Menu Definitions of Trigonometric Values of Acute Angles of a
Right Triangle For the triangle at the right sin = __________ cos =
__________ tan = __________ cot = __________ sec = __________ csc =
__________ a b c
Slide 3
Menu Definitions of Trigonometric Values of Acute Angles of a
Right Triangle For the triangle at the right sin = __________ cos =
__________ tan = __________ cot = __________ sec = __________ csc =
__________ a b c
Slide 4
Menu Definitions of Trigonometric Values of Acute Angles of a
Right Triangle For the triangle at the right sin = __________ cos =
__________ tan = __________ cot = __________ sec = __________ csc =
__________ 24 10 26 Simplify your answers by reducing any
fractions!
Slide 5
Menu Definitions of Trigonometric Values of Acute Angles of a
Right Triangle For the triangle at the right sin = __________ cos =
__________ tan = __________ cot = __________ sec = __________ csc =
__________ 24 10 26 Simplify your answers by reducing any
fractions!
Slide 6
Menu Trigonometric Values of the Acute Angles of a Right
Triangle. Given that cot = 1.5, determine the following: sin =
______ cos = ______ tan = ______ sec = ______ csc = ______ a b c
Hint: Let 1.5 = 3/2 and determine the values of a, b, and c in the
diagram.
Slide 7
Menu Trigonometric Values of the Acute Angles of a Right
Triangle. Given that cot = 1.5, determine the following: sin =
______ cos = ______ tan = ______ sec = ______ csc = ______ a b c
Hint: Let 1.5 = 3/2 and determine the values of a, b, and c in the
diagram.
Slide 8
Menu Trigonometric Values of the Acute Angles of a Right
Triangle. a = 6 b = 8 c = 10 -------------------- sin = ______ cos
= ______ tan = ______ sec = 5 -------------------- sin = ______ cos
= ______ tan = ______ cot = ______ csc = ______ a b c Simplify your
answers by reducing any fractions!
Slide 9
Menu Trigonometric Values of the Acute Angles of a Right
Triangle. a = 6 b = 8 c = 10 -------------------- sin = ______ cos
= ______ tan = ______ sec = 5 -------------------- sin = ______ cos
= ______ tan = ______ cot = ______ csc = ______ a b c Simplify your
answers by reducing any fractions!
Slide 10
Menu Trigonometric Values of Special Angles Complete the
following table. Answers must be exact. sin cos tan 00 30 45 60
90
Slide 11
Menu Trigonometric Values of Special Angles Complete the
following table. Answers must be exact. sin cos tan 00 30 45 60
90
Slide 12
Menu Solve the Following Triangles (Use a calculator and round
answers to 1 decimal place.) AC B a b c A = _________ B = _________
C = 90 a = _________ b = 7 c = 10 A = 52 B = _________ C = 90 a =
17 b = _________ c = _________
Slide 13
Menu Solve the Following Triangles (Use a calculator and round
answers to 1 decimal place.) AC B a b c A = _________ B = _________
C = 90 a = _________ b = 7 c = 10 A = 52 B = _________ C = 90 a =
17 b = _________ c = _________
Slide 14
Menu Give exact answers. No calculators!
Slide 15
Menu Give exact answers. No calculators!
Slide 16
Menu Angle Smallest Positive Coterminal Angle Reference Angle
582 -260
Slide 17
Menu Angle Smallest Positive Coterminal Angle Reference Angle
582 -260
Slide 18
Menu Angle Smallest Positive Coterminal Angle Reference Angle
200 -300
Slide 19
Menu Angle Smallest Positive Coterminal Angle Reference Angle
200 -300
Slide 20
Menu Angle Smallest Positive Coterminal Angle Reference Angle
Degrees0030456090150 Radians
Slide 21
Menu Angle Smallest Positive Coterminal Angle Reference Angle
Degrees0030456090150 Radians
Slide 22
Menu 1.Find the coterminal angle between 0 and 2 for each of
the following: -5 /6 8 /3 2.Find the reference angle (between 0 and
/2) for each of the following: 3 /4 5 /6 3.Give the following trig
values: sin( /6) = cos(3 /4) = tan(- /3) =
Slide 23
Menu 1.Find the coterminal angle between 0 and 2 for each of
the following: -5 /6 8 /3 2.Find the reference angle (between 0 and
/2) for each of the following: 3 /4 5 /6 3.Give the following trig
values: sin( /6) = cos(3 /4) = tan(- /3) =
Slide 24
Menu
Slide 25
Slide 26
Slide 27
Slide 28
Complete the following identities:
Slide 29
Menu Complete the following identities:
Slide 30
Menu FunctionDomainRange f(x) = sin -1 x g(x) = cos -1 x h(x) =
tan -1 x
Slide 31
Menu FunctionDomainRange f(x) = sin -1 x g(x) = cos -1 x h(x) =
tan -1 x
Slide 32
Menu
Slide 33
Slide 34
Slide 35
Slide 36
1.State ONE of the Pythagorean identities. 2.State ONE of the
double angle identities. 3.State ONE of the sum/difference
identities. 4.Evaluate the following (exact answers without a
calculator): a.sin (7 /6) = b.arctan (-1) = c.cos -1 (-1/2) =
5.Evaluate the following (use a calculator and round to 2 decimal
places): a.csc (1.8) = b.cot -1 (5) = c.arcsec (0.3) =
Slide 37
Menu 1.State ONE of the Pythagorean identities. 2.State ONE of
the double angle identities. 3.State ONE of the sum/difference
identities. 4.Evaluate the following (exact answers without a
calculator): a.sin (7 /6) = b.arctan (-1) = c.cos -1 (-1/2) =
5.Evaluate the following (use a calculator and round to 2 decimal
places): a.csc (1.8) = b.cot -1 (5) = c.arcsec (0.3) =
Slide 38
Menu
Slide 39
Slide 40
Slide 41
Slide 42
Convert from Polar to Cartesian: (0, 120) = (___, ___) (7, -45)
= (___, ___) r = 3sin - 4cos __________________ Convert from
Cartesian to Polar: (0, 12) = (___, ___) (7, -7) = (___, ___) 2xy =
1 __________________ Determine the Polar coordinates for the point
(-5, 200) that satisfies the following criteria: r > 0 & 0
< < 360 (___, ___) r < 0 & -360 < < 0 (___,
___)
Slide 43
Menu Convert from Polar to Cartesian: (0, 120) = (___, ___) (7,
-45) = (___, ___) r = 3sin - 4cos __________________ Convert from
Cartesian to Polar: (0, 12) = (___, ___) (7, -7) = (___, ___) 2xy =
1 __________________ Determine the Polar coordinates for the point
(-5, 200) that satisfies the following criteria: r > 0 & 0
< < 360 (___, ___) r < 0 & -360 < < 0 (___,
___)