+ All Categories
Home > Documents > Membrane Processes Chapter 15. Resources and Materials: Students should review and utilize the...

Membrane Processes Chapter 15. Resources and Materials: Students should review and utilize the...

Date post: 19-Jan-2016
Category:
Upload: london-pacer
View: 213 times
Download: 1 times
Share this document with a friend
23
Membrane Processes Chapter 15
Transcript
Page 1: Membrane Processes Chapter 15. Resources and Materials: Students should review and utilize the following on-line resources:

Membrane Processes

Chapter 15

Page 2: Membrane Processes Chapter 15. Resources and Materials: Students should review and utilize the following on-line resources:

Resources and Materials:Students should review and utilize the following on-line resources:

http://www.nesc.wvu.edu/pdf/dw/publications/ontap/2009_tb/membrane_DWFSOM43.pdf/)

http://www.epa.gov/etv/vt-dws.html#mfsfrompc

http://www.epa.gov/safewater/disinfection/lt2/pdfs/report_lt2_membranefiltration.pdf

(pages 95 and 100-102)

http://sciencelab.com/xMSDS-Citric_acid-9923494

http://www.sciencelab.com/msds.php?msdsId=9925146

http://www.sciencelab.com/xMSDS-Sodium_Sulfate_22_2_w_v_solution-9926896

Page 3: Membrane Processes Chapter 15. Resources and Materials: Students should review and utilize the following on-line resources:

Membrane Filtration:

• Why are water systems implementing membrane filtration?

• What contaminants does membrane filtration remove?

• How does membrane filtration work?

Page 4: Membrane Processes Chapter 15. Resources and Materials: Students should review and utilize the following on-line resources:

Why are water systems implementing membrane filtration?

• Increasing regulatory requirements• Economic factors:

Requires a smaller amount of treatment chemicals than conventional treatment

Can treat lower quality source water

Requires less space than conventional treatment

Page 5: Membrane Processes Chapter 15. Resources and Materials: Students should review and utilize the following on-line resources:

Increasing regulatory requirements

Contaminants such as cryptosporidium, arsenic, and disinfection by-products have become the focus of increasingly stringent regulations.

These contaminants are readily removed by membrane filtration

Page 6: Membrane Processes Chapter 15. Resources and Materials: Students should review and utilize the following on-line resources:

What kinds of contaminants can membranes remove?

INORGANICS:

Metals such as arsenic, iron and manganese

Salt and other dissolved solids

Hardness

ORGANICS:

Bacteria, viruses, and protozoa

Dissolved organic matter (TOC, NOM)

Cyst-forming organisms

(giardia and cryptosporidium)

Page 7: Membrane Processes Chapter 15. Resources and Materials: Students should review and utilize the following on-line resources:

Study the chart :

Which process will remove some, but not all, viruses?

Which is the only listed process that will remove metals?

Which process will remove particles as small as salts, but will not remove metals?

Page 8: Membrane Processes Chapter 15. Resources and Materials: Students should review and utilize the following on-line resources:

ANSWERS

Membrane ProcessesChapter 15

Which process will remove some, but not all, viruses?

MICROFILTRATION

Which is the only listed process that will remove metals?

REVERSE OSMOSIS

Which process will remove particles as small as salts, but will not remove metals?

NANOFILTRATION

Page 9: Membrane Processes Chapter 15. Resources and Materials: Students should review and utilize the following on-line resources:

How does membrane filtration work?

Manufactured membranes operate like sieves. They have pores of a uniform size which permit small particles to pass through and reject larger particles.

Hit theEnter keyONCE to Begin the animation

Page 10: Membrane Processes Chapter 15. Resources and Materials: Students should review and utilize the following on-line resources:

Membrane ProcessesChapter 15

In order to operate at efficient rates, a driving force is applied to ‘push’ particles

across the membrane

Some membranes are “pressure-driven”. Pressure is applied to the raw-water side of the membrane.

Page 11: Membrane Processes Chapter 15. Resources and Materials: Students should review and utilize the following on-line resources:

Membranes are classified as “pressure-driven” or “electric-driven” according to the type of force applied

PRESSURE-DRIVEN

Microfiltration

Ultrafiltration

Nanofiltration

Reverse osmosis

ELECTRIC-DRIVEN

Electrodialysis

Electrodialysis reversal

Page 12: Membrane Processes Chapter 15. Resources and Materials: Students should review and utilize the following on-line resources:

Wastewater (reject water)

Pressure-Driven Membrane Processes: Inside to Out configuration

Influent water with contaminantsPushed into membrane by pressure

Clean Water Forced out

through membraneby pressure

Membrane

Hollow core collectors for treated water

Hit Enter to see a cut-away view of the inside of this membrane assembly

Page 13: Membrane Processes Chapter 15. Resources and Materials: Students should review and utilize the following on-line resources:

Wastewater (reject water)

Pressure-Driven Membrane Processes: Outside to In configuration

Influent water with contaminants

pushed in on top of the membrane

by pressure

Clean water exits through the central core

Page 14: Membrane Processes Chapter 15. Resources and Materials: Students should review and utilize the following on-line resources:

Understanding Reverse OsmosisWhat is Osmosis?

The natural tendency of dissimilar solutions to from an equilibrium with equal concentrations throughout the blended solution. For example, if you pour sweet tea and unsweetened tea into two sides of a container separated by a porous screen (see below) the eventual result will be a container full of slightly sweet tea. The movement of molecules across the screen to reach equilibrium is an example of osmosis.

2 hours later

Page 15: Membrane Processes Chapter 15. Resources and Materials: Students should review and utilize the following on-line resources:

Reverse Osmosis

The natural progression of osmosis makes both solutions equally saturated with a contaminant (in the case of the tea, the “contaminant” was sugar). Osmosis is not a helpful process in water treatment because the purpose of treatment is to create a finished water stream with a very low concentration of contaminants, and a wastewater stream containing the major proportion of the contaminants present in the raw water.

Therefore, treatment professionals must “reverse” osmosis to force contaminants out of the finished water stream and into the wastewater stream.

The force applied to a reverse osmosis membrane is in the form of pressure (from 50 – 300 psi)

Page 16: Membrane Processes Chapter 15. Resources and Materials: Students should review and utilize the following on-line resources:

Membrane ProcessesChapter 15

Reverse Osmosis

• Reverse Osmosis membranes are the most selective of all of the pressure membranes, and can remove contaminants as small as individual ions such as calcium and magnesium

– Higher pressures are required to force water through the very small pores of RO membranes

– Clogging and fouling occur with water containing excessive iron, hardness, turbidity and other contaminants – pre-treatment is necessary to remove these contaminants

– RO produces a greater percentage of ‘reject’ water: a waste stream requiring analysis and disposal

Page 17: Membrane Processes Chapter 15. Resources and Materials: Students should review and utilize the following on-line resources:

Membrane ProcessesChapter 15

Membrane Assemblies

• Hollow-Fiber• Pleated• Spiral-wound

Page 18: Membrane Processes Chapter 15. Resources and Materials: Students should review and utilize the following on-line resources:

Membrane ProcessesChapter 15

Membrane Cleaning

Some pleated membranes are designed to be disposable; these are generally used for individual residential or commercial services or very small water treatment plants.

The majority of membranes require some type of cleaning operation. Cleaning is accomplished by reverse flow (Backwashing) and/or chemical cleaning.

Page 19: Membrane Processes Chapter 15. Resources and Materials: Students should review and utilize the following on-line resources:

Membrane ProcessesChapter 15

Triggers for cleaning a pressure-driven membrane filter

• Time – based: for example, backwash every 4 hours

• Elapsed time: for example, backwash every 4 hours• Pressure required to push water through membrane

(similar to head loss on a gravity filter).• Scaling or fouling of the membrane

• Special triggers for Reverse Osmosis membranes:• Reject water percentage increases/treated water decreases by

more than 5%

• Effluent concentration of contaminant (for example, salt in a desalination facility) increases by 15% or more

Page 20: Membrane Processes Chapter 15. Resources and Materials: Students should review and utilize the following on-line resources:

Electrically-Driven Processes

• Electrodialysis: Electrical current is applied to the solution to force contaminant ions across the membrane into the waste stream.

• Electrodialysis reversal: The operating principle is the same as electrodialysis, with the added step of periodic current reversal (think of an ‘electric current backwash’) to clean the membrane.

The most common application for these processes is desalination of brackish water.

Page 21: Membrane Processes Chapter 15. Resources and Materials: Students should review and utilize the following on-line resources:

Cleaner influent water = better membrane performance

As the purity of the incoming water decreases, the rate of membrane fouling and scaling increases.

Increases the frequency of cleaning, time out of service, and cost of cleaning chemicals

Decreases the service life of the membrane through increase exposure to oxidants and long-term plugging of pores with build-up of fouling agents

Pre-treatment is recommended to lower turbidity, iron, and other contaminants before water is fed to the membrane

Page 22: Membrane Processes Chapter 15. Resources and Materials: Students should review and utilize the following on-line resources:

Membrane ProcessesChapter 15

Process control monitoring for membrane operation

• % Rate of recovery: Amount of finished water divided by amount of influent raw water X 100

• % Reject water: 100% - % rate of recovery

• Feed water flow rate and pressure (must not exceed rated capacity of membrane to prevent membrane damage)

• Feed water quality (conductivity, pH, turbidity, etc) to prolong membrane life and prevent fouling

• Finished water quality (conductivity, ph, turbidity, etc) to detect breakthrough or membrane damage

Page 23: Membrane Processes Chapter 15. Resources and Materials: Students should review and utilize the following on-line resources:

Mechanical issues in Membrane Operation

• Routine visual inspection to detect leaks in membrane assemblies

• Periodic inspection of operating units (unusual bubbling, etc may indicate broken fibers, leaks, etc)

• Periodic removal from service for integrity testing (apply air pressure and check for bubbling)

• Routine cleaning with appropriate cleaning agents compatible with specific membrane in use


Recommended