Home >
Documents >
Menu Trigonometry Quizzes Quiz #1 Quiz #2 Quiz #3 Quiz #4 Quiz #5 Quiz #6 Quiz #7 Quiz #8 Quiz #9...

Date post: | 22-Dec-2015 |

Category: |
## Documents |

View: | 280 times |

Download: | 12 times |

Share this document with a friend

Embed Size (px)

Popular Tags:

of 43
/43

Transcript

- Slide 1
- Slide 2
- Menu Definitions of Trigonometric Values of Acute Angles of a Right Triangle For the triangle at the right sin = __________ cos = __________ tan = __________ cot = __________ sec = __________ csc = __________ a b c
- Slide 3
- Menu Definitions of Trigonometric Values of Acute Angles of a Right Triangle For the triangle at the right sin = __________ cos = __________ tan = __________ cot = __________ sec = __________ csc = __________ a b c
- Slide 4
- Menu Definitions of Trigonometric Values of Acute Angles of a Right Triangle For the triangle at the right sin = __________ cos = __________ tan = __________ cot = __________ sec = __________ csc = __________ 24 10 26 Simplify your answers by reducing any fractions!
- Slide 5
- Menu Definitions of Trigonometric Values of Acute Angles of a Right Triangle For the triangle at the right sin = __________ cos = __________ tan = __________ cot = __________ sec = __________ csc = __________ 24 10 26 Simplify your answers by reducing any fractions!
- Slide 6
- Menu Trigonometric Values of the Acute Angles of a Right Triangle. Given that cot = 1.5, determine the following: sin = ______ cos = ______ tan = ______ sec = ______ csc = ______ a b c Hint: Let 1.5 = 3/2 and determine the values of a, b, and c in the diagram.
- Slide 7
- Menu Trigonometric Values of the Acute Angles of a Right Triangle. Given that cot = 1.5, determine the following: sin = ______ cos = ______ tan = ______ sec = ______ csc = ______ a b c Hint: Let 1.5 = 3/2 and determine the values of a, b, and c in the diagram.
- Slide 8
- Menu Trigonometric Values of the Acute Angles of a Right Triangle. a = 6 b = 8 c = 10 -------------------- sin = ______ cos = ______ tan = ______ sec = 5 -------------------- sin = ______ cos = ______ tan = ______ cot = ______ csc = ______ a b c Simplify your answers by reducing any fractions!
- Slide 9
- Menu Trigonometric Values of the Acute Angles of a Right Triangle. a = 6 b = 8 c = 10 -------------------- sin = ______ cos = ______ tan = ______ sec = 5 -------------------- sin = ______ cos = ______ tan = ______ cot = ______ csc = ______ a b c Simplify your answers by reducing any fractions!
- Slide 10
- Menu Trigonometric Values of Special Angles Complete the following table. Answers must be exact. sin cos tan 00 30 45 60 90
- Slide 11
- Menu Trigonometric Values of Special Angles Complete the following table. Answers must be exact. sin cos tan 00 30 45 60 90
- Slide 12
- Menu Solve the Following Triangles (Use a calculator and round answers to 1 decimal place.) AC B a b c A = _________ B = _________ C = 90 a = _________ b = 7 c = 10 A = 52 B = _________ C = 90 a = 17 b = _________ c = _________
- Slide 13
- Menu Solve the Following Triangles (Use a calculator and round answers to 1 decimal place.) AC B a b c A = _________ B = _________ C = 90 a = _________ b = 7 c = 10 A = 52 B = _________ C = 90 a = 17 b = _________ c = _________
- Slide 14
- Menu Give exact answers. No calculators!
- Slide 15
- Menu Give exact answers. No calculators!
- Slide 16
- Menu Angle Smallest Positive Coterminal Angle Reference Angle 582 -260
- Slide 17
- Menu Angle Smallest Positive Coterminal Angle Reference Angle 582 -260
- Slide 18
- Menu Angle Smallest Positive Coterminal Angle Reference Angle 200 -300
- Slide 19
- Menu Angle Smallest Positive Coterminal Angle Reference Angle 200 -300
- Slide 20
- Menu Angle Smallest Positive Coterminal Angle Reference Angle Degrees0030456090150 Radians
- Slide 21
- Menu Angle Smallest Positive Coterminal Angle Reference Angle Degrees0030456090150 Radians
- Slide 22
- Menu 1.Find the coterminal angle between 0 and 2 for each of the following: -5 /6 8 /3 2.Find the reference angle (between 0 and /2) for each of the following: 3 /4 5 /6 3.Give the following trig values: sin( /6) = cos(3 /4) = tan(- /3) =
- Slide 23
- Menu 1.Find the coterminal angle between 0 and 2 for each of the following: -5 /6 8 /3 2.Find the reference angle (between 0 and /2) for each of the following: 3 /4 5 /6 3.Give the following trig values: sin( /6) = cos(3 /4) = tan(- /3) =
- Slide 24
- Menu
- Slide 25
- Slide 26
- Slide 27
- Slide 28
- Complete the following identities:
- Slide 29
- Menu Complete the following identities:
- Slide 30
- Menu FunctionDomainRange f(x) = sin -1 x g(x) = cos -1 x h(x) = tan -1 x
- Slide 31
- Menu FunctionDomainRange f(x) = sin -1 x g(x) = cos -1 x h(x) = tan -1 x
- Slide 32
- Menu
- Slide 33
- Slide 34
- Slide 35
- Slide 36
- 1.State ONE of the Pythagorean identities. 2.State ONE of the double angle identities. 3.State ONE of the sum/difference identities. 4.Evaluate the following (exact answers without a calculator): a.sin (7 /6) = b.arctan (-1) = c.cos -1 (-1/2) = 5.Evaluate the following (use a calculator and round to 2 decimal places): a.csc (1.8) = b.cot -1 (5) = c.arcsec (0.3) =
- Slide 37
- Menu 1.State ONE of the Pythagorean identities. 2.State ONE of the double angle identities. 3.State ONE of the sum/difference identities. 4.Evaluate the following (exact answers without a calculator): a.sin (7 /6) = b.arctan (-1) = c.cos -1 (-1/2) = 5.Evaluate the following (use a calculator and round to 2 decimal places): a.csc (1.8) = b.cot -1 (5) = c.arcsec (0.3) =
- Slide 38
- Menu
- Slide 39
- Slide 40
- Slide 41
- Slide 42
- Convert from Polar to Cartesian: (0, 120) = (___, ___) (7, -45) = (___, ___) r = 3sin - 4cos __________________ Convert from Cartesian to Polar: (0, 12) = (___, ___) (7, -7) = (___, ___) 2xy = 1 __________________ Determine the Polar coordinates for the point (-5, 200) that satisfies the following criteria: r > 0 & 0 < < 360 (___, ___) r < 0 & -360 < < 0 (___, ___)
- Slide 43
- Menu Convert from Polar to Cartesian: (0, 120) = (___, ___) (7, -45) = (___, ___) r = 3sin - 4cos __________________ Convert from Cartesian to Polar: (0, 12) = (___, ___) (7, -7) = (___, ___) 2xy = 1 __________________ Determine the Polar coordinates for the point (-5, 200) that satisfies the following criteria: r > 0 & 0 < < 360 (___, ___) r < 0 & -360 < < 0 (___, ___)

Recommended