+ All Categories
Home > Documents > Medium and Coarsely Crystalline Dolomites in the Middle

Medium and Coarsely Crystalline Dolomites in the Middle

Date post: 06-Jul-2018
Category:
Upload: aldrin-fauzan-faza
View: 219 times
Download: 0 times
Share this document with a friend

of 15

Transcript
  • 8/17/2019 Medium and Coarsely Crystalline Dolomites in the Middle

    1/15

    O R I G I N A L A R T I C L E

    Medium and coarsely crystalline dolomites in the MiddleDevonian Ratner Formation, southern Saskatchewan, Canada:

    origin and pore evolution

    Qilong Fu   • Hairuo Qing

    Accepted: 2 December 2010

     Springer-Verlag 2010

    Abstract   Carbonate rocks of the Middle Devonian

    Ratner Formation in southern Saskatchewan vary fromundolomitized, to partly dolomitized, to completely

    dolomitized. Two major types of medium and coarsely

    crystalline dolomite are differentiated in the formation:

    medium crystalline, planar-e to planar-s (ME) dolomite,

    and medium to coarsely crystalline, nonplanar-a (CA)

    dolomite. ME dolomite, which commonly occurs in the

    lower and middle parts of the Ratner Formation, has more

    radiogenic Sr (87Sr/ 86Sr ratios averaging 0.7085) and sig-

    nificantly higher Fe and Mn concentrations (averaging

    2,260 and 160 ppm, respectively) than do associated

    limestone. ME dolomite is interpreted as resulting from

    dolomitization by ascending basin fluids in a burial envi-

    ronment during late Devonian and Carboniferous time. ME

    dolomite has relatively high porosity (up to 19.3% based on

    point counting); intercrystalline pores are dominant, and

    vugs are locally abundant. The improved petrophysical

    quality of ME dolomite is due to burial dolomitization

    processes and the ability of dolomite to resist compaction

    and retain porosity. In contrast, CA dolomite, present

    mainly in the top parts (locally below the top parts) of the

    formation, has   87Sr/ 86Sr ratios (averaging 0.7081) and Fe

    and Mn concentrations (averaging 250 and 104 ppm,

    respectively) similar to adjacent micro-finely crystallinedolomite. CA dolomite is considered to have formed by

    recrystallization of early-formed microcrystalline dolomite.

    Recrystallizing fluids probably consist of gypsum dehy-

    dration water mixed with formation waters. CA dolomite

    has less than 2% vuggy porosity and rare visible inter-

    crystalline pores.

    Keywords   Dolomite    Petrography    Geochemistry  

    Origin    Porosity     Ratner Formation

    Introduction

    In the last dozen years, the Middle Devonian Ratner For-

    mation (commonly referred to as the ‘‘Ratner Laminites’’)

    in southern Saskatchewan has attracted increasing attention

    because of discovery of oil in the formation. Commercial

    oil has been produced from the formation since 1997

    (Kissling and Slingsby   1999), and dolomites are the

    primary reservoirs (Nimegeers   2005; Nickel   2008). The

    Ratner limestone is fairly tight, but dolomites are relatively

    porous, with porosity as high as 28% (Kissling and

    Slingsby   1999); dolomitization is therefore considered to

    be a crucial diagenetic process in porosity enhancement.

    Understanding the origin of dolomites with respect to pore

    evolution is important for hydrocarbon exploration and

    reservoir development. A recent study by Fu et al. (2006)

    addressed Ratner micro-finely crystalline dolomite, which

    was interpreted to have formed in near-surface evaporitic

    environments. This study integrates core logging, thin section

    examination, and geochemical analyses to investigate the

    formation and pore evolution of Ratner medium and coarsely

    crystalline dolomites in southern Saskatchewan.

    Electronic supplementary material   The online version of thisarticle (doi:10.1007/s13146-010-0038-x ) contains supplementarymaterial, which is available to authorized users.

    Q. Fu (&)

    Bureau of Economic Geology, Jackson School of Geosciences,

    The University of Texas at Austin, Austin, TX 78713-8924, USA

    e-mail: [email protected]

    H. Qing

    Department of Geology, University of Regina,

    Regina SK S4S 0A2, Canada

     1 3

    Carbonates Evaporites

    DOI 10.1007/s13146-010-0038-x

    http://dx.doi.org/10.1007/s13146-010-0038-xhttp://dx.doi.org/10.1007/s13146-010-0038-x

  • 8/17/2019 Medium and Coarsely Crystalline Dolomites in the Middle

    2/15

    Geological setting

    The Middle Devonian Ratner Formation occurs in basinal

    areas of the Saskatchewan subbasin, the southern part of 

    the Elk Point Basin (Fig.  1). The Ratner Formation overlies

    the Brightholme Member, the Lower Winnipegosis Mem-

    ber (where the Brightholme Member is absent), or the

    relatively low buildups (\30 m in height) of the Winni-pegosis Formation, and is commonly overlain by the

    Whitkow Member of the Prairie Evaporite Formation

    (Fig. 2; Jin and Bergman   2001). The Whitkow Member

    consists of a lower anhydrite unit (up to 60 m in thickness)

    and an upper halite unit. The Ratner Formation was ini-

    tially defined as a basinal facies of the Upper Winnipegosis

    Member (Jones   1965). Reinson and Wardlaw (1972)

    redefined the Upper Winnipegosis Member to include only

    carbonate buildups and named carbonate laminites and

    associated anhydrite as the Ratner Member. Recently, the

    Ratner Member has been raised to formation status (Jin and

    Bergman 2001).

    The Ratner Formation that occurs in areas adjacent to

    carbonate buildups (especially between closely spaced

    buildups) is relatively thick. Generally, the farther away

    from the buildups, the thinner the formation becomes. In

    the northern part of the study area where the Winnipegosis

    mud mounds are well-developed (Fig. 1), the Ratner For-

    mation varies from 4 to 17 m in thickness. Wardlaw and

    Reinson (1971) identified eight laterally persistent units,and Jin and Bergman (1999) documented three brining-

    upward cycles within the formation. A typical cycle begins

    with finely laminated carbonate mudstone, which grades

    upward into finely interlaminated or interbedded carbonate

    mudstone and anhydrite overlain by contorted or entero-

    lithic bedded anhydrite. The carbonate laminae vary from

    0.3 to 5 mm in thickness. Three types of lithofacies dis-

    tribution are observed in the cored intervals of the Ratner

    Formation: (1) carbonate rocks in individual cored inter-

    vals are composed of pure microcrystalline to finely crys-

    talline limestone, and finely to very coarsely crystalline

    limestone may be present in the top part of the Ratner; (2)

    Fig. 1  Sketch map of the

    Middle Devonian Elk Point

    Basin in southern Saskatchewan

    (modified from Fu et al.  2006

    with permission from the

    Geological Society). An  inset  in

    the upper right corner shows

    paleogeography of the Middle

    Devonian Elk Point Basin in

    western Canada and the location

    of the study area. The study area

    is divided into three parts:northern, central, and southern.

    Isopach map of the Ratner plus

    Winnipegosis deposits exported

    from Accumap (2002 version).

    Contour interval  =  10 m. ‘‘T ’’

    is ‘‘Township’’, and ‘‘ R’’ is

    ‘‘Range’’. For example,

    T40  =  Township 40,

    R1W2  =  Range 1 west of the

    Second Meridian. Additional

    information (including well list

    examined in this study and

    detailed explanation of 

    ‘‘Township–Range’’) is given in

    Online Resource 1

    Carbonates Evaporites

     1 3

  • 8/17/2019 Medium and Coarsely Crystalline Dolomites in the Middle

    3/15

    individual cored intervals are exclusively dolomite (in

    addition to anhydrite), mostly microcrystalline to finely

    (micro-finely) crystalline dolomite, but medium to coarsely

    crystalline, planar-a dolomite (CA dolomite) may occur at

    the top of the Ratner or be associated with anhydrite beds;

    (3) the upper and middle cycles of the formation consist

    of limestone and anydrite, and the lower cycle contains

    medium crystalline, planar-e to planar-s dolomite (ME

    dolomite).

    In the central study area, the Ratner Formation is thin

    (commonly\4 m in thickness) and consists of laminated

    or vaguely laminated, microcrystalline dolomudstone.

    No depositional cycles are observed. The thickness of 

    carbonate laminae is commonly less than 1.5 mm. In the

    southern study area (Fig.  1), where Winnipegosis pinnacle

    reefs are abundant, the Ratner Formation varies from 3 to

    20 m in thickness and is commonly composed of vaguely

    to wavily laminated carbonate mudstone, with anhydrite

    nodules increasing toward the top of the formation.

    Depositional cycles are commonly absent or indistinct. The

    upper part of the formation is commonly replaced by

    micro-finely crystalline dolomite (Fu et al.   2006). The

    lower (or base) part is preserved as lime-mudstone in

    places. Locally, however, medium crystalline, planar-e to

    planar-s dolomite (ME dolomite) occurs in limestone

    intervals.

    Skeletal fragments and nonskeletal grains are extre-

    mely rare in the Ratner lime-mudstone. Bioturbation

    features were not observed. Laminites may be separated

    by very thin organic-rich partings. Anhydrite laths,

    needles, and aggregates are present in lime-mudstone.

    Calcite crystals in microcrystalline lime-mudstone may

    show slight variation in size (from less than 4  lm to as

    much as 20  lm).

    The Ratner Formation was initially interpreted to have

    been deposited as algal mats in shallow subaqueous to

    intertidal environments, analogous to the modern TrucialCoast, Persian Gulf (Shearman and Fuller   1969). Other

    researchers, however, argued that Ratner deposits precipi-

    tated in a quiet, relatively deep water body with anoxic

    bottom conditions (Davies and Ludlam   1973; Jin and

    Bergman   1999; Wardlaw and Reinson   1971). This study

    supports the latter interpretation on the basis of the rare

    presence of skeletal fragments and relative lateral con-

    stancy of laminations in Ratner deposits.

    Methods

    Cored intervals of the Ratner Formation about 285 m long

    from 42 wells were examined and sampled, and 74 stan-

    dard thin sections were prepared (Online Resource 1). One-

    half of each thin section was stained with a mixture of 

    alizarin red-S and potassium ferricyanide to differentiate

    between dolomite and calcite, and between ferroan car-

    bonates and non-ferroan carbonates (cf. Dickson   1966).

    Visible porosity in thin section is measured by point

    counting the visible pores to calculate pore space, and the

    thin section is taken as the bulk volume.

    All isotopic measurements were performed at the

    University of Saskatchewan. Powder samples for C, O, and

    Sr isotope analyses were obtained from core slabs using a

    Mastercraft drill. Carbon and oxygen isotope values were

    measured using a Finnigan Kiel-III carbonate preparation

    device directly coupled to the inlet of a Finnigan MAT 253

    isotope ratio mass spectrometer. Isotope ratios were

    reported in per mil notation relative to the VPDB (Vienna

    Pee Dee Belemnite) standard. The   87Sr/ 86Sr measurements

    of carbonate powders were performed on a Finnigan MAT-

    261 instrument using a multi-dynamic peak-hopping rou-

    tine, and   88Sr/ 86Sr of 8.375209 was used to correct for

    instrumental mass fractionation.

    Elemental analysis of carbonate samples was done using

    a Perkin Elmer Optima 3300-DV ICP-Atomic Emission

    Spectrometer housed at the University of Western Ontario.

    Powdered samples (0.10 g) were digested by 4 ml of aqua

    regia mixed acid in a steam bath for 2 h. After being cooled

    to room temperature, the solution was diluted to 50 ml.

    Multi-element, high-purity solution standards were used

    for calibration. The analytical accuracy for Ca2?, Mg2?,

    Fe2?, Mn2?, Sr?, and Na? was 0.5, 0.8, 1.1, 1.1, 1.4, and

    0.9%, respectively.

        n    o      i     t     a     m    r    o 

         F    e      t      i    r    o     p      a     v

         E    e      i    r     i    a     r

         P

     Ashern Formation

    Lower Winnipegosis Member 

       n   o    i    t   a   m   r   o    F   s    i   s   o   g   e   p    i   n   n    i    W

       r   e

        b   m   e

        M   s    i   s   o   g   e   p    i   n   n    i    W   r   e   p   p

        U (   m   o   u   n

        d   s

        ) Ratner Formation

    BrightholmeMember    U 

       p     p     e    r

        W    i   n

       n    i   p  

       e    g     o    s 

        i   s 

        n    a     i    n    o    v    e     D    e     l     d     d     i     M

    Whitkow Member 

    Shell Lake Member 

    Leofnard Member 

    Fig. 2   Stratigraphic nomenclature of the Winnipegosis, Ratner, and

    Prairie Evaporite formations in southern Saskatchewan (modified

    from Wardlaw and Reinson 1971; Jin and Bergman 2001)

    Carbonates Evaporites

     1 3

  • 8/17/2019 Medium and Coarsely Crystalline Dolomites in the Middle

    4/15

    Dolomite petrography and distribution

    In the study area, Ratner carbonate rocks vary from lime-

    stone to dolomite. In the about 285-m length of Ratner

    cores examined in this study, 87 m of cores is composed of 

    dolomites. Dolomite phases are estimated to account for

    approximately two-thirds of the Ratner carbonates volu-

    metrically. Three major types of dolomite are identified onthe basis of petrography and distribution: (1) microcrys-

    talline to finely (micro-finely) crystalline dolomite (Fu

    et al.   2006); (2) medium crystalline, planar-e to planar-s

    dolomite (hereafter referred to as Ratner ME dolomite or

    ME dolomite); and (3) medium to coarsely crystalline,

    nonplanar-a dolomite (hereafter referred to as Ratner CA

    dolomite or CA dolomite). This study is focused on the

    latter two types of dolomite, which account for about one-

    fifth of all dolomite phases.

    Petrography

    In core slabs, ME dolomite of the Ratner Formation occurs

    as dolomite patches or thin layers in limestone (Fig. 3a, b)

    or as relatively thick dolomite intervals (Fig.  3c, d). Vugs

    may be abundant and are commonly concentrated along

    laminations, forming channels (Fig. 3d). In thin section,

    ME dolomite displays a planar-e to planar-s texture (cf.

    Sibley and Gregg 1987; Fig. 4a–c) and is commonly fabric

    destructive. In partially dolomitized areas, newly formed

    dolomite crystals in limestone matrix show a range in

    crystal sizes, from particles with diameters equivalent to

    adjacent microcrystalline calcite up to 300 lm across

    (Fig. 4a). Dolomite crystals locally display cloudy cores

    and relatively clear rims and are more lipid than those in

    the completely dolomitized areas. Some dolomite crystals

    appear to be rounded off (Fig.  4b). Remnant calcite crys-

    tals vary from very finely crystalline to medium crystallinein size. In completely dolomitized carbonates, dolomite

    crystal sizes are relatively uniform, varying from about

    80–250  lm (Fig. 4c).

    In thin section, Ratner CA dolomite shows nonplanar-a

    fabric (Fig. 4d) and varies from about 50–500 lm in

    crystal size. Crystals of this type of dolomite generally

    have compromised (curved, serrated or irregular) bound-

    aries, display slightly undulatory extinction, and show a

    turbid appearance because of abundant inclusions (Fig.  4d).

    In places, interlocked dolomite crystals are closely packed

    and may have poorly defined boundaries.

    Stylolites are present in both ME and CA dolomites.Where Ratner limestone is partly replaced by ME dolo-

    mite, dolomite crystals may concentrate along or overgrow

    stylolites or be restricted at one side of the stylolites. In CA

    dolomite, many stylolites are blurred and smoothly undu-

    latory (nonsutured) with low amplitude, and seem to be

    stylolite relicts. However, crystals of CA dolomite are also

    observed to be truncated by later generation of sutured

    stylolites with relatively high amplitude.

    Fig. 3   Photographs of core slabs showing medium crystalline, planar-e

    to planar-s dolomite (ME dolomite) in the Ratner Formation. Each large

    division on the   scale   equals 1 cm.   a   Ratner ME dolomite occurs as

    patches in the Ratner laminated limestone. Location: well 01-15-048-

    17W2; depth: 516.2 m.   b   ME dolomite occurs within laminated

    limestone. Relative abundant vugs (hollow arrow) are observed in

    dolomite, but not inlimestone. A solution seam (ss) is present. Location:

    well 01-15-048-17W2; depth: 516.6 m.  c  Massive ME dolomite with

    ghost of precursor wavy laminations. Generally, vugs are concentrated

    along precursor laminations. Location: 12-27-004-09W2; depth:

    2,440.8 m. d  ME dolomite with abundant vugs and channels occurring

    along laminations. Location: well 01-15-048-17W2; depth: 518.7 m

    Carbonates Evaporites

     1 3

  • 8/17/2019 Medium and Coarsely Crystalline Dolomites in the Middle

    5/15

    Distribution

    Ratner ME dolomite is only observed in cores that contain

    limestone, and its occurrence and abundance are highly

    variable over the study area, varying from several centi-

    meters to a few meters in thickness. In the northern part of 

    the study area, ME dolomite is commonly restricted to the

    lower cycle of the Ratner Formation (e.g., wells 01-15-048-

    17W2 and 02-15-032-01W3). In the southern study area,

    ME dolomite commonly occurs in the lower and middle

    intervals of examined cores, or locally occurs in the upper

    parts of the formation (e.g., well 12-27-004-09W2). In one

    core from well 10-33-006-13W2, four thin intervals(varying from 0.2 to 1.4 m in thickness) of ME dolomite

    are observed to be interlayered with limestone. ME dolo-

    mite has not been observed in the central study area.

    Generally, abundance of ME dolomite decreases upward.

    In some individual cores, Ratner carbonates vary from pure

    ME dolomite (calcite\1% in volume) to dolomitic lime-

    stone (partly replaced by ME dolomite) and grade upward

    into pure limestone (e.g., well 01-15-048-17W2). How-

    ever, relatively abrupt contacts between ME dolomite and

    Ratner limestone are also observed. ME dolomite displayslimited lateral continuity and may change to limestone or

    micro-finely crystalline dolomite in adjacent wells less than

    4 km apart. Regionally, ME dolomite is less abundant in

    the Ratner Formation than in the underlying Brightholme

    and Lower Winnipegosis members of the Winnipegosis

    Formation.

    Ratner CA dolomite is generally present in the top part

    of the Ratner Formation that was replaced by early-formed

    micro-finely crystalline dolomite and overlain by Whitkow

    anhydrite (e.g., well 01-29-032-01W3). Locally, CA

    dolomite is observed in the middle to lower part of the

    formation and may be associated with Ratner anhydritebeds. Contacts between CA dolomite and micro-finely

    crystalline dolomite are commonly gradual.

    Implications

    Medium to coarsely crystalline dolomites commonly form

    at elevated temperatures during burial and/or result from

    recrystallization of precursor finer dolomites in burial

    environments or near-surface meteoric to mixed meteoric-

    Fig. 4   Photomicrographs showing textures of Ratner ME and CA

    dolomites.   a   Ratner ME dolomite has abundant remnant calcite

    crystals (stained by red  color). The remnant calcite accounts for about

    30% of the volume. Visible intercrystalline pores are very rare.

    Location: 10-33-006-13W2; depth: 2,312.7 m.   b  ME dolomite with

    sparse calcite crystals (cl), which is interpreted as calcite remnants

    after dolomite replacement. Visible intercrystalline pores (ip) account

    for about 7%. Note that some dolomite crystals are rounded off 

    (hollow arrow). Location: well 10-33-006-13W2; depth: 2,313.8 m.

    c  ME dolomite shows planar-e texture. Visible intercrystalline pores

    (ip) account for about 10%. Location: 12-27-004-09W2; depth:

    2,440.8 m.   d  Medium crystalline, nonplanar-a dolomite (CA dolo-

    mite). Visible pores are very rare. Location: 01-29-032-01W3; depth:

    1,355.5 m

    Carbonates Evaporites

     1 3

  • 8/17/2019 Medium and Coarsely Crystalline Dolomites in the Middle

    6/15

    marine environments (Gregg and Sibley 1984; Gregg and

    Shelton   1990; Kupecz and Land   1991). Evidence of 

    meteoric diagenesis is absent in the Ratner Formation. ME

    dolomite is interpreted as having formed by direct

    replacement of limestone and probably has not been

    significantly recrystallized with respect to petrography.

    Two lines of evidence support this interpretation: (1) ME

    dolomite may gradually change into limestone, and abun-dant remnant calcite is locally present in ME dolomite

    (Fig. 4a, b), and (2) ME dolomite crystals show relatively

    limpid, euhedral rhombs and uniform crystal size and

    extinction, which is inconsistent with recrystallized dolo-

    mite (cf. Mazzullo 1992).

    Ratner CA dolomite commonly grades into micro-finely

    crystalline dolomite, has no contacts with limestone, and

    contains no calcite relicts. In addition, CA dolomite dis-

    plays a turbid appearance because of abundant inclusions,

    patchy distribution of crystal size, nonplanar-a texture, and

    highly irregular or weakly defined intercrystalline bound-

    aries (Fig. 4d), all of which are in accordance withrecrystallized products of precursor dolomite (cf. Mazzullo

    1992). Therefore, CA dolomite is interpreted to result from

    crystallization of precursor microcrystalline dolomite that

    might have formed in near-surface, evaporitic environ-

    ments. Dolomites formed close to the surface and from

    evaporitic brines tend to recrystallize with time during

    burial (Coniglio et al.  2003; Machel  2004).

    Probably, two stages of stylolites are present in the

    Ratner Formation (Fu et al.  2008). Early-stage stylolites

    have relatively low amplitude and likely occurred in late

    Paleozoic time. Late-stage stylolites display relatively high

    amplitude, and they are interpreted to occur coevally with

    the late Cretaceous–Eocene Laramide Orogeny. In places,

    ME dolomite crystals are restricted to one side of, or

    concentrate along, low-amplitude stylolites, suggesting that

    ME dolomite occurred after or concurrently with early-

    stage stylolitization.

    Dolomite geochemistry

    Isotopic results

    Ratner limestone (lime-mudstone) has d13C values between

    ?1.2 and ?3.3% VPDB, with an average of ?2.3%; d18O

    values between  -3.6 and  -7.8% VPDB, with an average

    of -6.1%; and  87Sr/ 86Sr ratio averaging 0.7079 (Table 1).

    The   d13C values of Ratner micro-finely crystalline dolo-

    mite show a variation from  ?1.6 to  ?3.7% VPDB (aver-

    aging  ?2.8%),  d18O values lie in a narrow range between

    -5.1 and   -6.4%   VPDB (averaging   -5.7%), and the

    average   87Sr/ 86Sr ratio is 0.7080.

    Ratner ME dolomite has  d13C values between ?0.7 and

    ?3.3%   VPDB, with an average of   ?1.9%;   d18O values

    between   -5.3 and   -8.8%   VPDB, with an average of 

    ?7.0%; and   87Sr/ 86Sr ratios range between 0.7083 and

    0.7086, with an average of 0.7085, showing enrichment of 

    radiogenic Sr, compared with that of associated limestone

    (Table 1; Fig. 5). Ratner CA dolomite has   d13C values

    ranging from 0.8 to 3.6% VPDB (averaging ?1.9%), d18Ovalues ranging from   -5.2 to   -7.7%   VPDB (averaging

    -6.8%), and   87Sr/ 86Sr ratios ranging from 0.7080 to

    0.7081 (averaging 0.7081).

    Interpretation of isotopic results

    The d13C values of Ratner ME dolomite (?0.7 * ?3.3%)

    and CA dolomite (?0.8 * ?3.6%) mostly overlap the

    d13C values of Ratner limestone (?1.2 * ?3.3%) and

    micro-finely crystalline dolomite (?1.6 * ?3.7%)

    (Fig. 5a). The narrow range and low positive values of 

    d13C of Ratner ME dolomite and CA dolomite suggest thatorganic matter was not significantly involved during dia-

    genesis and that influence of meteoric water on diagenetic

    alteration was minimal (cf. Allan and Wiggins 1993; Qing

    and Mountjoy 1989; Veizer 1983). The d18O values of ME

    dolomite (-5.3 * -8.8%) are significantly more negative

    than postulated d18O values (about -1 * -4% VPDB) of 

    Middle Devonian marine dolomite (cf. Fritz  1971; Qing

    1998; Veizer et al.   1999), suggesting that ME dolomite

    might have formed at elevated temperatures during burial

    and/or that diagenetic fluids might be more depleted in   18O

    than is Middle Devonian seawater. The d18O values of CA

    dolomite (-5.2 * -7.7%) are comparable to those of 

    micro-finely crystalline dolomite (-5.1 * -6.4%) that

    were interpreted to result from recrystallization at elevated

    temperatures (Fu et al.  2006).

    Sr isotopic compositions of carbonate rocks, unlike

    stable C and O isotopes, are not fractionated by pressure,

    temperature, or microbial processes and directly record

    isotope compositions of parent fluids (Banner  1995; Faure

    and Powell 1972). Ratner ME dolomite has   87Sr/ 86Sr ratios

    (averaging 0.7085) significantly higher than those of 

    associated limestone (Fig. 5b), suggesting that ME dolo-

    mite probably formed from basinal fluids enriched in

    radiogenic Sr isotope (cf. Chaudhuri et al.   1987; Stueber

    et al. 1984). This suggestion is consistent with petrographic

    evidence that constrains the formation of ME dolomite in a

    burial environment. Ratner CA dolomite has   87Sr/ 86Sr

    ratios (averaging 0.7081) similar to those of Ratner micro-

    finely crystalline dolomite and Middle Devonian seawater

    (ranging between 0.7078 and 0.7082, cf. Veizer et al.

    1999), suggesting that either limited external fluid was

    involved during the formation of CA dolomite or the

    Carbonates Evaporites

     1 3

  • 8/17/2019 Medium and Coarsely Crystalline Dolomites in the Middle

    7/15

          T    a      b      l    e      1

        C   a   r    b   o   n ,   o   x   y   g   e   n   a   n    d   s    t   r   o   n

        d    i   u   m    i   s   o    t   o   p   e   c   o   m   p   o   s    i    t    i   o   n   s    f   o   r    t    h   e    R   a    t   n   e   r

       c   a   r    b   o   n   a    t   e   s

        S   a   m   p    l   e   n   u   m    b   e   r

        W   e    l    l    l   o   c   a    t    i   o   n

        D   e   p    t    h    (   m    )

        L    i    t    h   o    l   o   g   y

             d       1       3    C

        (    % ,    V    P    D    B    )

             d       1       8    O    (    % ,    V    P    D    B    )

           8       7    S   r    /       8       6    S   r

        (      ±   s    t   a   n    d   a   r    d   e   r   r   o   r    )

        T    W    A    0    6   a     a

        1    6  -    1    1  -    0    3    3  -    0    1    W    3

       -    1    2    6    5 .    0

        M    i   c   r

       o   c   r   y   s    t   a    l    l    i   n   e    l    i   m   e   s    t   o   n   e

        2 .    4    2

       -    3 .    5    7

        0 .    7    0    7    8    6    3      ±

        0    3

        P    M

        7

        1    2  -    2    7  -    0    0    4  -    0    9    W    2

       -    2    4    4    5 .    6

        M    i   c   r

       o   c   r   y   s    t   a    l    l    i   n   e    l    i   m   e   s    t   o   n   e

        2 .    1    9

       -    7 .    8    3

        0 .    7    0    7    8    8    2      ±

        0    7

        C    S    0    9     a

        0    1  -    1    5  -    0    4    8  -    1    7    W    2

       -    5    1    2 .    3

        M    i   c   r

       o   c   r   y   s    t   a    l    l    i   n   e    l    i   m   e   s    t   o   n   e

        2 .    1    8

       -    6 .    2    9

        0 .    7    0    7    9    0    8      ±

        0    7

        W   r   e    0    3    b     a

        0    7  -    0    2  -    0    3    8  -    0    1    W    3

       -    1    1    7    5 .    6

        M    i   c   r

       o   c   r   y   s    t   a    l    l    i   n   e    l    i   m   e   s    t   o   n   e

        2 .    7    5

       -    6 .    6    4

        W   r   e    0    6    d     a

        0    7  -    0    2  -    0    3    8  -    0    1    W    3

       -    1    1    8    0 .    0

        M    i   c   r

       o   c   r   y   s    t   a    l    l    i   n   e    l    i   m   e   s    t   o   n   e

        1 .    1    5

       -    5 .    4    0

        W    R    0    2

        0    6  -    1    6  -    0    3    8  -    0    1    W    3

       -    1    1    6    5 .    3

        M    i   c   r

       o   c   r   y   s    t   a    l    l    i   n   e    l    i   m   e   s    t   o   n   e

        3 .    2    9

       -    6 .    1    7

        W    R    0    5

        0    6  -    1    6  -    0    3    8  -    0    1    W    3

       -    1    1    6    8 .    0

        M    i   c   r

       o   c   r   y   s    t   a    l    l    i   n   e    l    i   m   e   s    t   o   n   e

        1 .    6    2

       -    6 .    3    4

        W    R    0    8

        0    6  -    1    6  -    0    3    8  -    0    1    W    3

       -    1    1    7    2 .    5

        M    i   c   r

       o   c   r   y   s    t   a    l    l    i   n   e    l    i   m   e   s    t   o   n   e

        1 .    7    7

       -    6 .    4    6

        C    G    2

        1    3  -    0    3  -    0    4    2  -    2    6    W    2

       -    9    8    6 .    2

        M    i   c   r

       o   c   r   y   s    t   a    l    l    i   n   e    l    i   m   e   s    t   o   n   e

        3 .    0    5

       -    6 .    2    5

        D    S    0    2     a

        1    6  -    1    3  -    0    4    2  -    1    9    W    2

       -    8    3    4 .    3

        M    i   c   r

       o  -    fi   n   e    l   y   c   r   y   s    t   a    l    l    i   n   e    d   o    l   o   m    i    t   e

        1 .    7    2

       -    5 .    3    7

        0 .    7    0    7    9    2    7      ±

        0    3

        W    T    0    2     a

        1    6  -    3    6  -    0    3    6  -    2    8    W    2

       -    1    1    6    4 .    5

        M    i   c   r

       o  -    fi   n   e    l   y   c   r   y   s    t   a    l    l    i   n   e    d   o    l   o   m    i    t   e

        3 .    6    1

       -    6 .    2    7

        0 .    7    0    7    9    3    7      ±

        0    8

        W    T    1    0     a

        1    6  -    3    6  -    0    3    6  -    2    8    W    2

       -    1    1    6    9 .    2

        M    i   c   r

       o  -    fi   n   e    l   y   c   r   y   s    t   a    l    l    i   n   e    d   o    l   o   m    i    t   e

        3 .    5    1

       -    5 .    1    0

        0 .    7    0    7    9    5    9      ±

        0    8

        S    M

        5     a

        0    9  -    3    1  -    0    0    4  -    0    8    W    2

       -    2    4    1    1 .    5

        M    i   c   r

       o  -    fi   n   e    l   y   c   r   y   s    t   a    l    l    i   n   e    d   o    l   o   m    i    t   e

        2 .    8    7

       -    5 .    6    4

        0 .    7    0    8    1    4    2      ±

        0    8

        D    S    0    1   a     a

        1    6  -    1    3  -    0    4    2  -    1    9    W    2

       -    8    3    2 .    7

        M    i   c   r

       o  -    fi   n   e    l   y   c   r   y   s    t   a    l    l    i   n   e    d   o    l   o   m    i    t   e

        2 .    4    7

       -    6 .    2    6

        W    T    0    3

        1    6  -    3    6  -    0    3    6  -    2    8    W    2

       -    1    1    6    4 .    9

        M    i   c   r

       o  -    fi   n   e    l   y   c   r   y   s    t   a    l    l    i   n   e    d   o    l   o   m    i    t   e

        3 .    7    4

       -    5 .    8    7

        W    T    1    3     a

        1    6  -    3    6  -    0    3    6  -    2    8    W    2

       -    1    1    7    1 .    7

        M    i   c   r

       o  -    fi   n   e    l   y   c   r   y   s    t   a    l    l    i   n   e    d   o    l   o   m    i    t   e

        1 .    6    4

       -    5 .    0    9

        S    M

        2

        0    9  -    3    1  -    0    0    4  -    0    8    W    2

       -    2    4    0    5 .    5

        M    i   c   r

       o  -    fi   n   e    l   y   c   r   y   s    t   a    l    l    i   n   e    d   o    l   o   m    i    t   e

        3 .    2    5

       -    5 .    7    4

        S    M

        6

        0    9  -    3    1  -    0    0    4  -    0    8    W    2

       -    2    4    1    3 .    7

        M    i   c   r

       o  -    fi   n   e    l   y   c   r   y   s    t   a    l    l    i   n   e    d   o    l   o   m    i    t   e

        2 .    8    9

       -    6 .    4    1

        S    M

        8

        0    9  -    3    1  -    0    0    4  -    0    8    W    2

       -    2    4    1    9 .    5

        M    i   c   r

       o  -    fi   n   e    l   y   c   r   y   s    t   a    l    l    i   n   e    d   o    l   o   m    i    t   e

        2 .    1    9

       -    5 .    6    4

        C    S    0    9

        0    1  -    1    5  -    0    4    8  -    1    7    W    2

       -    5    1    2 .    3

        M    E    d   o    l   o   m    i    t   e

        3 .    3    2

       -    7 .    0    6

        0 .    7    0    8    6    2    1      ±

        0    7

        T    W    A    0    4   a

        1    6  -    1    1  -    0    3    3  -    0    1    W    3

       -    1    2    6    3 .    0

        M    E    d   o    l   o   m    i    t   e

        2 .    6    3

       -    7 .    4    1

        0 .    7    0    8    3    1    9      ±

        0    3

        P    M    5

        1    2  -    2    7  -    0    0    4  -    0    9    W    2

       -    2    4    4    0 .    9

        M    E    d   o    l   o   m    i    t   e

        2 .    7    7

       -    6 .    5    2

        0 .    7    0    8    4    6    5      ±

        1    0

        C    S    R    8    (    1    )

        1    0  -    3    3  -    0    0    6  -    1    3    W    2

       -    2    3    1    4 .    0

        M    E    d   o    l   o   m    i    t   e

        1 .    2    9

       -    6 .    1    9

        0 .    7    0    8    5    0    2      ±

        0    9

        C    S    R    8    (    2    )

        1    0  -    3    3  -    0    0    6  -    1    3    W    2

       -    2    3    1    4 .    0

        M    E    d   o    l   o   m    i    t   e

        1 .    3    3

       -    6 .    0    8

        C    S    R    7

        1    0  -    3    3  -    0    0    6  -    1    3    W    2

       -    2    3    1    3 .    0

        M    E    d   o    l   o   m    i    t   e

        1 .    8    9

       -    6 .    4    3

        C    S    R    6

        1    0  -    3    3  -    0    0    6  -    1    3    W    2

       -    2    3    1    3 .    2

        M    E    d   o    l   o   m    i    t   e

        1 .    7    7

       -    6 .    7    4

        C    S    1    3

        0    1  -    1    5  -    0    4    8  -    1    7    W    2

       -    5    1    6 .    6

        M    E    d   o    l   o   m    i    t   e

        1 .    5    3

       -    8 .    7    6

        C    S    1    6

        0    1  -    1    5  -    0    4    8  -    1    7    W    2

       -    5    1    7 .    4

        M    E    d   o    l   o   m    i    t   e

        1 .    7    6

       -    7 .    8    9

        C    S    1    8

        0    1  -    1    5  -    0    4    8  -    1    7    W    2

       -    5    1    8 .    6

        M    E    d   o    l   o   m    i    t   e

        1 .    9    9

       -    7 .    9    9

        C    S    1    9

        0    1  -    1    5  -    0    4    8  -    1    7    W    2

       -    5    1    9 .    1

        M    E    d   o    l   o   m    i    t   e

        2 .    1    0

       -    8 .    1    8

        C    K    F    1

        0    8  -    0    2  -    0    3    4  -    0    6    W    2

       -    8    1    7 .    0

        M    E    d   o    l   o   m    i    t   e

        0 .    7    0

       -    5 .    2    9

        D    S    0    4    (    1    )

        1    6  -    1    3  -    0    4    2  -    1    9    W    2

       -    8    3    6 .    7

        C    A    d   o    l   o   m    i    t   e

        1 .    4    3

       -    7 .    6    6

        0 .    7    0    8    0    8    6      ±

        1    0

        D    S    0    5

        1    6  -    1    3  -    0    4    2  -    1    9    W    2

       -    8    3    9 .    0

        C    A    d   o    l   o   m    i    t   e

        1 .    4    3

       -    7 .    5    3

        0 .    7    0    8    1    0    3      ±

        0    8

        D    S    0    6

        1    6  -    1    3  -    0    4    2  -    1    9    W    2

       -    8    4    0 .    5

        C    A    d   o    l   o   m    i    t   e

        1 .    6    0

       -    7 .    1    9

        0 .    7    0    8    1    0    7      ±

        1    8

        D    S    0    7   a

        1    6  -    1    3  -    0    4    2  -    1    9    W    2

       -    8    4    1 .    1

        C    A    d   o    l   o   m    i    t   e

        0 .    8    0

       -    7 .    4    8

        0 .    7    0    8    0    4    3      ±

        1    1

    Carbonates Evaporites

     1 3

  • 8/17/2019 Medium and Coarsely Crystalline Dolomites in the Middle

    8/15

    diagenetic fluid had   87Sr/ 86Sr ratios similar to those of Middle Devonian seawater.

    Elemental results

    Ratner ME dolomite varies from nearly stoichiometric to

    slightly calcian (CaCO3 mol% values varying from 50.6 to

    54.6, averaging Ca52.3M g47.7CO3), and CA dolomite has

    CaCO3  mol% values varying from 50.8 to 52.6 (averaging

    Ca51.4Mg48.6CO3). Strontium concentrations of ME and

    CA dolomites vary from 31 to 56 (averaging 39 ppm) and

    from 41 to 84 ppm (averaging 58), respectively (Table  2).

    Na concentrations of ME and CA dolomites vary from 240

    to 772 ppm (averaging 434) and from 690 to 1,020 ppm

    (averaging 861), respectively. ME dolomite shows dra-

    matic variation in Fe concentrations, ranging between 746

    and 3,125 ppm, with an average of 2,260; and has Mn

    concentrations ranging between 120 and 217 ppm, with an

    average of 160. Fe and Mn concentrations of CA dolomite

    vary from 161 to 286 ppm (averaging 250) and from 96 to

    118 ppm (averaging 104), respectively (Table 2). Mn con-

    centrations are positively correlated to Fe concentrations in

    0.7078

    0.7080

    0.7082

    0.7084

    0.7086

    0.7088

    0.0

    1.0

    2.0

    3.0

    4.0

    -9.0 -8.0 -7.0 -6.0 -5.0 -4.0 -3.0 -2.0 -1.0

    -10.0 -9.0 -8.0 -7.0 -6.0 -5.0 -4.0 -3.0 -2.0 -1.0

          1      3 

      C 

        )    B    D    P

        (

        V ,

        ‰

          6      8

          7      8

         r      S

          /     r      S

    18O ( PDB)‰, V

    18O ( PDB)‰, V

    ME dolomiteCA dolomiteMicro-finelycrystalline dolomite

    Microcrystalline limestone

    b

    a

    ME dolomiteCA dolomiteMicro-finelycrystalline dolomite

    Microcrystalline limestone

    Fig. 5 a   d13C values versus   d18O values for Ratner carbonates.

    b   87Sr/ 86Sr ratios versus  d18O values for Ratner carbonates

          T    a      b      l    e      1

       c   o   n    t    i   n   u   e    d

        S   a   m   p    l   e   n   u   m    b   e   r

        W   e    l    l    l   o   c   a    t    i   o   n

        D   e   p    t    h    (   m    )

        L    i    t    h   o    l   o   g   y

             d       1       3    C

        (    % ,    V    P    D    B    )

             d       1       8    O    (    % ,    V    P    D    B    )

           8       7    S   r    /

           8       6    S   r

        (      ±   s    t   a   n    d   a   r    d   e   r   r   o   r    )

        A    A    0    1   a

        0    1  -    2    9  -    0    3    2  -    0    1    W    3

       -    1    3    5    3 .    0

        C    A    d   o    l   o   m    i    t   e

        3 .    5    9

       -    6 .    9    5

        A    A    0    2

        0    1  -    2    9  -    0    3    2  -    0    1    W    3

       -    1    3    5    4 .    1

        C    A    d   o    l   o   m    i    t   e

        2 .    2    6

       -    6 .    4    4

        S    B    2

        1    6  -    3    3  -    0    0    4  -    0    9    W    2

       -    2    4    0    6 .    0

        C    A    d   o    l   o   m    i    t   e

        3 .    2    6

       -    5 .    5    1

        D    S    3    b

        1    6  -    1    3  -    0    4    2  -    1    9    W    2

       -    8    3    7 .    3

        C    A    d   o    l   o   m    i    t   e

        1 .    3    4

       -    7 .    4    5

        D    S    0    4    (    2    )

        1    6  -    1    3  -    0    4    2  -    1    9    W    2

       -    8    3    6 .    7

        C    A    d   o    l   o   m    i    t   e

        1 .    3    0

       -    5 .    2    1

         a

        D   a    t   a    f   r   o   m    F   u   e    t   a    l .    (    2    0    0    6    )

    Carbonates Evaporites

     1 3

  • 8/17/2019 Medium and Coarsely Crystalline Dolomites in the Middle

    9/15

    Ratner carbonates, and both Fe and Mn concentrations of 

    ME dolomite are significantly higher than those of CA

    dolomite (Fig. 6a). In addition, elemental compositions of 

    Ratner limestone and micro-finely crystalline dolomite arepresented in Table 2.

    Interpretation of elemental results

    Generally, Ratner ME dolomite is slightly calcian (aver-

    aging 52.3 mol% Ca). Slight nonstoichiometry of dolomite

    that formed in burial environments has been documented

    from many dolomite bodies elsewhere (e.g., Gao et al.

    1992; Kupecz and Land   1991). Ratner CA dolomite is

    nearly stoichiometric (averaging 51.4 mol% Ca, similar to

    Ratner micro-finely crystalline dolomite in stoichiometry),

    which is a weak indication of recrystallization becausesome dolomites originating in marine environments could

    be stoichiometric initially (Mazzullo 1992).

    Parent fluid chemistry, precursor carbonate mineralogy

    and remnant inclusions, and distribution coefficients of Sr

    (Dsr    1) between dolomite and diagenetic fluids are

    major factors controlling Sr concentrations in dolomite

    (Budd 1997; Warren 2000). Ratner limestone is interpreted

    to be calcite-dominated lime mud initially, since aragonite

    relicts and pseudomorphs have not been observed in Ratner

    micrite (cf. Lasemi and Sandberg   1984) and the Middle

    Devonian sea is considered a ‘‘calcite sea’’ (cf. James and

    Choquette   1990). Sr concentrations of the Ratner micro-

    crystalline limestone probably represent initial Sr concen-trations of lime muds deposited in the Middle Devonian

    Saskatchewan sub-basin. Therefore, low Sr concentrations

    in ME dolomite relative to Ratner limestone (Table 1;

    Fig. 6c) indicate considerable Sr removal during dolomi-

    tization. Furthermore, low Sr concentrations in Ratner ME

    dolomite compared with those of many ancient and

    Cenozoic dolomites may reflect dolomitization of Ratner

    limestone by fluids with a low Sr/Ca ratio and/or at a low

    precipitation rate (cf. Banner  1995; Budd 1997; Vahrenk-

    amp and Swart 1990). Decrease in Sr concentrations of CA

    dolomite relative to those of micro-finely crystalline

    dolomite can be attributed to the stabilization process of dissolution–precipitation, which favors Sr depletion (cf.

    Land 1980; Mazzullo 1992).

    Although whether Na concentrations are indicative of 

    diagenetic fluids’ salinity is debatable; the levels of Na, as

    with Sr values, in a dolomite body can be used to distin-

    guish dolomite types and perhaps give information

    about parent waters (Warren 2000). Note that ME dolomite

    has Na concentrations (averaging 431 ppm) similar to

    those of Ratner limestone (averaging 434 ppm), and Na

    Table 2   Elemental concentrations for the Ratner carbonates (all in ppm except Ca also given in mol%)

    Sample no. Well location Depth (m) Lithology Ca (mol%) Ca Mg Fe Mn Sr Na

    WR02 06-16-038-01W3   -1165.3 Microcrystalline limestone 98.3 381,000 3,900 128 28 230 320

    Wre05 07-02-038-01W3   -1177.6 Microcrystalline limestone 98.1 370,000 4,350 74 20 305 145

    Wre07C 07-02-038-01W3   -1182.7 Microcrystalline limestone 98.4 373,000 3,620 269 45 161 659

    RN4 08-14-004-07W2   -2417.5 Microcrystalline limestone 97.8 368,300 5,100 391 54 205 313

    WT10 16-36-036-28W2   -1169.2 Micro-finely crystalline dolomite 51.8 214,700 120,000 180 47 101 853

    SM1 09-31-004-08W2   -2403.8 Micro-finely crystalline dolomite 54.0 220,800 114,000 325 55 216 593

    SM5 09-31-004-08W2   -2411.5 Micro-finely crystalline dolomite 51.1 205,100 119,000 483 52 71 627

    SM7 09-31-004-08W2   -2417.1 Micro-finely crystalline dolomite 50.6 204,400 121,000 563 56 47 1,000

    BB02 05-29-047-03W3   -740.2 Micro-finely crystalline dolomite 50.6 222,000 131,200 347 79 36 486

    BB06 05-29-047-03W3   -746.3 Micro-finely crystalline dolomite 50.6 221,000 130,700 382 79 37 623

    CS16 01-15-048-17W2   -517.4 ME dolomite 51.2 228,000 131,500 2,878 126 39 240

    CS18 01-15-048-17W2   -518.6 ME dolomite 50.6 207,800 122,800 1,060 120 37 328

    CS19 01-15-048-17W2   -519.1 ME dolomite 51.3 229,700 132,000 746 124 44 346

    PM5 12-27-004-09W2   -2440.9 ME dolomite 52.7 230,000 124,900 3,006 161 56 545

    CSR6 10-33-006-13W2   -2313.2 ME dolomite 54.6 222,000 111,800 3,125 196 31 393

    CSR7 10-33-006-13W2   -2313.0 ME dolomite 53.8 222,200 118,500 2,130 217 32 772

    CSR8 10-33-006-13W2   -2314.0 ME dolomite 51.8 224,000 125,400 2,877 174 32 415

    DS03b 16-13-042-19W2   -837.3 CA dolomite 50.8 216,200 126,800 245 105 75 1,020

    DS04 16-13-042-19W2   -836.7 CA dolomite 51.2 223,500 129,000 161 101 84 1,020

    DS05 16-13-042-19W2   -839.0 CA dolomite 51.4 209,000 119,700 282 96 48 740

    DS06 16-13-042-19W2   -840.5 CA dolomite 51.1 213,000 123,600 278 118 41 835

    DS07a 16-13-042-19W2   -841.1 CA dolomite 52.6 212,000 116,000 286 98 44 690

    Carbonates Evaporites

     1 3

  • 8/17/2019 Medium and Coarsely Crystalline Dolomites in the Middle

    10/15

    concentrations of CA dolomite are (averaging 861 ppm)

    significantly higher than those of ME dolomite (Fig.  6b, d),

    but comparable to those of micro-finely crystalline dolo-

    mite (averaging 697 ppm).

    Fe and Mn concentrations of ME dolomite (averaging

    2,260 ppm and 160, respectively) are much higher than

    those of Ratner limestone (averaging 263 ppm and 42,

    respectively). CA dolomite has Fe concentrations (aver-

    aging 250 ppm) that are lower and Mn concentrations

    (averaging 104 ppm) that are higher than, but still rela-

    tively comparable to, micro-finely crystalline dolomite

    (averaging 380 ppm Fe and 61 ppm Mn). In contrast to Srand Na, Fe and Mn concentrations of dolomite tend to

    increase during burial diagenesis and are particularly

    related to the redox potential of pore fluids, and to Fe and

    Mn concentrations in precursor sediments and diagenetic

    fluids (Budd   1997; Vahrenkamp and Swart   1994). In

    addition, Fe and Mn concentrations better reflect the redox

    state of the diagenetic environment than the ionic strength

    of diagenetic fluids (Azmy et al. 2001). Both elements have

    distribution coefficients greater than one ([1) that is

    enhanced at higher temperatures or slower precipitation

    rates (Veizer 1983). High Fe and Mn concentrations in ME

    dolomite are indicative of pore fluids in reduced conditions

    and fluid–rock interactions sufficient to deliver the allochth-

    onous elements during the formation of ME dolomite (cf.

    Soreghan et al. 2000; Tucker and Wright 1990). The average

    Fe/Mn ratio of ME dolomite is about 14. Barnaby and Read

    (1992) suggested that high Fe/Mn ratios ([5) implied insig-

    nificant sulfate reduction and pyrite precipitation during

    dolomitization. This is consistent with authors’ petrographic

    observation that pyrite is rarely present in ME dolomite. Fe

    concentrations of CA dolomite are slightly lower than those of micro-finely crystalline dolomite, and the average Fe/Mn ratio

    of CA dolomite is about 2.5, suggesting that recrystallization

    occurred in a relatively closed system and/or that Fe was

    depleted in diagenetic fluids because pyrite was rarely

    observed in CA dolomite.

    Significant differences in trace-element concentrations

    between ME dolomite and CA dolomite support the

    authors’ petrographic observations and further suggest

    different origins for these two types of dolomite.

    0

    50

    100

    150

    200

    250

    Fe (ppm)

       M  n   (  p  p  m   )

    0

    50

    100

    150

    200

    250

       M  n   (  p  p  m   )

    Na (ppm)

    ME dolomiteCA dolomiteMicro-finelycrystalline dolomiteMicrocrystalline limestone

    d

    a

    0

    50

    100

    150

    200

    250

    300

    350

    Na (ppm)

    b

    0

    50

    100

    150

    200

    250

    300

    350

    0 500 1000 1500 2000 2500 3000 3500

    0 200 400 600 800 1000 12000 200 400 600 800 1000 1200

    0 50 100 150 200 250

                                                                                                                                                                            S                                                                                                                               r

                                                                                                                                                                           (                                                                                                                                                                          p                                                                                                                                                                         p                                                                                                                                                                         m

                                                                                                                                                                            )                                               

    Mn (ppm)

    c

       S

      r   (  p  p  m   )

    Fig. 6 a   Cross plot of Mn2?–Fe2? concentrations for Ratner

    carbonates.   b   Cross plot of Na?–Sr2? concentrations for Ratner

    carbonates. Legend is the same as for  a.  c  Cross plot of Sr2?–Mn2?

    concentrations for Ratner carbonates showing a trend (arrow) that Sr

    concentrations progressively decrease and Mn concentrations

    progressively increase from microcrystalline limestone, micro-finely

    crystalline dolomite, ME dolomite to CA dolomite. Legend is the

    same as for  a.  d  Cross plot of Na?–Mn2? concentrations for Ratner

    carbonates. Legend is the same as for  a

    Carbonates Evaporites

     1 3

  • 8/17/2019 Medium and Coarsely Crystalline Dolomites in the Middle

    11/15

    Origin of medium and coarsely crystalline dolomites

    Dolomitization

    Petrographic observations suggest that formation of ME

    dolomite postdated or was synchronous with early styloli-

    tization, which was interpreted to occur during late

    Devonian and Carboniferous time (cf. Fu et al.   2008).In addition,   d18O values of Ratner ME dolomite from

    a northernmost core (well 01-15-048-17W2, Ratner

    ME dolomite currently being about 497–520 m deep) and

    a southern well (10-33-006-13W2, currently about

    2,310–2,315 m deep) in the study area show no significant

    variations (Table 1) with increasing burial depth southward

    across about 410 km. This suggests that Ratner ME dolo-

    mite might have formed prior to significant basin tilting,

    which is thought to have occurred from the Pennsylvanian

    onward. Thus, ME dolomite is interpreted to have formed

    in a burial environment during late Devonian to Carbon-

    iferous time.Geochemical evidence (i.e., higher   87Sr/ 86Sr ratios, and

    higher Fe and Mn concentrations relative to Ratner

    microcrystalline limestone) suggests that Ratner ME

    dolomite might have formed from basinal fluids because

    extensive water–rock interactions in sedimentary basins

    commonly result in basinal brines enriched in   87Sr, Fe, and

    Mn (cf. Banner   1995; Land and Prezbindowski   1981;

    Stueber et al.  1984). Many basinal fluids are capable of 

    becoming dolomitizing fluids at temperatures above

    60–70C (Hardie 1987). Upward decrease in the abundance

    of ME dolomite suggests that dolomitizing fluids most

    likely migrated upward.

    The Western Canada Sedimentary Basin probably

    experienced a large-scale heat-flow anomaly and fluid

    event during late Paleozoic time (Al-Aasm et al.  2002;

    Osadetz et al. 2002; Wendte et al. 1998), and elevated heat

    flux may cause thermal convection (Morrow   1998). The

    thermal convection model has been invoked to explain

    dolomitization of Devonian carbonates in western Canada

    (Morrow 1998; Wendte et al. 1998). The inferred timing of 

    ME dolomite coincided with the Antler Orogeny and a late

    Paleozoic thermal anomaly, suggesting that the formation

    of ME dolomite was possibly related to tectonic com-

    pression and/or thermal convection of basinal fluids. Pre-

    vious studies have shown that fault and fracture conduit

    systems were important in delivering dolomitizing fluids to

    the Devonian strata in the Western Canada Sedimentary

    Basin, causing extensive dolomitization (Duggan et al.

    2001; Green and Mountjoy   2005; Kaufman et al.   1991).

    After the fluids reached the Ratner Formation, lateral

    migration of dolomitizing fluids along laminations and

    relatively permeable layers was likely and could explain

    the locally layered and interlayered distribution of ME

    dolomite. Probably owing to the relatively low Mg/Ca ratio

    and/or limited volumes of basinal dolomitizing fluids

    delivered, ME dolomite has incompletely replaced lime-

    stone in places, and it displays planar-e to planar-s texture.

    Recrystallization

    Ratner CA dolomite is mainly distributed in the top parts of the Ratner Formation that is directly overlain by the

    Whitkow anhydrite, or locally associated with Ratner

    anhydrite beds, suggesting that the formation of CA dolo-

    mite is likely related to the presence of anhydrite beds. In

    this study, CA dolomite is interpreted to result from

    recrystallization of early-formed microcrystalline dolomite

    by gypsum dehydration water mixing with connate water.

    A similar suggestion has been proposed to explain the

    formation of finely to very coarsely crystalline limestone in

    the Ratner Formation (Fu and Qing 2007).

    Strontium data of Ratner CA dolomite support the

    suggestion that gypsum dehydration water might have beenan important component of recrystallizing fluids. The87Sr/ 86Sr ratios (0.7080–0.7081) of CA dolomite are

    comparable to those of micro-finely crystalline dolomite

    (Fig. 5b), reflecting a rock buffering system, or the

    recrystallizing fluids have   87Sr/ 86Sr ratios similar to those

    of Middle Devonian seawater (cf. Veizer et al.   1999).

    Gypsum dehydration water from the Whitkow Member is

    thought to have   87Sr/ 86Sr ratios similar to those of Middle

    Devonian seawater because Sr isotopes are not appreciably

    fractionated by sulfate crystallization (cf. Schreiber and El

    Tabakh 2000).

    Whitkow and Ratner anhydrite was interpreted to have

    been originally deposited as gypsum (Debout and Maiklem

    1973). Gypsum might have been converted to anhydrite

    because of increasing burial depth during late Devonian

    and Carboniferous time (Fu and Qing   2007). The water

    released through dehydration of gypsum is undersaturated

    with respect to carbonates, and diagenetic alteration may

    occur as dehydration water flows through adjacent car-

    bonate rocks (cf. Warren   1989). In the study area, dehy-

    dration water from the Whitkow and Ratner sulfate beds

    could have been squeezed into adjacent Ratner carbonate

    rocks, resulting in recrystallization of the early-formed

    microcrystalline dolomite.

    Reservoir characterization

    Oil stain is observed in many cores of Ratner dolomites

    from the study area. Residual bitumen is rarely observed in

    Ratner CA dolomite, but is common in ME dolomite. ME

    dolomite is thinner in thickness and less predictable in

    occurrence than micro-finely crystalline dolomite.

    Carbonates Evaporites

     1 3

  • 8/17/2019 Medium and Coarsely Crystalline Dolomites in the Middle

    12/15

    Porosity and permeability

    Core analyses and logs indicate that the Ratner dolomites

    have porosity of 10–22% and permeability of 1.8–45 md

    (Kissling and Slingsby   1999; Nimegeers   2005; Yurkow-

    ski   1995). These dolomites are likely micro-finely crys-

    talline, as they are from the upper part of the Ratner

    Formation (cf. Fu et al.   2006). Intercrystalline pores areoverwhelmingly dominant in the micro-finely crystalline

    dolomite.

    Ratner ME dolomite has the most abundant visible pores

    in the Ratner Formation. Intercrystalline pores are domi-

    nant (Fig. 4b, c), and vugs and horizontal to sub-horizontal

    channels are abundant in places (Fig.  3b–d). Importantly,

    most vugs and channels can be classified as touching vugs

    (cf. Lucia   1995) and are connected with intercrystalline

    pores. Visible intercrystalline pores are less abundant in

    ME dolomite with planar-s texture than in that with planar-

    e texture, and they are rarely observed in calcareous ME

    dolomite (dolomite\80% in volume). In slightly calcare-ous dolomite (dolomite   [80%), visible intercrystalline

    pores are common, varying from about 6.3 to 10.7% based

    on point counting of thin sections. Generally, visible

    intercrystalline porosities increase with increasing dolo-

    mite percentage. In carbonate samples that are completely

    replaced by ME dolomite, distribution and size of inter-

    crystalline pores are relatively uniform (Fig.  4c), and vis-

    ible intercrystalline porosities vary from about 8.7 to

    19.3%.

    CA dolomite is generally tight and has very rare visible

    intercrystalline pores (Fig.  4d). Separate and touching vugs

    are locally observed. Total vuggy porosity accounts for less

    than 2% in CA dolomite.

    In carbonate rocks, permeability is highly related to

    rock fabric (Lucia  1983,  1995). The size and distribution

    of pore space, or pore size distribution, is important

    along with porosity in estimating permeability. Lucia

    (1983) demonstrated that three permeability fields can be

    defined using particle-size boundaries of 100 and 20  lm,

    a relationship that appears to be limited to particle sizes

    less than 500  lm. Ratner ME dolomite is classified as

    Class 1 of Lucia (1995), and the permeability values can

    be calculated using the rock-fabric approach (Lucia

    2007):

    k ¼   45:35 108

    u8:537ip

    where  k   is permeability in md, and uip  is fractional inter-

    particle/intercrystalline porosity.

    The permeability of ME dolomite calculated by this

    rock-fabric approach varies from 0.3 to 3069 md. The

    actual permeability of ME dolomite is probably higher

    because touching vugs can significantly contribute to per-

    meability (cf. Lucia 2007).

    Discussion

    There has long been discussion concerning the role of 

    dolomitization in porosity development and destruction

    (Moore   2001; Lucia   2004). For a long time, it had been

    claimed that dolomitization creates about 13% porosity

    based on the mole-for-mole replacement equation and most

    dolomites are more porous and more permeable thanlimestones (cf. Machel   2004). However, Schmoker et al.

    (1985) compared numerous limestone reservoirs and

    dolomite reservoirs located in the USA and found that

    dolomites commonly have lower matrix porosities and

    permeabilities, but higher fracture porosities and perme-

    abilities, than do limestones. Some studies demonstrated

    that dolomites become more porous than limestones at

    depths greater than approximately 2,000 m (e.g., Amthor

    et al.   1994; Schmoker and Halley   1982). Lucia (2004,

    2007) argued that porosity in dolomites inherited from the

    precursor limestones rather than created by a mole-for-

    mole replacement mechanism, and overdolomitization mayocclude pores or reduce porosity. He further suggested that

    Paleozoic dolomites are commonly more porous than jux-

    taposed limestones, and most of younger dolomites are less

    porous than or have similar porosity range to adjacent

    limestones. Now, it is widely accepted that dolomitization

    may generate, preserve, or destroy pores, depending on the

    fabrics and textures being replaced and the rate, nature, and

    volume of dolomitizing fluids passing through carbonate

    sediments (Purser et al.  1994; Warren 2000).

    It is almost impossible to know the porosity of the

    precursor limestone by the time of burial dolomitization.

    However, it is reasonable to infer that the porosity of 

    limestone being replaced by ME dolomite was low because

    lime mud could readily compact in marine pore waters at

    shallow depths (Shinn and Robbin   1983). In the Ratner

    Formation, ME dolomite is more porous and permeable

    than adjacent lime-mudstone. The improved petrophysical

    quality is probably related to a significant increase in

    crystal size in dolomitized products (crystal size changing

    from \20  lm in Ratner lime-mudstone to 80–250  lm in

    ME dolomite) and the ability of dolomite to retain porosity.

    Slightly calcareous ME dolomite (dolomite[80) is less

    porous than pure ME dolomite (dolomite [99%). Where

    dolomitization is only partial, mole-per-mole replacement,

    if it takes place, will generate porosity (Machel   2004).

    However, porosity would not have been preserved unless

    dolomitization is intensive enough to form a rigid cemen-

    ted framework, thus preventing compaction. Murray (1960)

    observed a marked increase in porosity with increasing

    dolomite content in the Mississippian Midale Beds in

    Saskatchewan where dolomite is more than approximately

    50% in volume. Powers (1962) found that porosity begins

    to increase at slightly above 75% dolomitization, reaches a

    Carbonates Evaporites

     1 3

  • 8/17/2019 Medium and Coarsely Crystalline Dolomites in the Middle

    13/15

    maximum development at 80% dolomitization, and then

    decreases to very low porosity at 100% dolomitization (cf.

    Jodry   1992). Powers’ (1962) work agrees fairly closely

    with work done by Jodry (1955). However, this study

    suggested that there were almost no visible intercrystalline

    pores in Ratner calcareous dolomite (dolomite\80%), and

    the carbonate samples that were completely replaced by

    ME dolomite had the highest porosities.Touching vugs are locally abundant in Ratner ME

    dolomite, and more common in the completely dolomitized

    samples, suggesting that there may be a genetic relation-

    ship between dissolution and dolomitization. In this study,

    relatively abundant vuggy pores are interpreted to result

    from dissolution during advanced stages of dolomitization

    that appears to be an integral part of the replacement

    process (cf. Machel 2004). This interpretation is supported

    by the authors’ petrographic observation that Ratner lime-

    mudstone does not contain secondary pores, whereas vugs

    and channels occur in areas where the percentage of 

    dolomite exceeds about 80% volumetrically. Vugs andchannels are commonly concentrated along laminations,

    suggesting that they are structurally focused bathyphreatic

    sites, where there was an excess of dissolution over pre-

    cipitation during replacement of limestone by dolomite (cf.

    Warren   2000). No evidence of significant dissolution of 

    dolomite crystals facing vugs and channels was observed,

    implying that the formation of vugs and channels did not

    result from post-dolomitization dissolution.

    Ratner ME dolomite is much more permeable than are

    adjacent limestones. Permeability of carbonate is related to

    rock fabric (Lucia   2004), and dolomitization can change

    the rock fabric significantly. When a coarse dolomite spar

    ([100  lm) replaces lime mud, any porosity residing

    between the crystal rhombs will have better flow properties

    than its finer-grained mud counterpart because of an

    increase in pore size and pore throat size during dolomi-

    tization of mudstone precursors (Lucia 2004). In the Ratner

    Formation, the carbonate rocks that are completely

    replaced by planar-e dolomite have the highest perme-

    ability. Woody et al. (1996) showed that as porosity

    increases in a dolomite reservoir, permeability increases at

    a greater rate in planar-e dolomite than in planar-s dolo-

    mite. Because vugs and channels preferentially occur along

    laminations of ME dolomite (Fig. 3b–d), it is inferred that

    horizontal permeability is higher than vertical permeability

    in ME dolomite.

    There are almost no visible intercrystalline pores in

    Ratner CA dolomite. Recrystallization usually reduces

    porosity (Ahr   2008). The process forms a crystalline

    mosaic with abundant compromise boundaries and virtu-

    ally no intercrystalline porosity. During recrystallization,

    porous parent early-formed dolomite composed of micro-

    crystalline crystals with a high surface area to volume ratio

    may have undergone coalescive transformation with

    attendant loss of interparticle porosity (cf. Ahr 2008).

    Conclusion

    Two types of medium and coarsely crystalline dolomite aredifferentiated in the Ratner Formation on the basis of 

    petrographic characteristics coupled with geochemical

    evidence. (1) Medium crystalline, planar-e to planar-s

    (ME) dolomite is present mainly in the lower and middle

    parts of the Ratner Formation that have not undergone

    early near-surface dolomitization. Generally, abundance of 

    Ratner ME dolomite decreases upward. (2) Medium to

    coarsely crystalline, nonplanar-a (CA) dolomite is com-

    monly present in the top part of the Ratner Formation that

    is overlain by Whitkow anhydrite, and occasionally occurs

    below the top part of the formation.

    Compared with associated microcrystalline lime-mudstone, ME dolomite is significantly richer in radiogenic

    Sr (87Sr/ 86Sr ratios averaging 0.7085), Fe (averaging

    2,260 ppm), and Mn (averaging 160 ppm). CA dolomite has

    comparable  87Sr/ 86Sr ratios (averaging 0.7081), Fe concen-

    trations (averaging 250 ppm), and Mn concentrations

    (averaging 104), with micro-finely crystalline dolomite.

    Petrographic, stratigraphic, and geochemical character-

    istics constrain Ratner ME dolomite to have formed by

    ascending basinal fluids in a burial environment during late

    Devonian to Carboniferous time. Ratner CA dolomite is

    interpreted to result from recrystallization of precursor

    early-formed microcrystalline dolomite. Recrystallizingfluids were probably a mixture of gypsum dehydration

    waters and connate fluids.

    Ratner ME dolomite displays abundant visible inter-

    crystalline pores and has highest reservoir quality with

    respect to porosity, pore size distribution and permeability

    in the Ratner Formation. The high petrophysical quality

    of ME dolomite is considered to be mainly related to: (1)

    an increase in crystal sizes from microcrystalline (\20  lm)

    in the precursor lime-mudstone to medium crystalline

    (80–250  lm) in ME dolomite, and (2) the ability of dolo-

    mite to retain porosity. In intensively dolomitized rocks

    (dolomite[ 80% in volume), porosity increases as MEdolomite percentage increases. Vuggy and channel pores

    preferentially occur along laminations and are interpreted

    as resulting from dissolution taking place during dolomi-

    tization. CA dolomite has almost no visible intercrystalline

    pores, but limited vugs (vuggy porosity\ 2%), and the very

    low porosity is interpreted to result from recrystallization.

    Acknowledgments   This project was funded by an NSERC

    (National Sciences and Engineering Research Council of Canada)

    IOR grant to K. Bergman and J. Jin, with matching funds from the

    Carbonates Evaporites

     1 3

  • 8/17/2019 Medium and Coarsely Crystalline Dolomites in the Middle

    14/15

    Potash Corporation of Saskatchewan, and an NSERC Discovery grant

    to H. Qing, as well as by the Bureau of Economic Geology (GAAC

    fund), The University of Texas at Austin. The Subsurface Geological

    Laboratory of Saskatchewan Industry and Resources provided free

    access to cores and facilities. Initial work (such as data collection)

    was carried out at the University of Regina. This manuscript benefited

    by comments from Nancy Chow and Ian Hunter. We appreciate an

    anonymous reviewer who helped to improve the manuscript signifi-

    cantly. Amanda R. Masterson and Lana Dieterich are thanked for

    their detailed editing. The publication was authorized by the Director,

    Bureau of Economic Geology.

    References

    Ahr WM (2008) Geology of carbonate reservoir: the identification,

    description, and characterization of hydrocarbon reservoirs in

    carbonate rocks. Wiley, New Jersey

    Al-Aasm IS, Lonnee J, Clarke J (2002) Multiple fluid flow events and

    the formation of saddle dolomite: case studies from the Middle

    Devonian of the Western Canada Sedimentary Basin. Mar Petrol

    Geol 19:209–217

    Allan JR, Wiggins WD (1993) Dolomite reservoirs: geochemical

    techniques for evaluating origin and distribution. AAPG Contin-

    uing Education Course Note Series 36

    Amthor JE, Mountjoy EW, Machel HG (1994) Regional-scale

    porosity and permeability variations in Upper Devonian Leduc

    buildups: implications for reservoir development and prediction

    in carbonates. AAPG Bull 78:1541–1559

    Azmy K, Veizer J, Misi A, de Oliveira TF, Sanches AL, Dardenne

    MA (2001) Dolomitization and isotope stratigraphy of the

    Vazante Formation, Sao Francisco Basin, Brazil. Precambr Res

    112:303–329

    Banner JL (1995) Application of the trace element and isotope

    geochemistry of strontium to studies of carbonate diagenesis.

    Sedimentology 42:805–824

    Barnaby RJ, Read JF (1992) Dolomitization of a carbonate platformduring late burial: lower to Middle Cambrian Shady Dolomite,

    Virginia Appalachians. J Sediment Petrol 62:1023–1043

    Budd DA (1997) Cenozoic dolomites of carbonate islands: their

    attributes and origin. Earth Sci Rev 42:1–47

    Chaudhuri S, Broedel V, Clauer N (1987) Strontium isotopic

    evolution of oil-field waters from carbonate reservoir rocks in

    Bindley Field, central Kansas USA. Geochim Cosmochim Acta

    51:45–53

    Coniglio M, Zheng Q, Carter TR (2003) Dolomitization and

    recrystallization of Middle Silurian Reefs, Michigan Basin,

    southwestern Ontario. Bull Can Petrol Geol 51:177–199

    Davies GR, Ludlam SD (1973) Origin of laminated and graded

    sediments, Middle Devonian of western Canada. Geol Soc Am

    Bull 84:3527–3546

    Debout DG, Maiklem WR (1973) Ancient anhydrite facies andenvironments, Middle Devonian Elk Point Basin, Alberta. Bull

    Can Petrol Geol 21:287–343

    Dickson JAD (1966) Carbonate identification and genesis as revealed

    by staining. J Sediment Petrol 36:491–505

    Duggan JP, Mountjoy EW, Stasiuk LD (2001) Fault-controlled dolomi-

    tization at Swan Hills Simonette oil field (Devonian), deep basin

    west-central Alberta, Canada. Sedimentology 48:301–323

    Faure G, Powell JL (1972) Strontium isotope geology. Springer,

    Berlin

    Fritz P (1971) Geochemical characteristics of dolomites and the   18O

    content of Middle Devonian oceans. Earth Planet Sci Lett

    4:277–282

    Fu Q, Qing H (2007) Neomorphism of the Middle Devonian Ratner

    limestone related to dehydration of gypsum in south-central

    Saskatchewan. Can J Earth Sci 44:695–705

    Fu Q, Qing H, Bergman K (2006) Early dolomitization and

    recrystallization of carbonate in an evaporite basin: the Middle

    Devonian Ratner laminite in southern Saskatchewan, Canada.

    J Geol Soc (London) 163:937–948

    Fu Q, Qing H, Bergman K, Yang C (2008) Dedolomitization

    and calcite cementation in the Middle Devonian Winnipegosis

    Formation, south-central Saskatchewan. Sedimentology 55:1623–

    1642

    Gao G, Land LS, Folk RL (1992) Meteoric modification of early

    dolomite and late dolomitization by basinal fluids, upper

    Arbuckle Group, Slick Hills, southwestern Oklahoma. AAPG

    Bull 66:1649–1664

    Green DG, Mountjoy EW (2005)  Fault  and conduit controlled burial

    dolomitization  of the Devonian west-central Alberta deep basin.

    Bull Can Petrol Geol 53:101–129

    Gregg JM, Shelton KL (1990) Dolomitization and dolomite neomor-

    phism in the back reef facies of the Bonneterre and Davis

    formations Cambrian, Southeastern Missouri. J Sediment Petrol

    60:549–562

    Gregg JM, Sibley DF (1984) Epigenetic dolomitization and the origin

    of xenotopic dolomite texture. J Sediment Petrol 54:908–931

    Hardie LA (1987) Perspective dolomitization: a critical view of some

    current views. J Sediment Petrol 57:166–183

    James N, Choquette PW (1990) Limestones—the sea floor diagenetic

    environment. In: McIlreath IA, Morrow DW (eds) Diagenesis.

    Geoscience Canada Reprint Series 4, pp 13–34

    Jin J, Bergman KM (1999) Sequence stratigraphic analysis of the

    Winnipegosis carbonate–Prairie Evaporite transition in the

    Middle Devonian Elk Point Basin, Southern Saskatchewan.

    Carbonates Evaporites 14:64–83

    Jin J, Bergman KM (2001) Revised stratigraphy of the Middle

    Devonian (Givetian) Winnipegosis carbonate–Prairie Evaporite

    transition, Elk Point Group, southern Saskatchewan. Bull Can

    Petrol Geol 49:441–457

    Jodry RL (1955) Rapid method for determining magnesium–calcium

    ratios of well samples and its use in predicting structure and

    secondary porosity in calcareous formations. AAPG Bull

    39:493–511

    Jodry RL


Recommended