+ All Categories
Home > Documents > (M.eq.) Size dependence of the number, frequencies and radiative decays of plasmon modes in a...

(M.eq.) Size dependence of the number, frequencies and radiative decays of plasmon modes in a...

Date post: 16-Jan-2016
Category:
Upload: phoebe-chapman
View: 216 times
Download: 2 times
Share this document with a friend
Popular Tags:
1
(M.eq.) Size dependence of the number, frequencies and Size dependence of the number, frequencies and radiative radiative decays of plasmon modes in a spherical free- decays of plasmon modes in a spherical free- electron cluster electron cluster K.Kolwas, A.Derkachova and S.Demianiuk Institute of Physics, Polish Acadamy of Sciences, Al. Lotników 32/46 02-668 Warsaw, Poland A B S T R A C T A B S T R A C T Nanoscale metal particles are well known for their ability to sustain collective electron plasma oscillations - plasmons. When we talk of plasmons, we have in mind the eigenmodes of the self-consistent Maxwell equations with appropriate boundary conditions. In [1-4] we solved exactly the eigenvalue problem for the sodium spherical particle. It resulted in dipole and higher polarity plasmon frequencies dependence l (R), l=1,2,...10 (as well as the plasmon radiative decays) as a function of the particle radius R for an arbitrarily large particle. We now re-examine the usual expectations for multipolar plasmon frequencies in the "low radius limit" of the classical picture: 0,l = p (l/(2l+1)) 1/2 , l=1,2,...10. We show, that 0,l are not the values of 0,l in the limit R -› 0 as usually assumed, but 0,l l (R= R min,l ) = ini,l (R min,l ). So ini,l are the frequencies of plasmon oscillation for the smallest particle radius R min,l 0 still possessing an eigenfrequency for given polarity l. R min,l can be e.g.: R min,l=4 = 6 nm, but it can be as large R min,l=10 = 87.2 nm. The confinement of free-electrons within the sphere restricts the number of modes l to the well defined number depending on sphere radius R and on free-electron concentration influencing the value of p . [1] K. Kolwas, S. Demianiuk, M. Kolwas, J. Phys. B 29 4761(1996). [2] K. Kolwas, S. Demianiuk, M. Kolwas, Appl. Phys. B 65 63 (1997). [3] K. Kolwas, Appl. Phys. B 66 467 (1998). [4] K. Kolwas, M. Kolwas, Opt. Appl. 29 515 (1999). [5] M.Born, E.Wolf. Principles of Optics. Pergamon Press, Oxford, 1975. Self-consistent Maxwell equations describing fields due to known currents and charges: No external sources: We are concerned with transverse solutions only (E = 0). For harmonic fields (M.eq.) reduces to the Helmholtz equation: Solution of the scalar equation in spherical coordinates: Continuity relations of tangential components of E and B + nontriviality of solutions for amplitudes A lm and B lm Dispersion relation for TM and TE field oscillations. Two independent solution of the vectorial equation: TM mode (''transverse magnetic'': TE mode (''transverse electric'': F O R M U L A T I O N OF T H E E I G E N V A L U E P R O B L E M: F O R M U L A T I O N OF T H E E I G E N V A L U E P R O B L E M: P L A S M O N F R E Q U E N C I E S A N D R A D I A T I V E D A M P I N G R A P L A S M O N F R E Q U E N C I E S A N D R A D I A T I V E D A M P I N G R A We allow the imaginary solutions for given R: - the eigenfrequencies of free- electron gas filling a spherical cavity of radius R (the frequencies of the filed oscillations), - the damping of oscillations. Let's define a function D l TM (z l ) of the complex arguments z l ( l ,R We are interested in zeros of D l TM (z l ) as a function of l and R: Dispersion relation for TM mode: If: l in given l is treated as a parameter to find, R is outside parameter with the successive values changed with the step R 2nm up to the final radius R=300nm. p, - plasma frequency and relaxation rate of the free electron gas accordingly. R E S U L T S R E S U L T S 0 50 100 150 200 10 15 20 25 30 35 40 l=6 l= 10 l= 5 l=4 l=3 l= 2 [fs] R [nm ] l=1 0 50 100 150 200 10 12 14 16 18 20 l= 10 l=6 l=5 l=4 l=3 l=2 [fs] R [nm ] l=1 a) b) Radiative decay of plasmon oscillations in sodium particle for different values of l and for relaxation rates of the free electron gas: a) = 0.5 eV; b) = 1 eV The smallest particle radii R min,l, still possessing an eigenfrequency of given polarity l as a function of l Frequencies of plasmon oscillation ini,l as a function of the smallest particle radius R min,l for different relaxation rates of free electron gas 0 20 40 60 80 100 3,0 3,2 3,4 3,6 3,8 4,0 eV eV eV ini , l [eV ] R mi n, l [nm ] l = 1,2,...,10 Comparison of plasmon frequencies and damping rates resulting from the exact and the approximated approach: Approximated (irrespective R value ): Exact: for: Conclusions: If the sphere is too small, there is no related values of l (R) real nor complex. For given multipolarity l the eigenfrequency l (R) can be attributed to the sphere of the radius R starting from R min,l 0. Plasmon frequency l (R) in given l is weakly modified by the relaxation rate , while radiative damping rate (R) is strongly affected by in the rage of smaller sphere sizes. a) Resonance frequencies and b) radiative damping of plasmon oscillations as a function of the radius of sodium particle for different values of l =0). -0,6 -0,4 -0,2 0,0 0 50 100 150 200 250 300 l= 4 l=6 l= 3 l= 5 l= 2 l= 1 R [nm ] l '' (R) ,[eV ] b) 0 50 100 150 200 250 300 0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0 p / 2 p / 3 l= 12 l=3 l=2 l=1 l ( R )[eV ] R [nm ] a) -0 ,20 -0 ,15 -0 ,10 -0 ,05 0 ,00 0 50 100 150 200 250 300 l=7 l= 4 l=6 l= 8 l=3 l=5 l= 2 l=1 R [nm ] l '' (R) ,[eV ] 0 50 100 150 3,0 3,2 3,4 3,6 3,8 4,0 l =10 l =7 l =6 l =5 l =4 l =3 l =2 l =1 0, l = p [ l/2l +1] 1/2 p / 3 p / 2 l ( R ) [eV ] R [nm ] Legend : - Bessel, Hankel and Neuman cylindrical functions of the standard type defined according to the convention used e.g. in [5]. or where: Approximated Riccati-Bessel functions “for small arguments”: where: Using the approximated Riccati-Bessel functions in the dispersion relation, one gets: irrespective the value of the sphere radius R. R e ( ψ l ( z B ) ) I m ( ψ l ( z B ) ) Re(z B ) Im(z B ) Re(z B ) Im(z B ) Re(z B ) Im(z B ) Re(z B ) Im(z B ) l=1 l=8 R e ( l ( z B ) ) I m ( l ( z B ) ) Im(z H ) Re(z H ) Im(z H ) Re(z H ) Im(z H ) Re(z H ) Im(z H ) Re(z H ) l=1 l=8 Variation ranges of the functions l (z B (R)) and l (z H (R)) due to the dependence (R)=(R)+”(R) resulting from the dispersion relation; the example for l=1 and l=8. l and l (and their derivatives l ’ and l ’ in respect to the corresponding argument z B and z H ) were calculated exactly using the recurrence relation: with the two first terms of the series in the form: Exact Riccati-Bessel functions: Variation ranges of the arguments z B,l (R)=c -1 (R)R and z H,l (R)= c -1 ( ()) 1/2 (R)R of l (z B (R)) and l (z H (R)) functions due to the dependence (R)=(R)+”(R) resulting from the dispersion relation; the example for l=1 and l=8. 0 50 100 150 200 0,00 0,02 0,04 0,06 0,08 0,10 R e(z B ) R [nm ] 0 50 100 150 200 -6 -5 -4 -3 -2 -1 0 Im (z B ) R [nm ] 0 50 100 150 200 0 1 2 3 4 R e(z B ) x10 -5 R [nm ] 0 50 100 150 200 -5 -4 -3 -2 -1 0 Im (z B ) R [nm ] l = 1 l = 1 l = 8 l = 8 0 50 100 150 200 0,0 0,2 0,4 0,6 0,8 1,0 R e(z H ) R [nm ] 0 50 100 150 200 -0,4 -0,3 -0,2 -0,1 0,0 R [nm ] Im (z H ) 0 50 100 150 200 0 1 2 3 4 R e(z H ) R [nm ] 0 50 100 150 200 -4 -3 -2 -1 0 Im (z H ) x10 -5 R [nm ] l = 8 l = 8 l = 1 l = 1
Transcript
Page 1: (M.eq.) Size dependence of the number, frequencies and radiative decays of plasmon modes in a spherical free-electron cluster K.Kolwas, A.Derkachova and.

(M.eq.)

Size dependence of the number, frequencies and radiative Size dependence of the number, frequencies and radiative decays of plasmon modes in a spherical free-electron clusterdecays of plasmon modes in a spherical free-electron cluster

K.Kolwas, A.Derkachova and S.Demianiuk

Institute of Physics, Polish Acadamy of Sciences, Al. Lotników 32/46 02-668 Warsaw, Poland

A B S T R A C TA B S T R A C T

Nanoscale metal particles are well known for their ability to sustain

collective electron plasma oscillations - plasmons. When we talk of

plasmons, we have in mind the eigenmodes of the self-consistent

Maxwell equations with appropriate boundary conditions. In [1-4] we

solved exactly the eigenvalue problem for the sodium spherical

particle. It resulted in dipole and higher polarity plasmon frequencies

dependence l(R), l=1,2,...10 (as well as the plasmon radiative decays)

as a function of the particle radius R for an arbitrarily large particle.

We now re-examine the usual expectations for multipolar plasmon

frequencies in the "low radius limit" of the classical picture:

0,l=p(l/(2l+1))1/2, l=1,2,...10. We show, that 0,l are not the values of

0,l in the limit R -› 0 as usually assumed, but 0,l l(R= Rmin,l) =

ini,l(Rmin,l). So ini,l are the frequencies of plasmon oscillation for the

smallest particle radius Rmin,l 0 still possessing an eigenfrequency for

given polarity l. Rmin,l can be e.g.: Rmin,l=4 = 6 nm, but it can be as large

Rmin,l=10 = 87.2 nm. The confinement of free-electrons within the sphere

restricts the number of modes l to the well defined number depending

on sphere radius R and on free-electron concentration influencing the

value of p.

[1] K. Kolwas, S. Demianiuk, M. Kolwas, J. Phys. B 29 4761(1996).

[2] K. Kolwas, S. Demianiuk, M. Kolwas, Appl. Phys. B 65 63 (1997).

[3] K. Kolwas, Appl. Phys. B 66 467 (1998).

[4] K. Kolwas, M. Kolwas, Opt. Appl. 29 515 (1999).

[5] M.Born, E.Wolf. Principles of Optics. Pergamon Press, Oxford,

1975.

Self-consistent Maxwell equationsdescribing fields due to known currents and charges:

No external sources:

We are concerned with transverse solutions only (E = 0).

For harmonic fields (M.eq.) reduces to the Helmholtz equation:

Solution of the scalar equation in spherical coordinates:

Continuity relations of tangential components of E and B

+ nontriviality of solutions for amplitudes Alm and Blm

Dispersion relation for TM and TE field oscillations.

Two independent solution of the vectorial equation:

• TM mode (''transverse magnetic'':

• TE mode (''transverse electric'':

F O R M U L A T I O N OF T H E E I G E N V A L U E P R O B L E M: F O R M U L A T I O N OF T H E E I G E N V A L U E P R O B L E M:

P L A S M O N F R E Q U E N C I E S A N D R A D I A T I V E D A M P I N G R A T E SP L A S M O N F R E Q U E N C I E S A N D R A D I A T I V E D A M P I N G R A T E S

We allow the imaginary solutions for given R:

- the eigenfrequencies of free-electron gas filling a spherical cavity of radius R (the frequencies of the filed oscillations), - the damping of oscillations.

Let's define a function DlTM(zl) of the complex arguments zl(l,R):

We are interested in zeros of DlTM(zl) as a function of l and R:

Dispersion relation for TM mode:

If:

l in given l is treated as a parameter to find, R is outside parameter with the successive values changed

with the step R 2nm up to the final radius R=300nm.

p, - plasma frequency and relaxation rate of the free electron gas accordingly.

R E S U L T SR E S U L T S

0 50 100 150 20010

15

20

25

30

35

40

l=6

l=10

l=5l=4

l=3

l=2

[fs

]

R [nm]

l=1

0 50 100 150 20010

12

14

16

18

20

l=10

l=6

l=5l=4

l=3

l=2

[fs

]

R [nm]

l=1

a) b)

Radiative decay of plasmon oscillations in sodium particle for different values of l and for relaxation rates of the free electron gas: a) = 0.5 eV; b) = 1 eV

The smallest particle radii Rmin,l, still possessing an eigenfrequency of given polarity l as a function of l

Frequencies of plasmon oscillation ini,l as a function of the smallest particle radius Rmin,l for different relaxation rates of free electron gas

0 20 40 60 80 1003,0

3,2

3,4

3,6

3,8

4,0

eVeV

eV

ini,l

[eV

]

Rmin,l [nm]

l = 1, 2, ... , 10

Comparison of plasmon frequencies and damping rates resulting from the exact and the approximated approach:

Approximated (irrespective R value ):Exact:

for:

Conclusions:

• If the sphere is too small, there is no related values of l(R) real nor complex.

• For given multipolarity l the eigenfrequency l(R) can be attributed to the sphere of the radius R

starting from Rmin,l 0.

• Plasmon frequency l(R) in given l is weakly modified by the relaxation rate , while radiative

damping rate ”(R) is strongly affected by in the rage of smaller sphere sizes.

a) Resonance frequencies and b) radiative damping of plasmon oscillations as a function of the radius of sodium particle for different values of l =0).

-0,6

-0,4

-0,2

0,00 50 100 150 200 250 300

l=4

l=6

l=3

l=5

l=2

l=1

R [nm]

l'' (R),

[eV

]

b)

0 50 100 150 200 250 3000,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0 p/2

p/3

l=12

l=3

l=2

l=1

l(R) [

eV]

R [nm]

a)

-0,20

-0,15

-0,10

-0,05

0,00

0 50 100 150 200 250 300

l=7

l=4

l=6

l=8

l=3

l=5

l=2l=1

R [nm]

l'' (R),

[eV

]

0 50 100 1503,0

3,2

3,4

3,6

3,8

4,0

l=10

l=7

l=6

l=5

l=4l=3l=2l=1

0,l

=p[l/2l+1]1/2

p/3

p/2

l(R)

[eV

]

R [nm]

Legend:

- Bessel, Hankel and Neuman cylindrical functions of the standard type defined according to the convention used e.g. in [5].

or

where:

Approximated Riccati-Bessel functions “for small arguments”:

where:

Using the approximated Riccati-Bessel functions in the dispersion relation, one gets:

irrespective the value of the sphere radius R.

Re(

ψl(z

B))

Im(ψ

l(zB))

Re(zB ) Im

(z B)

Re(zB ) Im

(z B)

Re(zB ) Im

(z B)

Re(zB ) Im

(z B)

l=1 l=8

Re(

l(z

B))

Im(

l(zB))

Im(z H

)Re(zH )

Im(z H

)Re(zH )

Im(z H

)Re(zH )

Im(z H

)Re(zH )

l=1 l=8

Variation ranges of the functions l (zB(R)) and l (zH(R)) due to the dependence (R)=(R)+”(R) resulting from the dispersion relation; the example for l=1 and l=8.

l and l (and their derivatives l’ and l’ in respect to the corresponding argument zB and zH) were calculated exactly using the recurrence relation:

with the two first terms of the series in the form:

Exact Riccati-Bessel functions:

Variation ranges of the arguments zB,l(R)=c-1 (R)R and zH,l(R)= c-1 ( ())1/2 (R)R of l (zB(R)) and l (zH(R)) functions due to the dependence (R)=(R)+”(R) resulting from the dispersion relation; the example for l=1 and l=8.

0 50 100 150 2000,00

0,02

0,04

0,06

0,08

0,10

Re(

z B)

R [nm]

0 50 100 150 200-6

-5

-4

-3

-2

-1

0

Im(z

B)

R [nm]

0 50 100 150 2000

1

2

3

4

Re(

z B)

x10-5

R [nm]

0 50 100 150 200-5

-4

-3

-2

-1

0

Im(z

B)

R [nm]

l = 1

l = 1 l = 8

l = 8

0 50 100 150 2000,0

0,2

0,4

0,6

0,8

1,0

Re(

z H)

R [nm]

0 50 100 150 200

-0,4

-0,3

-0,2

-0,1

0,0

R [nm]

Im(z

H)

0 50 100 150 2000

1

2

3

4

Re(

z H)

R [nm]

0 50 100 150 200

-4

-3

-2

-1

0

Im(z

H)

x10-5

R [nm]

l = 8

l = 8l = 1

l = 1

Recommended