 3 displacements: wvu ,,

    Basic equations (21):

    3 equilibrium equations: iijij ub ,

    6 geometric equations:

    x

    w

    z

    u

    z

    v

    y

    w

    y

    u

    x

    vz

    w

    y

    v

    x

    u

    zxyzxy

    zzyyxx

    2

    1;

    2

    1;

    2

    1

    ,,

    6 strain-stress eqns:

    yyxxzzzz

    xxzzyyyy

    zzyyxxxx

    E

    E

    E

    1211

    1211

    1211

    zxzx

    yzyz

    xyxy

    E

    E

    E

    1

    1

    1

    6 Plus compatibility equation

    xzxz

    zyzy

    yxyx

    zxzzxx

    yzyyzz

    xyxxyy

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    yxzyxz

    xzyxzy

    zyxzyx

    zzxyzxzy

    yyzxyzxy

    xxzyxyzx

    2

    2

    2

    2

    2

    2

    Displacement, Stress and Mixed boundary condition (B.C.)Displacement B.C.: '',' wwvvuu

    Stress B.C.:

    zzyzxznz

    yzyyxyny

    zxyxxxnx

    nml

    nml

    nml

    Mixed B.C.: Combined displacement and stress boundary

    Mathematically, the requirement of B.C. in solving differential equation is obvious.

    Special deformation features

    Symmetric condition

    Stress B.C.

    Displacement

    B.C.

    MixedB.C.

  • 8/12/2019 mechanics of solids week 12 lectures

    10/16

    Week 12 - Review 2013 (Part 1)

    10

    Plane stress and plane strain problems

    Plane Stress Plane Strain

    Model

    Thin plate with in-plane loading

    Thick block with perpendicular

    loading to the axis

    zz 0 0)( yyxxzzE

    zz 0)( yyxxzzE

    0

    w 0w 0w

    xx yyxxxxE yyxxxxE

    11 2

    yy xxyyyyE xxyyyyE

    11 2

    xy xyxyE )1( xyxyE

    11

    1 2

    E* EE * 21*

    EE

    *

    1

    *

    Unified

    Hookes

    Law

    xyxy

    xxyyyy

    yyxxxx

    E

    E

    E

    *)1(*

    **

    **

    From plant stress to plane strain soluti on:2*

    *

    1 PStress

    PStressEE

    *

    *

    1 PStress

    PStress

    ,

    From plant strain to plane stress solution:

    2*

    *

    )1(

    21*

    Pstrain

    PstrainEE

    )1( *

    *

    Pstrain

    Pstrain

    Example 11: The thick cylinder is under the outer pressurepo. If we change from such a thick

    cylinder to a thin disk structure, which of following result is right? (Exam 2012)

    (a) cylinderrrdiskrr

    E

    2)1(

    )21(

    (b) cylinderrrdiskrr

    (c) cylinderrrdiskrr

    E

    2*1

    *

    (d) cylinderrrdiskrr

    1

    th,b

    h

    b

    mg

    F F

    po r

    z

    r

    Ri

    Ro

  • 8/12/2019 mechanics of solids week 12 lectures

    11/16

    Week 12 - Review 2013 (Part 1)

    11

    Soln: Replacing theEand in the solution of a p-strain by2)1(

    )21(

    Eand

    1

    Since

    222

    22

    22

    2 1)(

    rRR

    RRp

    RR

    Rpr

    io

    oio

    io

    oorr , )(rrr is independent on material properties.

    But

    222

    22

    22

    2 1)1()1(

    rRR

    RRp

    ERR

    Rp

    E io

    oio

    io

    oorr

    is inversely proportional toE.

    Superposition PrinciplesKnown the stress functions in two different loading cases.

    Load case 1: 0 xyyy and ayxx 6 Load case 2: 0 yyxx and axy

    Thus the stress functions should be added.

    ayaycasexxcasexxxx 6062,1, .

    02,1, caseyycaseyyyy

    acasexycasexyxy 2,1,

    Solution approachesAfter define the B.C. one should solve for threegroups of unknowns:

    Displacement: u,v,w Strain ,,,,,, zxyzxyzzyyxx Stress ,,,,,, zxyzxyzzyyxx

    Displacement Method

    Unknowns: u, v, w

    Procedure: Other two sets of the variables must be eliminated. Thus we replace strain

    and stress in displacement.

    Stress Method

    Unknowns: ,,,,,, zxyzxyzzyyxx

    Procedure: Solve for stress component first and then strains and displacements.

    Strain Method

    Unknowns: ,,,,,, zxyzxyzzyyxx

    Procedure: Solve for strain component first and then stresses and displacements.

    Saint Venant Principle:(1)very small loading areacompared with the whole dimension. The affected area will

    be much smaller than the unaffected area Aunaffected>>Aaffected. e.g in the gravity bar

    example, L>>a, in which the affected

    area will take roughly: z a.(2)Force replaced must be statically

    equivalent. The replacement must not

    change either the resultant force or

    resultant couple.

    Affected zone Affected zoneunaffected zone

  • 8/12/2019 mechanics of solids week 12 lectures

    12/16

    Week 12 - Review 2013 (Part 1)

    12

    Example 12: Different forces are applied to the same cantilever structure as shown below,resulting in different stress distributions. Explain whether or not these forces are statically

    equivalent, and why? (Quiz 2013)

    Soln: As per St Vanant principle, the force application affects only small area of the beam. These

    forces are statically equivalent in the far field.

    Example 13: A very long tube has the nominal dimensions of

    inner radiusR1=25mm and outer radiusR2=50mm, as shown,

    over which another long tube having nominal inner radius of

    R2=50mm and outer radius ofR3=75mm, is to be thermally

    shrink-fitted. The strain gauge test allow us to determine the

    circumferential stress of =40MPa on the outer surface ofthe outer tube (at point A as shown). Quantify the pressure

    between inner and outertubes. (Quiz 2013)

    SolnStep 1: Free-body diagram: Assume that the fit pressure

    between the inner and outer rings isp. We can draw free-body diagram as follows, in which

    we separate the outer ring from the assembly.

    Step 2: Determine p:Now we can only analyse the outer ring. The circumferential stress at

    the outer surface of the outer ring under pressure of 0, oi ppp (see the right figureabove) can be written as

    22

    23

    22

    22

    23

    22

    22

    23

    22

    23

    22

    23

    23

    22

    22

    23

    23

    22

    222

    22

    22

    22

    3

    2100

    1)(

    RR

    pR

    RR

    pR

    RR

    pR

    RRR

    RRp

    RR

    RpR

    rRRRRpp

    RRRpRpRr

    io

    oioi

    io

    ooii

    The strain gauge determined the circumferential stress on the outer surface of the outer ring

    63 1040)( Rr , i.e.

    6

    22

    23

    22

    1 10402

    )(

    pRR

    RRr i

    Thus: MPaR

    RRp 25

    05.0

    05.0075.01040

    2

    10402

    226

    2

    2

    22

    236

    (Positive here means pressure)

    -1000

    -1000

    -2000-2000N/m

    r

    R1=25

    R2=50

    R3=75

    p

    p

    R1i

    R2i

    R2oR3o

    r

    R1=25

    R2=50

    R3=75

    Strain gauge

    A

    B

  • 8/12/2019 mechanics of solids week 12 lectures

    13/16

    Week 12 - Review 2013 (Part 1)

    13

    Chapter 5 ApplicationsTorsion of Circular Shaft

    Boundary Condition

    At the fixed end: Rrz 0,0 :

    0 wvu Outer surface In-between: RrLz ,0

    0 rzrrr

    At the loading end: RrLz 0,

    0 zrzz

    According Saint-Venant principle: QdrdrR

    z

    2

    0 0

    2

    Bending BeamAccording to St Vanant Principle, the stress BC can be expressed as follows:

    Moment: MMdxdyyhh

    b

    bxxzz

    2/

    2/

    2/

    2/

    ,

    2/

    2/

    2/

    2/

    0

    h

    h

    b

    b

    yyzz Mdxdyx ,

    Axial force:

    2/

    2/

    2/

    2/

    0h

    h

    b

    b

    zzzz Fdxdy

    Shear force: 0,0

    00

    yb

    zyx

    b

    zx VdxVdx

    Example 14 (Exam 2011): According the Saint Venant

    Principle, decide the stress boundary condition on side AB.

    Soln:

    Stress boundary:When Lxby ,0 ,b

    qyxx

    Resultant force: Fdyb

    xx 0

    :

    220

    2

    00

    qb

    b

    qydy

    b

    qydy

    bbb

    xx

    Moment: Mydyb

    xx 0

    :

    bbb

    xx dyqyqy

    dyyb

    b

    qydyy

    bM

    0

    2

    00 2222

    1234343422

    22232

    0

    32

    0

    2qbqbqb

    b

    qbqb

    b

    qyqydy

    qyqyM

    bb

    Shear stress: 0

    0

    b

    yxdx

    Thermal Stress AnalysisTotal strain

    MM

    x

    y

    z

    L

    b

    h

    L

    Fix

    End

    TwistedEnd

    z

    Q

    B A

    A

    r

    y

    0

    q

    L

    A

    b

    qyxx

    x

    b

    B

  • 8/12/2019 mechanics of solids week 12 lectures

    14/16

    Week 12 - Review 2013 (Part 1)

    14

    mzzzz

    myyyy

    mxxxx

    Tz

    w

    Ty

    v

    Tx

    u

    Equilibrium Eq

    0)21(

    0)21(

    0)21(

    21

    21

    21

    z

    TEw

    z

    I

    y

    TEv

    y

    I

    x

    TEu

    x

    I

    Body forces:

    z

    TEf

    y

    TEf

    x

    TEf zyx

    )21()21(,

    )21(

    Application example:

    Dr

    EC

    ErdrT

    rE

    r

    R

    rr

    i

    22

    1

    )1(1

    1

    Dr

    EC

    ETErdrT

    rE

    r

    Ri

    22

    1

    11

    1

    o

    i

    o

    i

    R

    Rio

    iR

    Rio

    rdrTRR

    RDrdrT

    RRC

    22

    2

    22

    )1(,

    )1(

    r

    DCrrdrT

    rru

    r

    Ri

    1

    )1()(

    Contact Stress

    Bal-ball

    *)(43

    21

    213

    EP

    RRRRa

    2

    21

    213

    *)(

    169

    EP

    RRRR

    2

    2

    0 1a

    rqq where PE

    RR

    RRq

    22

    21

    213

    30 *

    6

    Cylinder-Cylinder

    *)(

    4

    21

    212

    E

    p

    RR

    RRb

    407.0

    2ln

    1407.0

    2ln

    12 2

    2

    221

    1

    213

    b

    R

    Eb

    R

    E

    p

    2

    2

    0 1b

    xqq where pE

    RR

    RRq *

    1

    21

    2120

    Example 15 (Quiz 2013): A cylindrical bearing is loaded as shown. All

    components are made of the same material.

    At which part of the bearing will the highest contact stress likely occur?

    Point A / Point B / Point C

    Also, if loadingPis doubled, the peak contact stress P2 will be:

    a.

    22 P b. 5.02 P c. P2 d. Other (provide your own answer)

    2RO2Ri

    t

    2Rs

    Rf

    r

    R22a

    P

    PE1,1

    E2,2

    R1

    R2

    R1

    E2,2

    E1,1

    pl

    b b

    qq0

    A

    B

    C

    R1R2

    r

    P

  • 8/12/2019 mechanics of solids week 12 lectures

    15/16

    Week 12 - Review 2013 (Part 1)

    15

    Solution: Peak contact stress underP: PErR

    Rrq *

    1

    1

    120

    2

    PErR

    RrP *

    1

    1

    1

    DoubleP: PP PErR

    RrPE

    rR

    Rr

    414.1*

    122*

    1

    1

    1

    1

    12

    Chapter 6 Stress Function MethodProcedure:

    Selection of stress function (combination of several)stresses2

    2

    yxx

    ,

    2

    2

    xyy

    ,

    yxxy

    2

    B.C. to determine coefficients Fully determine stress functions

    Hookes law to determine strains Strain-Displacement to derive displacement function

    Displacement B.C. to fully determine displacement functionsStress function

    Equilibrium Eqn: Strain-disp: Compatibility Hookes law: Stress B.C. and Displacement B.C.

    To solve for the differential equations, one can assume a solution

    of stress, called stress function (or Airy stress function) such that

    it can satisfy the equilibrium equations

    Stress2

    2

    yxx

    ,

    2

    2

    xyy

    ,

    yxxy

    2 , which satisfy the equilibrium eqs.

    Satisfy bi-harmonic equation: 022

    4

    22

    4

    2

    4

    yyxx

    Pure Bending 3ay

    2,0 h

    yLx : 0 yxyy ,

    22,and0 h

    yh

    Lxx : 0xy ,

    As per S-V principle: 02/

    2/

    h

    h

    xxdy , Mah

    ayayydyydyh

    h

    h

    h

    h

    hxx

    226

    32/

    2/

    32/

    2/

    2/

    2/

    Cantilever Beam: 33 cybxyaxy

    Ph/2

    h/2

    L

    x

    y

    Ph/2

    h/2

    L

    x

    y

    0)(

    0

    0

    2yyxx

    yyyx

    xyxx

    yx

    yx

    MM

    h/2

    h/2

    L

    x

    y

  • 8/12/2019 mechanics of solids week 12 lectures

    16/16


Recommended