+ All Categories
Home > Technology > MeOH and EtOH evaporating flow mechanisms in square and circular microchannels

MeOH and EtOH evaporating flow mechanisms in square and circular microchannels

Date post: 17-Jul-2015
Category:
Upload: vania-silverio
View: 94 times
Download: 0 times
Share this document with a friend
17
Methanol and Ethanol Evaporating Flow Mechanisms in Square and Circular Microchannels [email protected] [email protected] Laboratory of Thermofluids, Combustion and Energy Systems, LTCES Center for Innovation, Technology and Policy Research, IN+ Instituto Superior Tรฉcnico, Technical University of Lisbon
Transcript

Methanol and Ethanol Evaporating Flow

Mechanisms in Square and Circular

Microchannels

[email protected]

[email protected]

Laboratory of Thermofluids, Combustion and Energy Systems, LTCES

Center for Innovation, Technology and Policy Research, IN+

Instituto Superior Tรฉcnico, Technical University of Lisbon

Methanol and Ethanol Evaporating Flow Mechanisms in Square and Circular Microchannels

[email protected]

[email protected]

Laboratory of Thermofluids, Combustion and Energy Systems

APPLICATIONS

2

Devices shrink in footprint and increase in functionality

keep getting hotter

Chevrolet Equinox Fuel Cell Electric Vehicle

http://alternativefuels.about.com

Computers

http://www.treehugger.com

Photovoltaics

http://onyxgreenbuilding.wordpress.com

Methanol and Ethanol Evaporating Flow Mechanisms in Square and Circular Microchannels

[email protected]

[email protected]

Laboratory of Thermofluids, Combustion and Energy Systems

MOTIVATION

3

โ€ข Microchannels

โ€“ etched directly into the component

โ€ข dielectric fluids

โ€“ thermal resistances

โ€ข integrate the microchannel structure into a layer that is closer to the heat producing device. This

removes layers of material in the thermal resistance path which can significantly improve the cooling of

the heat source

โ€ข Flow boiling

โ€“ heat removal rates

โ€“ pumping power

โ€“ โ‚ฌโ‚ฌ

Macrochannel Flow Pattern Maps simply fail to apply

Instabilities are prominent

Methanol and Ethanol Evaporating Flow Mechanisms in Square and Circular Microchannels

[email protected]

[email protected]

Laboratory of Thermofluids, Combustion and Energy Systems

EXPERIMENTAL APPARATUS

4

Methanol and Ethanol Evaporating Flow Mechanisms in Square and Circular Microchannels

[email protected]

[email protected]

Laboratory of Thermofluids, Combustion and Energy Systems

EXPERIMENTAL CONDITIONS

5

SCS_521CCS_543

Properties of the fluids (Tsat, 0.1MPa)

0 50 100 150 2000

200

400

600

800

q"s [kW.m-2

]

G [

kg.

m-2

.s-1

]

CH3OH CCS

542

CH3OH SCS

521

C2H

5OH CCS

542

C2H

5OH SCS

521

methanol

ethanol

Methanol and Ethanol Evaporating Flow Mechanisms in Square and Circular Microchannels

[email protected]

[email protected]

Laboratory of Thermofluids, Combustion and Energy Systems

MEASUREMENTS

6

0 2 4 6 8 10 12 14 16 18 2010

20

30

40

time [s]

Pre

ssure

[kPa]

0 20 40 60 80 100

280

300

320

340

360

380

400

Tem

pera

ture

[K

]

Length [mm]

0 2 4 6 8 10 12 14 16 18 2020

250

300

350

400

450

time [s]

Tem

pera

ture

[K

]

outlet measured pressure

inlet measured pressure

0 0.5 1 1.5 2 2.5 3

4

6

8

10

Time [s]

Pre

ssure

Dro

p [

kPa]

0 20 40 60 80 100

0

2

4

6

8

h [

kW

.m-2

.K-1

]

Length [mm]

๐‘ท๐’“๐’†๐’”๐’”๐’–๐’“๐’†

๐‘ป๐’†๐’Ž๐’‘๐’†๐’“๐’‚๐’•๐’–๐’“๐’†

Methanol and Ethanol Evaporating Flow Mechanisms in Square and Circular Microchannels

[email protected]

[email protected]

Laboratory of Thermofluids, Combustion and Energy Systems

PRESSURE DROP

7

โˆ†๐‘ inlet

stagnation

chamber

โˆ†๐‘ outlet

stagnation

chamber

โˆ†๐‘๐‘๐‘œ๐‘›inlet

contraction

โˆ†๐‘๐‘’๐‘ฅ๐‘outlet

expansion

โˆ†๐‘๐‘›๐ป๐‘‡,๐‘–๐‘›non-heated

entrance length

โˆ†๐‘๐‘›๐ป๐‘‡,๐‘œ๐‘ข๐‘กnon-heated

exit length

โˆ†๐‘๐ป๐‘‡= ๐‘๐‘–๐‘› โˆ’ ๐‘๐‘œ๐‘ข๐‘กheated length

โˆ†๐‘๐‘๐‘œ๐‘›= 1 โˆ’๐ด๐‘๐‘ ๐ด๐‘–๐‘ ๐‘

2

+ ๐พ๐‘๐‘œ๐‘›1

2๐บ2๐œ—๐ฟ

๐พ๐‘๐‘œ๐‘› = 0.0088๐›ผ2 โˆ’ 0.1785๐›ผ + 1.6027 ๐พ๐‘’๐‘ฅ๐‘= - 2 x 1.33๐ด๐‘๐‘ 

๐ด๐‘–๐‘ ๐‘1 โˆ’

๐ด๐‘๐‘ 

๐ด๐‘–๐‘ ๐‘

๐‘๐‘–๐‘› = ๐‘๐‘š๐‘’๐‘Ž๐‘ ,๐‘–๐‘›๐‘™๐‘’๐‘ก โˆ’ โˆ†๐‘๐‘๐‘œ๐‘› โˆ’ โˆ†๐‘๐‘›๐ป๐‘‡,๐‘–๐‘›

โˆ†๐‘๐‘’๐‘ฅ๐‘,๐‘ ๐‘“=1

2๐พ๐‘’๐‘ฅ๐‘๐บ

2๐œ—๐ฟ,๐‘œ

two-phase

โˆ†๐‘๐‘’๐‘ฅ๐‘,๐‘ก๐‘“= ๐บ2๐ด๐‘๐‘ ๐ด๐‘–๐‘ ๐‘

๐ด๐‘๐‘ ๐ด๐‘–๐‘ ๐‘

โˆ’ 1 ๐œ—๐ฟ,๐‘œ 1 โˆ’ ๐‘ฅ๐‘’๐‘ฅ๐‘–๐‘ก2 1 +

5

๐‘‹๐‘‰๐‘‰+

1

๐‘‹๐‘‰๐‘‰2

๐‘๐‘œ๐‘ข๐‘ก = ๐‘๐‘š๐‘’๐‘Ž๐‘ ,๐‘œ๐‘ข๐‘ก๐‘™๐‘’๐‘ก + โˆ†๐‘๐‘’๐‘ฅ๐‘ + โˆ†๐‘๐‘›๐ป๐‘‡,๐‘œ๐‘ข๐‘ก

๐‘๐‘–๐‘› ๐‘๐‘œ๐‘ข๐‘ก

single-phase single-phase

๐‘๐‘š๐‘’๐‘Ž๐‘ ,๐‘–๐‘›๐‘™๐‘’๐‘ก ๐‘๐‘š๐‘’๐‘Ž๐‘ ,๐‘œ๐‘ข๐‘ก๐‘™๐‘’๐‘ก

Methanol and Ethanol Evaporating Flow Mechanisms in Square and Circular Microchannels

[email protected]

[email protected]

Laboratory of Thermofluids, Combustion and Energy Systems

TEMPERATURE

8

๐‘‡๐‘ค,๐‘–๐‘› = ๐‘‡๐‘ค,๐‘œ๐‘ข๐‘ก โˆ’๐‘ž๐‘ " ๐ด๐‘๐‘ ๐‘˜๐‘ ๐‘ข๐‘Ÿ

๐‘ ๐‘“๐‘™๐‘œ๐‘”๐ท๐‘œ๐ท๐‘–

2๐œ‹๐ฟ๐ป๐‘‡

๐‘ ๐‘“ = 1

๐‘ ๐‘“ = 0.785

๐‘‡๐‘“ = ๐‘‡๐‘š,๐‘–๐‘› +๐‘ž๐‘ " ๐‘ƒ๐‘ค ๐‘ง

๐‘‰ ๐œŒ๐ฟ ๐‘๐‘,๐ฟ

๐‘‡๐‘“ = ๐‘‡๐‘ ๐‘Ž๐‘ก

๐‘‡๐‘ ๐‘Ž๐‘ก = 1 โˆ’๐‘ง

๐ฟ๐ป๐‘‡๐‘‡๐‘ ๐‘Ž๐‘ก ๐‘ƒ๐‘–๐‘›๐‘™๐‘’๐‘ก +

๐‘ง

๐ฟ๐ป๐‘‡๐‘‡๐‘ ๐‘Ž๐‘ก ๐‘ƒ๐‘œ๐‘ข๐‘ก๐‘™๐‘’๐‘ก

(Single-phase region)

(Two-phase region)๐ฟ๐‘ ๐‘Ž๐‘ก = ๐‘‰ ๐œŒ๐ฟ ๐‘๐‘,๐ฟ ๐‘‡๐‘ ๐‘Ž๐‘ก,0 โˆ’ ๐‘‡๐‘“,๐‘–

๐‘ž๐‘ " ๐‘ƒ๐‘ค

๐‘ป๐’Š๐’๐’๐’†๐’“ ๐’˜๐’‚๐’๐’

๐‘ป๐’‡๐’๐’–๐’Š๐’…

one dimensional heat conduction

Methanol and Ethanol Evaporating Flow Mechanisms in Square and Circular Microchannels

[email protected]

[email protected]

Laboratory of Thermofluids, Combustion and Energy Systems

HEAT TRANSFER COEFFICIENT

9

โ„Ž =๐‘ž๐‘ "

๐‘‡๐‘ค,๐‘–๐‘› โˆ’ ๐‘‡๐‘“

๐‘ž๐‘ " =

๐ผ2๐‘…

๐ด๐ป๐‘‡โˆ’ โ„Ž๐‘™๐‘œ๐‘ ๐‘  ๐‘‡๐‘ค,๐‘œ๐‘ข๐‘ก โˆ’ ๐‘‡๐‘Ž๐‘–๐‘Ÿ โˆ’ ๐œ€๐œŽ ๐‘‡๐‘Ž๐‘–๐‘Ÿ

4 โˆ’ ๐‘‡๐‘ค,๐‘œ๐‘ข๐‘ก4

60 90 120 1500

5

10

15

20C2H5OH

havg [

kW

.m-2.K

-1]

q"s [kW.m-2]

G=662kg.m-2.s

-1

G=483kg.m-2.s

-1

G=303kg.m-2.s

-1

G=214kg.m-2.s

-1

G=125kg.m-2.s

-1

SCS_521,

๐‘‡๐‘“ = ๐‘‡๐‘ ๐‘Ž๐‘ก

(Two-phase region)

square 521mm, ethanol

Methanol and Ethanol Evaporating Flow Mechanisms in Square and Circular Microchannels

[email protected]

[email protected]

Laboratory of Thermofluids, Combustion and Energy Systems

HEAT TRANSFER COEFFICIENT

10

=โ„Ž โˆ’ โ„Ž๐‘ ๐‘™โ„Ž๐‘“๐‘”

0.0 0.2 0.40

4

8

12CH3OH

havg [

kW

.m-2.K

-1]

Quality [-]

G=661kg.m-2.s

-1

G=482kg.m-2.s

-1

G=302kg.m-2.s

-1

G=214kg.m-2.s

-1

Local Vapor Quality [-]

hlo

cal[k

W.m

-2.K

-1]

0.0 0.2 0.40

4

8

12C2H5OH

havg [

kW

.m-2.K

-1]

Quality [-]

G=662kg.m-2.s

-1

G=483kg.m-2.s

-1

G=304kg.m-2.s

-1

G=214kg.m-2.s

-1

G=125kg.m-2.s

-1

Local Vapor Quality [-]h

local[k

W.m

-2.K

-1]

๐’’๐’”" = 91kW.m-2, ๐‘ป๐’”๐’‚๐’• =343K ๐’’๐’”

" = 99kW.m-2, ๐‘ป๐’”๐’‚๐’• =357K

square 521mm, methanol square 521mm, ethanol

Methanol and Ethanol Evaporating Flow Mechanisms in Square and Circular Microchannels

[email protected]

[email protected]

Laboratory of Thermofluids, Combustion and Energy Systems

HEAT TRANSFER COEFFICIENT

11

-0.2 0.0 0.2 0.40

4

8

12C2H5OH

havg [

kW

.m-2.K

-1]

Quality [-]

q"

s=60kW.m

-2

q"

s=88kW.m

-2

q"

s=124kW.m

-2

Exit Vapor Quality [-]h

local[k

W.m

-2.K

-1]

-0.2 0.0 0.2 0.40

4

8

12CH3OH

havg [

kW

.m-2.K

-1]

Quality [-]

q"

s=45kW.m

-2

q"

s=66kW.m

-2

q"

s=92kW.m

-2

Exit Vapor Quality [-]

hlo

cal[k

W.m

-2.K

-1]

66 < ๐‘ฎ < 700kg.m-2.s-1, ๐‘ณ = ๐‘ณ๐‘ฏ๐‘ป 130 < ๐‘ฎ < 700kg.m-2.s-1, ๐‘ณ = ๐‘ณ๐‘ฏ๐‘ป

circular 543mm, methanol circular 543mm, ethanol

Methanol and Ethanol Evaporating Flow Mechanisms in Square and Circular Microchannels

[email protected]

[email protected]

Laboratory of Thermofluids, Combustion and Energy Systems

HEAT TRANSFER COEFFICIENT

12

Correlation Application range Comments Maximum deviation

Haynes and Fletcher(2003) R11 and R123; Copper, ๐บ= 0.11 โ€“ 1.84 kg m-2 s-1; = 0.0 โ€“ 1.0;

๐‘ž๐‘ "= 11-170kW.m-2; ๐ทโ„Ž= 0.92,1.95mm

subcooled and saturated flow

boiling

+3.0%

Kandlikar and Balasubramanian (2004) R113, R134b, R123; ๐บ = 50 โ€“ 570kg m-2 s-1; =0.00 โ€“ 0.98;

๐‘ž๐‘ "= 5 โ€“ 91kW.m-2; ๐ทโ„Ž= 0.19 โ€“ 2.92mm

strong presence of nucleate

boiling

+3.3%

Saitoh et al. (2007) R134a, SUS304, ๐บ= 150-450kg m-2 s-1; = 0.2 โ€“ 1.0;

๐‘ž๐‘ "= 5-40kW.m-2; ๐ทโ„Ž= 0.51, 1.12, 3.1mm

convective and nucleate boiling

contributions

+10.2%

Yu et al (2002) Water, SS, ๐บ= 50 โ€“ 200kg m-2 s-1; = 0.0 โ€“ 0.9;

๐‘ƒ= 200kPa; ๐ทโ„Ž= 2.98mm

nucleate boiling dominates

over a large ๐บ and range

+21.5%

0.0 0.1 0.2 0.3 0.40

20

40

60

80C2H5OH

havg [

kW

.m-2.K

-1]

Quality [-]

Experimental

Kandlikar

Yu et al.

Saitoh et al.

Haynes and Fletcher

๐’’๐’”" = 55kW.m-2; 130 < ๐‘ฎ < 700kg.m-2.s-1

Exit Vapor Quality [-]

hlo

cal[k

W.m

-2.K

-1]

square 521mm, ethanol

Methanol and Ethanol Evaporating Flow Mechanisms in Square and Circular Microchannels

[email protected]

[email protected]

Laboratory of Thermofluids, Combustion and Energy Systems

FLOW PATTERNS

13

โ€ข Definitions adapted from Collier and Thome (1994) and Carey (2007)

โ€“ Determined from simultaneous measurements of โˆ†๐‘, ๐‘‡๐‘ค,๐‘œ๐‘ข๐‘ก and high speed imaging

Bubbly flow

Confined flow

Elongated flow

Methanol and Ethanol Evaporating Flow Mechanisms in Square and Circular Microchannels

[email protected]

[email protected]

Laboratory of Thermofluids, Combustion and Energy Systems

FLOW PATTERN MAPS

14

๐ผ ๐ต ๐ถ๐ต = 0.763๐‘…๐‘’๐‘™๐‘œ๐ต๐‘œ

๐‘Š๐‘’๐‘™๐‘œ

0.41

๐ถ ๐ต ๐ด = 0.00014๐‘…๐‘’๐‘™๐‘œ1.47๐‘Š๐‘’๐‘™๐‘œ

โˆ’1.23

Revellin and Thome (2007)Revellin and Thome (2007)

0.0 0.2 0.4 0.6 0.8 1.00

200

400

600

800CH3OH, CCS

Bubbly flow

Confined flow

Elongated flow

IB/CB

CB/A

Mass

Flu

x, G

[kg.m

-2.s

-1]

Quality [-]Exit Vapor Quality [-]

0.0 0.2 0.4 0.6 0.8 1.00

200

400

600

800CH3OH, SCS

Bubbly flow

Confined flow

Elongated flow

IB/CB

CB/A

Mass

Flu

x, G

[kg.m

-2.s

-1]

Quality [-]Exit Vapor Quality [-]

๐’’๐’”" = 81kW.m-2, ๐‘ป๐’”๐’‚๐’• =342K ๐’’๐’”

" = 73kW.m-2, ๐‘ป๐’”๐’‚๐’• =360K

square 521mm, methanolcircular 543mm, methanol

Methanol and Ethanol Evaporating Flow Mechanisms in Square and Circular Microchannels

[email protected]

[email protected]

Laboratory of Thermofluids, Combustion and Energy Systems

CLOSURE

15

โˆ†๐’‘

๐’‰

๐‘ป๐’˜,๐’๐’–๐’•

โ€ข inlet contraction and outlet expansion as well as nonโ€“heated lengths were quantified and subtracted from the total two-phase

flow pressure drops

โ€ข determination of local ๐‘ป๐’”๐’‚๐’• and ๐‘ป๐’‡ and of flow pattern regimes

โ€ข ๐‘‡๐‘ค,๐‘œ๐‘ข๐‘ก varies non-linearly along the channel

โ€ข determination of local ๐‘ป๐’˜,๐’Š๐’,๐‘ป๐’‡, ๐’‰ and of flow pattern regimes

โ€ข ๐’‰๐’๐’๐’„๐’‚๐’

โ€ข is higher for low and independent on ๐บ incipience of boiling

โ€ข is lower for high and independent on ๐บ dry patches on the wall causing heat transfer decline

โ€ข ๐’‰๐’๐’๐’„๐’‚๐’,๐’๐’–๐’•๐’๐’†๐’•

โ€ข is higher for low ๐‘ž๐‘ " and dependent on ๐บ (๐บ =662kg.m-2.s-1) reduced space for convective flow to develop

โ€ข is lower for low ๐บ and independent on ๐‘ž๐‘ " dominance of nucleate boiling and annular evaporation; the effect of ๐‘ž๐‘ 

" on

โ„Ž overcomes the effect of ๐บ

โ€ข comparison of the experimental results with correlations for subcooled boiling and flow boiling show similar trends, but the

experimental values are below prediction

Methanol and Ethanol Evaporating Flow Mechanisms in Square and Circular Microchannels

[email protected]

[email protected]

Laboratory of Thermofluids, Combustion and Energy Systems

CLOSURE

16

๐‘ญ๐’๐’๐’˜ ๐’‘๐’‚๐’•๐’•๐’†๐’“๐’๐’Ž๐’‚๐’‘๐’”

โ€ข flow patterns and flow pattern transitions for diabatic evaporation of ethanol and methanol obtained from ๐‘ป, ๐’‘ and high speed

imaging

โ€ข flow patterns are qualitatively identical for both fluids and cross sections

โ€ข similar trends with the model proposed by Revellin and Thome (2007)

โ€ข deviations Instabilities occurring inside the channel, due to pressure fluctuations, explosive boiling and long dryout periods that

degrade the heat transfer

โ€ข further experimental research is needed to generate more data at higher vapor qualities and different heat fluxes and mass

fluxes, for the developing of more accurate flow pattern maps

Methanol and Ethanol Evaporating Flow Mechanisms in Square and Circular Microchannels

[email protected]

[email protected]

Laboratory of Thermofluids, Combustion and Energy Systems

Professor Nunes de Carvalho and his team for thin film deposition.

Financial support:

Project โ€œSURWET-COOLSโ€, PTDC/EME-MFE/109933/2009

Portuguese Science and Technology Foundation, grant SFRH-BD-76596-2011

QUESTIONS

17

Simultaneous measurements of Temperature, pressure and high-speed imaging

in well defined homogeneous transparent channel walls with constant wall heat flux

is a major asset to assist in the comprehension of fluid flow behavior in microscale flows

Acknowledgements


Recommended