+ All Categories
Home > Documents > mechanics of solids week 7 lectures

mechanics of solids week 7 lectures

Date post: 03-Jun-2018
Category:
Upload: flynn-gould
View: 218 times
Download: 0 times
Share this document with a friend

of 15

Transcript
  • 8/12/2019 mechanics of solids week 7 lectures

    1/15

    Week 7 MECH3361

    1

    Recap

    Saint Venant Principle:(1)very small loading areacompared with the whole dimension. The affected area will

    be much smaller than the unaffected area Aunaffected>>Aaffected. e.g in the tensile bar,

    L>>a,in which the affected area will take roughly: z a.(2)Force replaced must be statically equivalent. The replacement must not changeeither the resultant force or resultant couple.

    Combined shaft: As per Saint Venant (S-V) principle to define B.C.At z=0, z=L, Rr0 , 20 (flat end faces): ))(( drrddA

    drrddrrdPR

    zz

    R

    zz

    2

    0 0

    2

    0 0

    ))((

    cos))((2

    0 0

    drrdrMMR

    zzyy

    0sin))((2

    0 0

    drrdrMR

    zzxx

    drdrQR

    z

    22

    0 0

    0zr

    At r=R, 0 zL , 20 (cylindrical surface): 0 rzrrr

    Bending BeamAt (front and back faces)

    Lzh

    yhb

    x 0,22

    ,2

    :

    0 xzxyxx

    At (top and bottom faces)

    Lzh

    yb

    xb

    0,2

    ,22

    :

    0 yzyxyy

    At (side ends) Lorzh

    yhb

    xb

    0,22

    ,22

    : 0 zxzy ,

    Moment:

    2/

    2/

    2/

    2/

    h

    h

    b

    b

    zz Mdxdyy ,

    2/

    2/

    2/

    2/

    0h

    h

    b

    b

    zzdxdyx ,

    Resultant force

    2/

    2/

    2/

    2/

    0

    h

    h

    b

    b

    zzdxdy

    Affected

    zone

    Affected

    zoneunaffected zone

    a

    L

    z z

    z

    y

    x

    dr

    rdd

    P

    Q

    MM

    P

    Q

    y

    x

    MM

    x

    y

    z

    L

    b

    h

    Symmetric line

  • 8/12/2019 mechanics of solids week 7 lectures

    2/15

    Week 7 MECH3361

    2

    5.3 Thermal Stress AnalysisUse Di splacement method(u,v,w) to solve for equilibrium without mechanical body forces.

    Step 1: Strain-Displacement relation

    Mechanical strain mzzmyy

    mxx ,,

    Thermal strain: T

    (Note that thermal strain does not affect the shear strains)

    Total strain

    mzzzz

    myyyy

    mxxxx

    Tz

    w

    Ty

    v

    Tx

    u

    Tz

    w

    Ty

    v

    Tx

    u

    mzz

    myy

    mxx

    Step 2: Use the Hookes law in mechanical strains:m

    zzmyy

    mxx ,,

    mmxxzz

    mmxxyy

    mmxxxx

    I

    I

    I

    1

    1

    1

    2

    2

    2

    zxzx

    yzyz

    xyxy

    2

    2

    2

    where

    T

    z

    wT

    y

    vT

    x

    uI

    mzz

    myy

    mxx

    m

    1 .

    Thusx-related components:

    z

    u

    x

    w

    x

    v

    y

    u

    Tz

    w

    y

    v

    x

    uT

    x

    u

    xz

    xy

    xx

    2

    12

    2

    12

    32

    Step 3: Equilibrium Equation: 0

    zyx

    xzxyxx . Calculate different terms:

    x

    T

    xz

    w

    xy

    v

    x

    u

    x

    u

    Tz

    w

    y

    v

    x

    u

    xT

    x

    u

    xxTermst xx

    322

    321

    22

    2

    2

    2

    2

    yx

    v

    y

    u

    x

    v

    y

    u

    yyTermnd

    xy

    2

    2

    2

    2

    2

    22

    3z

    u

    zx

    w

    z

    u

    x

    w

    zzTermrd xz

    So

    2

    222

    2

    2

    22

    2

    2

    2

    2

    322

    zu

    zxw

    yxv

    yu

    x

    T

    xz

    w

    xy

    v

    x

    u

    x

    u

    zyxLHS xz

    xyxx

  • 8/12/2019 mechanics of solids week 7 lectures

    3/15

    Week 7 MECH3361

    3

    x

    T

    ux

    I

    x

    T

    z

    u

    y

    u

    x

    u

    z

    w

    y

    v

    x

    u

    xLHS

    uI

    32

    32][][

    21

    2

    2

    2

    2

    2

    2

    21

    )21()21)(1(

    3)21(

    )21)(1(3

    )21)(1(

    )21(

    )21)(1(3

    )1(2232

    EEE

    EEEE

    Thus thermal Equilibrium Eqns:

    0)21(

    0)21(

    0)21(

    21

    21

    21

    z

    TEw

    z

    I

    y

    TEv

    y

    I

    x

    TEu

    x

    I

    Compare with the Equilibrium equation (in terms of displacements) with body force.

    0

    0

    0

    21

    21

    21

    z

    y

    x

    fwz

    I

    fvy

    I

    fux

    I

    We can see that for the thermal deformation problems, the basic equations to be solved are

    equivalent to a normal static problem with body force densities of

    z

    TE

    f

    y

    TEf

    x

    TEf

    z

    y

    x

    )21(

    )21(

    )21(

    Step 4: Boundary conditions

    Displacement B.C. (if any): '',' wwvvuu and

    Stress B.C.:

    zzzyzxnz

    yzyyyxny

    xzxyxxnx

    nmlnTE

    nmlmTE

    nmllTE

    )21(

    )21(

    )21(

    ''

    ''

    ''

    like a surface stress.

  • 8/12/2019 mechanics of solids week 7 lectures

    4/15

    Week 7 MECH3361

    4

    Solution of a thermal static deformation problem without body forces and surface stresses but

    with a steady state field of temperature change, T, is equivalent to a solution of a statics

    problem subjected to a set of body forces and a surface stresses

    When a plane stress solution is available, the corresponding plane strain solution can be

    obtained by replacing E, , by21

    E,

    1and )1( .

    When a plane strain solution is available, the corresponding plane stress solution can be

    obtained by replacing E, , by2)1(

    )21(

    E,

    1and

    21

    1

    .

    Thermal fit of a hollow disk onto a shaftSimilar to interference fit, the thermal fit

    first increases the temperature of hollow

    disk allowing the diameter increase to

    greater than the shaft diameter, and then

    inserts the shaft into the hollow disk.

    Assume: Ti= temperature change at the

    inner surface and To= temperaturechange at the outer surface of the disk. Consider a plane stress problem in this thin disk case.

    Step 1: Boundary condition of the hollow disk (without insertion of shaft yet)

    At oi RandRr : 0 rrr

    At iRr : iTT and At oRr : oTT

    Step 2: Analysis:

    If the temperature change Tis axisymmetric (only a function of r) )(rTT , the

    displacement should be axisymmetric: 0),( vruu

    Step 3: Heat conductionproblem: Heat conduction equation in polar system:

    0

    1

    dr

    Tdr

    dr

    d

    r

    Integrate twice: BrAT ln Constants A and B can be determined by the thermal B.C.

    iRr , iTT BRAT ii ln

    oRr , oTT BRAT oo ln

    ioio RRATT lnln io

    io

    RR

    TTA

    lnln

    iio

    ioiii R

    RR

    TTTRATB ln

    lnlnln

    Thus the temperature change is calculated as

    )/ln(

    )/ln(

    )/ln(

    )/ln(

    lnln

    lnln

    lnln

    lnln

    lnln

    lnln

    lnln

    ln)ln(lnln

    lnlnln

    lnlnln

    0RR

    rRT

    RR

    rRTT

    RR

    RrT

    RR

    Rr

    TRR

    RrT

    RR

    RRRr

    RRR

    TTTr

    RR

    TTT

    i

    ioio

    oioio

    iiio

    o

    oio

    ii

    io

    iio

    iio

    ioi

    io

    io

    2RO2Ri

    t

    2Rs

    Rf

    r

  • 8/12/2019 mechanics of solids week 7 lectures

    5/15

    Week 7 MECH3361

    5

    Step 4: thermal deformationAs discussed in Week 5, the equilibrium equation as per displacement in the polar system is

    dr

    Tdf

    r

    u

    r

    u

    rr

    ux

    )()1(

    122

    2

    Rewrite it as

    dr

    Tdru

    dr

    d

    rdr

    d

    r

    u

    r

    u

    rr

    u

    rr

    u

    rr

    u

    r

    u

    rr

    u )()1(

    1122

    2

    Integrate once the equation above

    ')(

    )1(1

    Cdrdr

    Tddrru

    dr

    d

    rdr

    d

    ')1(

    1CTru

    dr

    d

    r

    rCrTrudr

    d')1(

    Integrate once again the above equation

    drrCrTrudrd

    ')1(

    DCrrdrTru 2

    )1( (note that Tis a function of r)

    Thus r

    DCrrdrT

    rru

    r

    Ri

    1

    )1()(

    Step 5: Strain:

    22

    1)1()1(

    1)1(

    r

    DCrdrT

    rT

    r

    DCrrdrT

    rrr

    u r

    R

    r

    R

    rr

    ii

    22

    )1(01

    r

    DCrdrT

    rr

    u

    r

    uv

    r

    r

    Ri

    Step 6: Hookes law with thermal strain

    TE

    rrrr

    )1(1

    2, T

    Err

    )1(

    1 2

    Step 7: Stresses

    Dr

    EC

    ErdrT

    rE

    TE

    r

    DCrdrT

    r

    E

    r

    DCrdrT

    rT

    E

    r

    R

    r

    R

    r

    R

    rr

    i

    i

    i

    22

    2222

    222

    1

    )1(1

    1

    )1(1

    )1(1

    1)1()1(

    1

    Dr

    EC

    ErdrT

    rE

    r

    R

    rr

    i

    22

    1

    )1(1

    1

    Similarly: Dr

    E

    C

    E

    TErdrTrE

    r

    Ri

    22

    1

    11

    1

  • 8/12/2019 mechanics of solids week 7 lectures

    6/15

    Week 7 MECH3361

    6

    Step 8 Apply stress B.C. to determine constants C & D(At oi RandRr : 0 rrr ):

    01

    )1(1

    1)(

    22

    D

    R

    EC

    ErdrT

    RERr

    i

    R

    Ri

    irr

    i

    i

    which leads to DR

    Ci2

    1

    1

    1

    . And plug it into next B.C. equation

    01

    )1(1

    1)(

    22

    D

    R

    EC

    ErdrT

    RERr

    o

    R

    Ro

    orr

    o

    i

    01

    )1(

    1

    1

    1

    1

    1222

    D

    R

    ED

    R

    ErdrT

    RE

    oi

    R

    Ro

    o

    i

    o

    i

    o

    i

    R

    Rio

    iR

    Rio

    rdrTRR

    RDrdrT

    RRC

    22

    2

    22

    )1(,

    )1(

    Step 8 Calculate the temperature by using fit condition: sii RRruR Thus the required temperature change for fit can be calculated.

    5.4 Stress and Deformation due to Contact

    There are many contact examples: gear tooth, tyres on road surface, train wheel and bearings.

    When the contact area is much smaller than the characteristic dimension of a component, the

    component can be considered to be semi-infinitebounded by a surface:

    The governing equilibrium equations are as follows

    .0

    ,0

    ,0

    =f+w+z

    I)+(

    =f+v+y

    I)+(

    =f+u+x

    I

    )+(

    z21

    y21

    x

    21

    The general solution to this equation without acceleration and body force was derived by

    Papkovich in 1932 and Neuber in 1934:

    dp=pdA

    dpn

    dpt

    x

    y

    z

    x

    y

    z

    x

    y

    z

    x

    y

    z

    x

    y

    z

    x

    y

    z

    x

    y

    z

    x

    y

    z

  • 8/12/2019 mechanics of solids week 7 lectures

    7/15

    Week 7 MECH3361

    7

    )()1(4

    1

    )()1(4

    1

    )()1(4

    1

    0

    0

    0

    zyxz

    zyxy

    zyxx

    zyxz

    w

    zyxy

    v

    zyxx

    u

    For short )()1(4

    10

    Rd

    grad

    where: Twvu ),,(d , Tzyx ),,( are all harmonic functions that satisfy Laplace

    equation 02 (2

    2

    2

    2

    2

    22

    zyx

    )

    How to select harmonic equations is skill-based. The textbook provides examples (P.190).

    A Half-Space under a Normal Concentrated Load

    Step 1: B.C.Displacement B.C.:

    Axisymmetrical about z at 0,0 yxz : 0 vu

    When R : 0 wvu (infinitely far field)

    Stress B.C.:

    Except at the origin, at z=0: 0 zyzxzz

    0Pdxdyzz

    (S-V principle)

    Step 2: Select harmonic functions (refer to the textbook)

    zRCR

    Czyx ln,1

    ,0 201

    Step 3: Displacement

    RB

    RR

    zAw

    zRR

    yB

    R

    zyAv

    zRR

    xB

    R

    zxAu

    1

    )(

    3

    )(

    )(

    3

    2

    3

    3

    Step 4: Stresses

    3

    2

    3

    22

    2

    3

    222

    3

    22

    2

    3

    222

    3

    232

    )()(23

    2

    )()(23

    2

    R

    zBR

    x

    R

    zA

    zRR

    y

    zRR

    zxB

    R

    y

    R

    zA

    zRR

    x

    zRR

    zyB

    R

    x

    R

    zA

    zz

    yy

    xx

  • 8/12/2019 mechanics of solids week 7 lectures

    8/15

    Week 7 MECH3361

    8

    3

    2

    3

    3

    2

    3

    235

    232

    232

    )(

    )2(2

    6

    R

    xB

    R

    z

    R

    xA

    R

    yB

    R

    z

    R

    yA

    zRR

    RzxyB

    R

    xyzA

    yz

    yz

    xy

    Step 5: Apply B.C. to determine the constants A and B

    Except at the origin, at z=0: 0 zyzxzz

    0

    4)2(4

    BA

    PBA

    4

    4

    PB

    PA

    Step 6: Determine the stress and displacement functionsSubstitute them back to stress and displacement functions, one can determine the stress and

    displacement completely.

    R

    P

    R

    zPw

    zRR

    yP

    R

    zyPv

    zRR

    xP

    R

    zxPu

    1

    4

    )2(

    4

    )(44

    )(44

    3

    2

    3

    3

    5

    2

    5

    2

    235

    5

    3

    22

    2

    3

    222

    3

    22

    2

    3

    222

    3

    2

    3

    2

    3

    )(

    )2(

    22

    32

    3

    )()(23

    2

    )()(23

    2

    R

    xzP

    R

    yzP

    zRR

    RzxyP

    R

    xyzR

    zP

    zRR

    y

    zRR

    zxP

    R

    y

    R

    Pz

    zRR

    x

    zRR

    zyP

    R

    x

    R

    Pz

    yz

    yz

    xy

    zz

    yy

    xx

    A Half-Space under a Tangential Concentrated Load

    Step 1: B.C.

    Except at the origin, at z=0: 0 zyzxzz

  • 8/12/2019 mechanics of solids week 7 lectures

    9/15

    Week 7 MECH3361

    9

    0Qdxdyzx

    Step 2: Select harmonic functions

    zRC

    zRR

    xC

    RC zyx

    1

    ,)(

    ,0,1

    3021

    After derive the displacement and stress functions, apply B.C. to determine the three constants

    ,)1(8

    )21(,

    )1(8,

    )1(8

    )21( 2

    QC

    QB

    QA

    Step 3: Displacement

    )()21(

    4

    )(

    )21(

    4

    )()21(1

    4

    2

    22

    2

    2

    2

    2

    zR

    x

    R

    xz

    R

    Qw

    zR

    xy

    R

    xy

    R

    Qv

    zR

    x

    zR

    R

    R

    x

    R

    Qu

    Step 4: Stresses

    5

    2

    5

    222

    2

    2

    5

    2

    2

    222

    2

    222

    2

    2

    2

    3,

    2

    3,

    2

    )(

    213

    2

    ,2

    3

    23

    )(

    213

    2

    2

    )(

    213

    2

    R

    Qzx

    R

    Qxyz

    zR

    RxxR

    zRR

    x

    R

    Qx

    R

    Qxz

    zR

    RxxR

    zRR

    y

    R

    Qx

    zR

    RyyR

    zRR

    x

    R

    Qx

    yzyzxy

    zz

    yy

    xx

    Solutions to the Contact Problems

    The frictionless contact can be solved by using approach to normal concentratedforce on a half-space

    The frictional contact can be solved by using approach to tangential concentratedforce on a half-space

    No penetration between the two contact bodyEffective Youngs Modulus:

    1

    2

    22

    1

    21 11*

    EEE

    Two balls in contact

    *)(4

    3

    21

    213

    E

    P

    RR

    RR

    a ,

    2

    21

    213

    *

    )(

    16

    9

    E

    P

    RR

    RR

    R22a

    P

    P

    E1,1

    E2,2

    R1

  • 8/12/2019 mechanics of solids week 7 lectures

    10/15

    Week 7 MECH3361

    10

    2

    2

    0 1a

    rqq (distribution of contact stress)

    where PERR

    RRq

    2

    2

    21

    21

    3

    30 *

    6

    A sphere in contact with flat half space ( 2R )

    *4

    3

    *)1/(4

    3

    *)//(4

    31

    1

    1

    2221

    13

    E

    PR

    E

    P

    R

    R

    E

    P

    RRRR

    Ra

    2

    1

    3

    *

    1

    16

    9

    E

    P

    R

    2

    2

    0 1a

    rqq (distribution of contact stress)

    where PER

    q 2

    2

    13

    30 *16

    A sphere in contact with concave half space ( 22 RR )

    *)(4

    3

    *)(4

    3

    12

    21

    21

    213

    E

    P

    RR

    RR

    E

    P

    RR

    RRa

    2

    21

    123

    *

    )(

    16

    9

    E

    P

    RR

    RR

    2

    2

    0 1

    a

    rqq (distribution of contact stress)

    where PERR

    RRq

    2

    2

    21

    12

    3

    30 *

    6

    Two Parallel Cylinders

    *)(

    4

    21

    212

    E

    p

    RR

    RRb

    407.0

    2ln

    1407.0

    2ln

    12 2

    2

    221

    1

    213

    b

    R

    Eb

    R

    E

    p

    2

    2

    0 1bxqq (distribution of contact stress)

    where pERR

    RRq *

    1

    21

    2120

    Cylinders with flat half-space

    *

    41

    2

    E

    pRb

    2

    2

    0 1b

    xqq where

    1

    20

    *

    R

    pEq

    R2

    R1

    E2,2

    E1,1

    pl

    b b

    qq0

    P

    E1,1

    R2

    R1

    P

    E1,1

    R2

    R1

  • 8/12/2019 mechanics of solids week 7 lectures

    11/15

    Week 7 MECH3361

    11

    Chapter 6 Stress Function Method

    6.1 Airy Stress Function

    Basic equations: Review the basic equation in 2D plane stressproblems:

    Equilibrium Eqn:

    0

    0

    yyyyx

    xxyxx

    fyx

    fyx

    Strain-disp:

    y

    u

    x

    v

    y

    v

    x

    u

    xy

    yy

    xx

    2

    1

    Compatibilityyxyx

    xyxxyy

    2

    2

    2

    2

    2

    Hookes law:

    xyxyxy

    xxyyyy

    yyxxxx

    EG

    E

    E

    )1(21

    1

    1

    xyxy

    xxyyyy

    yyxxxx

    G

    E

    E

    2

    2

    1

    1

    Stress B.C.

    yyyxy

    xxyxx

    Fml

    Fml

    Displacement B.C.

    *

    *

    vv

    uu

    Stress method to solve for plane stress problemuse stress as primary variableWhen 0 yx ff ,: Differentiate the 1

    stequilibrium equation w.r.t.xand the 2ndw.r.t.y:

    0

    0

    2

    22

    2

    2

    2

    yyxyxy

    xyxyxx

    yyyxyyyx

    xyxxxyxx

    xyyx

    xyyyxx

    2

    2

    2

    2

    2

    2

    which is the compatibility in terms of stress. Using Hookes law leads to:

    xyyyxxxxyy

    EyxEyEx

    1

    211

    2

    2

    2

    2

    2

    0)1(2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    yxyyxx

    xyyyxxxxyy

    0)1(2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    yxyyxx

    yyxxyyxxxxyy

    0)(2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    yyxxyyxx

    yyyyxxxxyyxxxxyy

    0)()( 22

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    yyxxyyxxyyxxxxyy

    yxyxyx

  • 8/12/2019 mechanics of solids week 7 lectures

    12/15

    Week 7 MECH3361

    12

    Now the key equations need to be considered are:

    0)(

    0

    0

    2yyxx

    yyyx

    xyxx

    yx

    yx

    To solve for the above differential equations, one can assume a solution to the stress, namely

    stress function (or Airy stress function) such that it can satisfy the equilibrium equations. One

    option can be:

    2

    2

    yxx

    ,2

    2

    xyy

    ,yx

    xy

    2

    Equilibrium equations

    0

    0

    2

    3

    2

    3

    2

    22

    2

    3

    2

    32

    2

    2

    xyxyxyyxxyx

    yxxyyxyyxyx

    yyyx

    xyxx

    Compatibility: 02 224

    4

    22

    4

    4

    4

    2

    2

    2

    22

    yyxxxy

    Now we need to solve for a bi-harmonicequation:

    024

    4

    22

    4

    4

    4

    yyxx

    Polar system: The stress functions can be written as:

    2

    2

    2

    11

    rrrrr , 2

    2

    r

    ,

    2

    1

    rrr

    Bi-harmonic functions have been studied extensively. Tables 8.1 and 8.2 in the textbook

    include some typical functions.

    B.C. for stress function

    To this end, all the stress functions selected for a specific problem need to satisfy B.C. as well.

    We need to see what stress function could meet the requirement of B.C.

    6.2 Rectangular plate under bending

    Pure Bending Problem

    MM

    h/2

    h/2

    L

    x

    y

  • 8/12/2019 mechanics of solids week 7 lectures

    13/15

    Week 7 MECH3361

    13

    Step 1: B.C.

    2,0 h

    yLx : 0 yxyy (no surface stresses, but 0xx )

    22,and0

    h

    y

    h

    Lxx : 0xy , (pure bending)

    As per S-V principle: 02/

    2/

    h

    h

    xxdy , (no axial force) Mydyh

    h

    xx

    2/

    2/

    (bending moment)

    Step 2: Observe the B.C. and Select stress function

    Now we need to choose proper stress function to satisfy the above B.C. From Table 8.3, we

    can see stress function #8 leads to a linear xxat the two endsand all other stress

    components are zero. Therefore, we choose3

    ay

    It will be found that this stress function satisfy all the B.C. well.

    Step 3: Use B.C. to determine stress functionTo determine constant a, the bending moment B.C. can be used:

    ayayyy

    xx 6)( 3

    2

    2

    2

    2

    Mhahh

    adyyaydyayydy

    h

    h

    h

    h

    h

    h

    xx

    3332/

    2/

    22/

    2/

    2/

    2/ 2883

    1666

    Thus:3

    2

    h

    Ma

    So the stress function becomes: 33

    2y

    h

    M

    yh

    My

    h

    Mayxx 33

    12266

    ,

    , 032

    2

    2

    2

    ay

    xxyy

    , 03

    22

    ay

    yxyxxy

    Cantilever Beam Problem

    Step 1: B.C.

    2,0 h

    yLx : 0 yxyy (no surface stresses, but 0xx )

    22,0

    hy

    hx : 0 vu (fully-clamped)

    22,

    h

    y

    h

    Lx : 0xx (no axial force) Vdy

    h

    hxy

    2/

    2/ (S-V principle)

    Vh/2

    h/2

    L

    x

    y

    Vh/2

    h/2

    L

    x

    y

  • 8/12/2019 mechanics of solids week 7 lectures

    14/15

    Week 7 MECH3361

    14

    Step 2: Observe the B.C. and Select stress functionThe clamped end can be separated (F.B.D.). We need linear normal (but vanish in total) and a

    uniform shear.

    Uniform shear: #4: axyall around the plates #10: uniform shear in top/bottom but non-uniform at other two ends. Thus superposition can cancel the top/bottom shear. #10 also leads to a normal stress xx at right end (x=L) but B.C. requires only normal

    at left end. We therefore need other function to cancel the right end normal stress.

    #8 is just what we wantThus 33 cybxyaxy

    Step 3: Calculate the stress

    23322

    2

    2

    33

    2

    2

    2

    2

    3

    0

    66

    byacybxyaxyyxyx

    x

    cybxycybxyaxyyy

    xy

    yy

    xx

    Step 4: Applied the B.C. to determine the unknowns in the stress function:

    Vhbhahbhabyaydybyady

    b

    h

    ab

    h

    a

    h

    ba

    h

    yLx

    cbLcybLyh

    yh

    Lx

    h

    h

    h

    h

    h

    hxy

    xy

    xx

    33

    2/

    2/3

    2/

    2/

    22/

    2/

    222

    82823

    4

    3

    04

    3

    232,0

    006622

    ,

    I

    Vha

    8

    2

    ,I

    Vb

    6 ,

    I

    VLc

    6

    Step 5: Express stress

    Thus:

    2

    4

    42,0,)( y

    h

    I

    VyxL

    I

    V

    xyyyxx

    6.3 Stress concentration around a circular hole

    Step 1: Transfer to Polar system:

    Ta

    b

    T

  • 8/12/2019 mechanics of solids week 7 lectures

    15/15

    Week 7 MECH3361

    15

    It is convenient to use polar system. To do so, a stress needs to be transferred:

    2sin

    2

    1cossin)sin(cos2sincos)(

    2cos12

    1coscossin2sincos

    22

    222

    TT

    TT

    xyxxyyr

    xyyyxxrr

    Step 2: B.C.:

    At ar : 0 rrr

    At br : 2sin2

    12cos1

    2

    1TT rrr

    The superposition can be applied to the second B.C at br .

    2costan

    2cos2

    1

    2

    12cos1

    2

    1

    toonalproportatitCons

    rr TTT

    In this boundary ( br ):

    Part 1: Trr2

    1 and 0r

    Part 2: 2cos2

    1Trr and 2sin

    2

    1Tr

    Step 3: Select the stress functionFrom Table 8.4, the stress function is to sum #2, 4, 15, 16 and 17. Determine cifrom BC.

    2cos)(ln 2

    52

    4312

    1 rcrccrcrc

    2sin23

    12

    2cos3

    12

    12

    2cos43

    12

    12

    2

    2

    4

    4

    4

    4

    2

    2

    2

    2

    4

    4

    2

    2

    r

    a

    r

    aT

    r

    aT

    r

    aT

    r

    a

    r

    aT

    r

    aT

    r

    rr

    When 12cos , reaches the maximum

    Ta

    aT

    a

    aTar 3cos

    31

    21

    2 4

    4

    2

    2

    Thus T3max

    Stress concentration factor k: nominalk max (k=3 in this small hole case)


Recommended