+ All Categories
Home > Documents > MESB374 System Modeling and Analysis Chapter 11 Frequency Domain Design - Bode.

MESB374 System Modeling and Analysis Chapter 11 Frequency Domain Design - Bode.

Date post: 18-Jan-2018
Category:
Upload: branden-hall
View: 223 times
Download: 0 times
Share this document with a friend
Description:
Bode Plots Ex:
25
MESB374 System Modeling and Analysis Chapter 11 Frequency Domain Design - Bode
Transcript
Page 1: MESB374 System Modeling and Analysis Chapter 11 Frequency Domain Design - Bode.

MESB374 System Modeling and Analysis

Chapter 11Frequency Domain Design - Bode

Page 2: MESB374 System Modeling and Analysis Chapter 11 Frequency Domain Design - Bode.

Bode Magnitude Plot: plots the magnitude of G(j) in decibels w.r.t. logarithmic frequency, i.e.,

Bode Phase Plot: plots the phase angle of G(j) w.r.t. logarithmic frequency, i.e.,

A better way to graphically display the frequency response!

Bode Plots

10 10dB( ) 20log ( ) vs log G j G j

10( ) vs log G j Benefits:

– Display the dependence of magnitude of the frequency response on the input frequency better, especially for magnitude approaching zero– Log axis converts the multiplications and divisions into additions and subtractions, which are easier to handle graphically– Allow straight-line approximations for quick sketch

Page 3: MESB374 System Modeling and Analysis Chapter 11 Frequency Domain Design - Bode.

Bode PlotsEx:

2

2

1( )100

G j

2 2

1 ( ) 1( ) ( )10 ( ) 10( )

s jG s G js s j j

G j( ) 20 10log ( )G j G j( ) 0.1 0.2 0.5 1 2 5

10 20 50 100

2

1 2

( ) ( 1) 10

tan atan2 10 ,

G j j j

1.00490.5098

0.2233

0.1407

0.1096

0.09120.0711

0.04480.0196

0.0100

0.0428-5.8520

-13.0211

-17.0329-19.2012

-20.7988

-22.9671-26.9789

-34.1480

-40.0428

-83.8623-79.8358

-66.2974

-50.7016-37.8750

-37.8750

-50.7106

-66.2974

-79.8358

-84.8623

Page 4: MESB374 System Modeling and Analysis Chapter 11 Frequency Domain Design - Bode.

Bode Plots of LTI SystemsTransfer Function

Frequency Response

Bode Magnitude Plot

Bode Phase Plot

11 1 0 1 2

11 1 0 1 2

( )( ) ( )( )( )( ) ( )

m mm m m m

n nn n

b s b s b s b b s z s z s zG ss a s a s a s p s p s p

10 10 10 101

10 1 10 1

1 120log ( ( ) ) 20log 20log 20log( ) ( )

20log ( ) 20log ( )

mn

G j bj p j p

j z j z

11 2

1

1 2

( ) ( )( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )

m mm m

n

n

b j z j zG j b j z j z j zj p j p

j p j p j p

11

1 1

( ) ( ) 1 1( ) ( ) ( )( ) ( ) ( ) ( )m m

m mn n

b j z j zG j b j z j zj p j p j p j p

Page 5: MESB374 System Modeling and Analysis Chapter 11 Frequency Domain Design - Bode.

ExampleEx: Find the magnitude and the phase of the following transfer function:

9 1 180 3( )

1 1 11 1 12 4 5

j jG j

j j j

3 2

3 2

3 3 13 12 9( )2 22 76 80 2 2 4 5

3 3 1 11 1 1 192 2 4 5 3 3

1 1 1 1 1 1801 1 1 1 1 12 4 5 2 4 5

s s ss s sG ss s s s s s

s s s s s s

s s s s s s

10 10 10 10

10 10 10

9 120log ( ) 20log 20log 20log 180 3

1 1 120log 1 20log 1 20log 12 4 5

G j j j

j j j

9 1( ) 1 180 3

1 1 11 1 12 4 5

G j j j j

j j j

Page 6: MESB374 System Modeling and Analysis Chapter 11 Frequency Domain Design - Bode.

Bode Plots of 1st Order PolesStandard Form of Transfer Function:

Frequency Response:

Q: By just looking at the Bode diagram, can you determine the time constant and the steady state gain of the system ?

b

11( ) , 0

1pG ss

1

1 2 2

11

1( ) , 01

1( )1

( ) atan2( ,1)tan

p

p

p

G jj

G j

G j

Phas

e (d

eg);

Mag

nitu

de (d

B)

-40

-20

-30

Frequency (rad/sec)0.01/ 0.1/ 1/ 10/ 100/

-90

-45

0

20dB/decade

break frequency

10 1

2 210

10

20log ( )

10log 1

10dB, 1 or

13dB, 1 or

1-20log , 1 or

p

b

b

bb

G j

Page 7: MESB374 System Modeling and Analysis Chapter 11 Frequency Domain Design - Bode.

Example• 1st Order Real Poles

Transfer Function:

Plot the straight line approximation of G(s)’s Bode diagram:

50 1( ) 10 15 15

G ss s

G ss

( )50

5

Frequency (rad/sec)

Phas

e (d

eg);

Mag

nitu

de (d

B)

0

5

10

15

20

-90

-45

0

10-1

100

101

102

10 10120log ( ) 20 20log 1 1

5

G jj

1( ) 15

G j j

1 5b

Page 8: MESB374 System Modeling and Analysis Chapter 11 Frequency Domain Design - Bode.

Bode Plots of 1st Order ZerosStandard Form of Transfer Function

Frequency Response1( ) 1 , 0zG s s

0G j j

G j

G j

z

z

z

1

12 2

11

1

1

1

( )

( )

( ) ( , )tan

,

atan2

Frequency (rad/sec)0.01/ 0.1/ 1/ 10/ 100/

40

20

30

0

45

90

Phas

e (d

eg);

Mag

nitu

de (d

B)

10 1

2 210

10

20log ( )

10log 1

10dB, 1 or

13dB, 1 or

120log , 1 or

p

b

b

bb

G j

Page 9: MESB374 System Modeling and Analysis Chapter 11 Frequency Domain Design - Bode.

Example• 1st Order Real Zeros

Transfer Function:

Plot the straight line approximation of G(s)’s Bode diagram:

( ) 0.7 1G j j

( ) 0.7 0.7G s s

Phas

e (d

eg);

Mag

nitu

de (d

B)

Frequency (rad/sec)

0

5

10

15

20

0

45

90

10-1

100

101

102

10 10 1020log ( ) 20log 0.7 20log 1G j j

( ) 1G j j

-3

Page 10: MESB374 System Modeling and Analysis Chapter 11 Frequency Domain Design - Bode.

Example• Lead Compensator

Transfer Function:

Plot the straight line approximation of G(s)’s Bode diagram:

1( ) 1 1 15

G j jj

G s ss

( )

35 355

Phas

e (d

eg);

Mag

nitu

de (d

B)

-10

0

10

20

30

2

Frequency (rad/sec)

-90

0

90

10-1

100

101

10

35 1( ) 1 15 15

G j jj

10

10 10 1020log 7

120log ( ) 16.9 20log 1 20log 1 15

G j jj

17

Page 11: MESB374 System Modeling and Analysis Chapter 11 Frequency Domain Design - Bode.

1st Order Bode Plots Summary• 1st Order Poles

– Break Frequency

– Mag. Plot Approximation0 dB from DC to b and a straight line with 20 dB/decade slope after b

– Phase Plot Approximation0 deg from DC to . Between and 10b , a straight line from 0 deg to 90 deg (passing 45 deg at b). For frequency higher than 10b, straight line on 90 deg.

• 1st Order Zeros

– Break Frequency

– Mag. Plot Approximation0 dB from DC to b and a straight line with 20 dB/decade slope after b

– Phase Plot Approximation0 deg from DC to . Between and 10b , a straight line from 0 deg to 90 deg (passing 45 deg at b). For frequency higher than 10b , straight line on 90 deg.

11( ) , 0

1pG ss

1 rad/sb

110b

1( ) 1 , 0zG s s

1 rad/sb

110b

110b

Note: By looking at Bode plots you should be able to determine the relative order of the system, its break frequency, and DC (steady-state) gain. This process should also be reversible, i.e., given a transfer function, be able to plot a straight line approximation of Bode plots.

110 b

Page 12: MESB374 System Modeling and Analysis Chapter 11 Frequency Domain Design - Bode.

Bode Plots of IntegratorsStandard Form of Transfer Function

Frequency Response

10 0 10 10

10 10

1 120log ( ) 20log 20log

120log 20log

pG jj

G ssp01( )

1G jj

G j

G j

p

p

p

0

0

0

1

90

( )

( )

( )

Phas

e (d

eg);

Mag

nitu

de (d

B)

Frequency (rad/sec)

-60

-40

-20

0

20

0.1 1 10 100 1000-135

-90

-45

0

20dB/decade

Page 13: MESB374 System Modeling and Analysis Chapter 11 Frequency Domain Design - Bode.

Bode Plots of DifferentiatorsStandard Form of Transfer Function

Frequency Response

10 0 10

10

20log ( ) 20log

20logzG j j

G s sz0( )

G j j

G j

G j

z

z

z

0

0

0 90

( )

( )

( )

Frequency (rad/sec)

Phas

e (d

eg);

Mag

nitu

de (d

B)

0.1 1 10 100 1000

-20

0

20

40

60

0

45

90

135

20dB/decade

Page 14: MESB374 System Modeling and Analysis Chapter 11 Frequency Domain Design - Bode.

Example• Combination of Systems

Transfer Function:

Plot the straight line approximation of G(s)’s Bode plots:

35 1 11 15 151 1( ) 7 1 1 1

5

G s ss s

G j jj j

G s ss s

( )( )

35 355

Phas

e (d

eg);

Mag

nitu

de (d

B)

-10

0

10

20

30

2

Frequency (rad/sec)

-90

0

90

10-1

100

101

10

10

10 1020log 7

10 10

20log ( ) 16.9 20log 1

1 120log 20log 1 15

G j j

j j

1( ) 1 90 1 15

o

G j jj

SUM THEM

Page 15: MESB374 System Modeling and Analysis Chapter 11 Frequency Domain Design - Bode.

Example• Combination of Systems

Transfer Function:

Plot the straight line approximation of G(s)’s Bode plots:

2500 2500 1 1 1

1 150 5 50 5 1 150 5

1 1 1( ) 10 1 11 150 5

G ss s s ss s

G jjj j

G ss s s

( )( )

250055 2502

Phas

e (d

eg);

Mag

nitu

de (d

B)

-120

-80

-40

0

40

Frequency (rad/sec)

10-1 100

101

102

103

-270

-180

-90

0

10

10 1020log 10

10 10

120log ( ) 20 20log 1 150

1 120log 20log 1 15

G jj

j j

20dB/decade

40dB/decade

60dB/decade

Page 16: MESB374 System Modeling and Analysis Chapter 11 Frequency Domain Design - Bode.

Bode Plots of Complex PolesStandard Form of Transfer Function

Frequency Response

22

11 2 and ( )2 1

r n p rG j

2

2 22( ) , 1 0

2n

pn n

G ss s

2 2

2

121

p

nn

G jj

2 22 2 2

2 2

1

41

p

n n

G j

2

2 2

2

2

21

2= atan2 , 1

pnn

n n

G j j

n n n n n

Phas

e (d

eg);

Mag

nitu

de (d

B)

Frequency (rad/sec)

-80

-60

-40

-20

0

20

-180

-90

0

Peak (Resonant) Frequency and Magnitude for 1 0.707

2

40dB/decade

115 n

2 5 n

Page 17: MESB374 System Modeling and Analysis Chapter 11 Frequency Domain Design - Bode.

2nd Order System Frequency Response

decreases decreases

decreases

Pha

se (d

eg);

Mag

nitu

de (d

B)

Frequency (rad/sec)

-60

-40

-20

0

20

40

-180

-135

-90

-45

0

0.1n n 10n

increases

decreases

Page 18: MESB374 System Modeling and Analysis Chapter 11 Frequency Domain Design - Bode.

2nd Order System Frequency ResponseA Few Observations:• Three different characteristic frequencies:

– Natural Frequency (n)

– Damped Natural Frequency (d):

– Resonant (Peak) Frequency (r):

• When the damping ratio , there is no peak in the Bode magnitude plot. DO NOT confuse this with the condition for over-damped and under-damped systems: when the system is under-damped (has overshoot) and when the system is over-damped (no overshoot).

• As , r n and G(j)increases; also the phase transition from 0 deg to 180 deg becomes sharper.

21 2r n

21d n

r d n

Page 19: MESB374 System Modeling and Analysis Chapter 11 Frequency Domain Design - Bode.

Example• Second-Order System

Transfer Function:

Plot the straight line approximation of G(s)’s Bode diagram:

2

2 22( ) , 1 0

2n

pn n

G ss s

G ss s

( )

250010 25002

Phas

e (d

eg);

Mag

nitu

de (d

B)

-120

-80

-40

0

40

Frequency (rad/sec)

10 0 101 102 10310

4

-180

-90

02 2500, 50n n 102 10, 0.12n

n

21 2r n n 0.1

11 42.65 n 0.1

2 5 58.7n

Page 20: MESB374 System Modeling and Analysis Chapter 11 Frequency Domain Design - Bode.

Bode Plots of Complex ZerosStandard Form of Transfer Function

Frequency Response

115 n

22

2 2

2( ) , 1 0n nz

n

s sG s

2

2 2

21znn

G j j

2 2

22 2 2

2 2

1

41

z p

n n

G j G j

2

2

2 2

2atan2 , 1n n

z pG j G j

Frequency (rad/sec)

n n n n n

Phas

e (d

eg);

Mag

nitu

de (d

B)

-20

0

20

40

60

80

0

90

180

2 5 n

Page 21: MESB374 System Modeling and Analysis Chapter 11 Frequency Domain Design - Bode.

Bode Plots of Poles and Zeros Bode plots of zeros are the mirror images of the Bode plots of the identical poles w.r.t. the 0 dB line and the 0 deg line, respectively:

Let G sG s

G jG j

G j G j

G j G j

G j G j

pz

pz

p z

p z

p z

( )( )

( )( )

( ) ( )

log ( ) log ( )

( ) ( )

|

||

1

1

20 2010 10

-40

-20

0

20

40

-180

0

180

Frequency (rad/sec)

Pha

se (d

eg)

M

agni

tude

(dB

)

n nn

Page 22: MESB374 System Modeling and Analysis Chapter 11 Frequency Domain Design - Bode.

2nd Order Bode Diagram Summary• 2nd Order Complex Poles

– Break Frequency

– Mag. Plot Approximation0 dB from DC to n and a straight line with 40 dB/decade slope after n. Peak value occurs at:

– Phase Plot Approximation0 deg from DC to . Between and n , a straight line from 0 deg to 180 deg (passing 90 deg at n). For frequency higher than n , straight line on 180 deg.

2

2 22( ) , 1 0

2n

pn n

G ss s

rad/sb n

15 n 1

5 n

• 2nd Order Complex Zeros

– Break Frequency

– Mag. Plot Approximation0 dB from DC to n and a straight line with 40 dB/decade slope after n.

– Phase Plot Approximation0 deg from DC to . Between and n , a straight line from 0 deg to 180 deg (passing 90 deg at n). For frequency higher than n , straight line on 180 deg.

22

2 2

2( ) , 1 0n nz

n

s sG s

rad/sb n

15 n 1

5 n

2

2

1 2 1( )

2 1

r n

p r MAXG j

Page 23: MESB374 System Modeling and Analysis Chapter 11 Frequency Domain Design - Bode.

• Combination of SystemsTransfer Function:

Plot the straight line approximation of G(s)’s Bode diagram:

Example

2

2

2000 25 25 1 1 2500( ) 1200 2500 25 10 25001200

s sG ss s ss

G s s ss s s s

( ) ( )( )( )

2000 25200 10 2500

2

2

10

2

10 10 1020log 0.1

10 10 2

25 120log ( ) 20 20log 20log25

1 250020log 20log1 2500 101200

jG j

j

jj

2

2

2590

25

1 25001 25001

200

oj

G j

jj

Page 24: MESB374 System Modeling and Analysis Chapter 11 Frequency Domain Design - Bode.

-80

-60

-40

-20

0

20

40

Mag

nitu

de (d

B)

10 -1 100 101102 10 3

-270

-180

-90

0

90

180

Frequency (rad/sec)

Pha

se (d

eg)

Page 25: MESB374 System Modeling and Analysis Chapter 11 Frequency Domain Design - Bode.

-80

-60

-40

-20

0

20

40

Mag

nitu

de (d

B)

10 -1 100 101102 10 3

-270

-180

-90

0

90

180

Frequency (rad/sec)

Pha

se (d

eg)


Recommended