+ All Categories
Home > Documents > Mesenchymal stem cells for inflammatory lung diseases

Mesenchymal stem cells for inflammatory lung diseases

Date post: 25-Nov-2015
Category:
Upload: lavinia-ionescu
View: 61 times
Download: 3 times
Share this document with a friend
Description:
Doctoral thesis (Physiology) - Lavinia Iuliana Ionescu, University of Alberta, Fall 2012.
244
“Do or do not. There is no try.” (Master Yoda – “Star Wars”, 1977)
Transcript
  • Doordonot.Thereisnotry.(MasterYodaStarWars,1977)

  • UniversityofAlberta

    EvaluationofMesenchymalStemCellBasedTherapies

    forInflammatoryLungDiseases

    by

    LaviniaIulianaIonescu

    AthesissubmittedtotheFacultyofGraduateStudiesandResearch

    inpartialfulfillmentoftherequirementsforthedegreeof

    DoctorofPhilosophy

    DepartmentofPhysiology

    LaviniaIulianaIonescu

    Fall2012

    Edmonton,Alberta

    PermissionisherebygrantedtotheUniversityofAlbertaLibrariestoreproducesingle

    copiesofthisthesisandtolendorsellsuchcopiesforprivate,scholarlyorscientificresearch

    purposesonly.Wherethethesisisconvertedto,orotherwisemadeavailableindigitalform,

    theUniversityofAlbertawilladvisepotentialusersofthethesisoftheseterms.

    Theauthorreservesallotherpublicationandotherrightsinassociationwiththecopyright

    inthethesisand,exceptashereinbeforeprovided,neitherthethesisnoranysubstantial

    portionthereofmaybeprintedorotherwisereproducedinanymaterialformwhatsoever

    withouttheauthor'spriorwrittenpermission.

  • Dedication

    TothosewhohavegivenmeallthechancestobewhoIam.Tomy

    grandfather,IonLeulescu,whohasdefinedmebeforeanythingelsecouldhave.

    ImisshimtothisdayandmystrongestwishistobewhohebelievedIwillbe.

    Tomymother,CarmenLeulescu,whoisquietlyencouragingeverythingabout

    me.Tomygrandmother,NiculinaLeulescu,whoisnotquietaboutthevalueof

    life.Tomyyoungerbrother,LeontinIonescu,forteachingmethejoyandtrust

    ofsharingbybeingfirsttoshare.Tothosewhosmiledwithme,tothosewho

    smiledforme,tothosewhoweretoostubborntoabandontheuncertainpath

    bymysidethroughoutmystruggles.

    ToGeorgiana,fortrustfullybeingthereforsolong.ToRaluca,forbeing

    therolemodelsisterbychoice.ToBev,forbeingagenuineembodimentofjoy.

    ToFarah,forherunabashedpatience.ToAnda,forbringinganimprobable

    friendshipalive.ToAhmed,forhavingthecouragetochallengemyfears.To

    Mamoona,forknowingmebeforeIdid.ToMira,forbeingwithinmyreach.To

    Ioana,forhertimelypresenceinmylife.ToMdlina,forhersoftspoken

    strength.ToVijay,forhispersistenceinbelievingIwouldunderstandwhoIam.

    Tobothmyhomelands.

    Thankyou.

  • ABSTRACT

    Recent discoveries in stem cell biology have generated enthusiasm

    about the possibility of harnessing stem cells for organ repair and

    regeneration.Theabilityofpluriandmultipotentstemcells todifferentiate

    alongvariouscellular lineageshasplaced themat thecoreof research that

    seeks toprotect endogenous stemcell populationsor todeliver exogenous

    stem cells to sites of organ injury. Lung diseases are a major health care

    concern and the prevalence of chronic lung diseases such as asthma,

    pulmonaryfibrosisandchronicobstructivepulmonarydiseaseisexpectedto

    continuetoriseoverthenextdecades.Meanwhile, improvedperinatalcare

    has allowed the survival of extremely premature infants that constitute a

    particularly vulnerable subpopulation because of their risk of developing

    bronchopulmonarydysplasia(BPD)withpotentiallifelongcomplications.

    Researchthataimstoevaluatethetherapeuticpotentialofexogenous

    stemcellsinlungdiseasesplacedaninitialemphasisontheengraftmentand

    differentiation of these cells in the lung. More recent studies demonstrate

    thatmultipotent stem cell populations, such asmesenchymal stromal cells

    (MSCs), exert paracrine activity that canmodulate local inflammatory and

    immune responses in experimental lung diseasemodels including asthma,

    acutelunginjury(ALI)andpulmonaryfibrosis.Thestudiespresentedhereby

    demonstrate that factors secretedbyadultbonemarrowderivedMSCscan

    preventthedevelopmentofinflammatorylungdiseasesinmousemodelsof

  • asthmaandALIandprovidemechanistic insight intotheantiinflammatory

    propertiesofMSCs.

    Theperspectiveofusingpluripotentstemcellsastherapeuticagents

    hasbeenrevivedbythelandmarkdiscoveryofinducedpluripotency,where

    embryonic stem cell (ESC)like cells can be generatedby reprogramming

    terminallydifferentiatedsomaticcells.Whilethefieldofinducedpluripotent

    stem cell (iPSC) biology is still in its effervescent infancy, this findingmay

    relievemanyESCsrelatedethicalconcernsandmayopenthewayto large

    scale production and evaluation of pluripotent stem cells for organ

    regenerationand repair.Theadditional studypresentedprovidesproofof

    conceptfortheutilityofiPSC.

    Together,thestudiespresentedherebyadvocatethepotentialofstem

    cellsasanovelclinicaloptionforthetreatmentofseverelungdiseases.

  • ACKNOWLEDGMENTS

    My gratitude goes toward all those who made the work presented here

    possible:Dr.BernardThbaud,mysupervisor;Dr.MarekDuszyk,whohasinitially

    cosupervised me when I was a starting Master of Science program student; Dr.

    Christopher I. Cheeseman andDr.Harissios Vliagoftis,my Supervisory Committee

    members, who have thoughtfully contributed to designingmy research path; our

    collaborators, particularly Dr. Zamaneh Kassiri; Dr. Lisa Cameron (University of

    Alberta); Dr. KennethWalsh and Dr. Tamar Aprahamian (Boston University), Dr.

    JamesEllis(UniversityofToronto);Dr.ValentinDu,whoseadviceacceleratedthe

    developmentofthemousemodelofasthma;manycurrentandformermembersof

    Dr.ThbaudsandDr.Vliagoftislaboratories:FarahEaton,BeverlyMorgan,Dr.Arul

    Vadivel,Dr.RajeshAlphonse,MelanieAbel,ThurayaMarshall,Dr.PaulWaszak,Dr.

    Narcy Arizmendi, Dr. Gaia Weissmann; staff members, especially Bronwyn

    Appleyard (Department of Pediatrics), Lynette Elder, Alana Eshpeter (Alberta

    DiabetesInstituteHistologyCore), DorothyKratochwilOtto(UniversityofAlberta

    flowcytometry facility), Dr. Nathan Bosvik and Dr. Greg Parks (Health Sciences

    LaboratoryAnimal Services),DrewNahirney (Dr.Duszyks laboratory),Dr.Wilma

    SuarezPinzonfortheirworkandadvice.

    Iwouldalso like to thank theDepartmentofPhysiology(Dr.KeirPearson,

    Sharon Orescan, Barb Armstrong) and gratefully acknowledge the support I have

    receivedfromtheCIHRMFNStrategicTrainingProgram(PaulJacquier).

  • TABLEOFCONTENTS

    CHAPTER1INTRODUCTION.1

    1.1.Overview..2

    1.2.LungDevelopmentandRegeneration.......3

    1.3.StemCells...8

    1.4.ResidentLungStem/ProgenitorCells.....13

    1.5.TherapeuticPotentialofExogenousStem/ProgenitorCells.15

    1.5.1.CellReplacementbyMSCs........15

    1.5.2.CellReplacementVersusParacrineActivityofMSCs.17

    1.5.3.ESCsandInducedPluripotentStemCells(iPSCs)......19

    1.5.4.StemCellsandCarcinogenesis.......20

    1.6.BiotechnologyEngineeringLungTissue22

    1.6.1.HumanExVivoLungProject(HELP)..22

    1.6.2.ArtificialLungNovaLung......23

    1.6.3.BioengineeredLungTissue....24

    1.7.ClinicalStudies:Experience,Outcome,Limitations25

    1.8.References......30

    CHAPTER 2 AIRWAY DELIVERY OF SOLUBLE FACTORS FROM

    PLASTICADHERENT BONE MARROW CELLS PREVENTS MURINE

    ASTHMA....62

  • 2.1.Abstract......63

    2.2.Introduction....65

    2.3.MaterialsandMethods.67

    2.3.1.BMCsIsolationandCulture...67

    2.3.2.LungFibroblastsIsolationandCulture..69

    2.3.3.FluorescenceActivatedCellSorting.69

    2.3.4.BMCsandLungFibroblastsCdMPreparation...70

    2.3.5.AnimalModel..72

    2.3.6.BronchoalveolarLavageFluid(BALF)analysis.73

    2.3.7.LungFunctionTesting(LFT)...74

    2.3.8.CytokineQuantification....75

    2.3.9.LungHistologicalAnalysis.....76

    2.3.10.StatisticalAnalysis....77

    2.4.Results.78

    2.4.1. BMCs Differentiation Along Mesenchymal Lineages and

    SurfaceMarkerProfile78

    2.4.2. BMCs CdM Prevents Airway Inflammation in Experimental

    Asthma.....78

    2.4.3. BMCs CdM Prevents AHR in Experimental

    Asthma.79

  • 2.4.4. BMCs CdM Improves Bronchial Responsiveness to

    Salbutamol and Prevents Chronic ASM Thickening and

    PeribronchialInflammation.......80

    2.4.5.BMCsCdMAttenuatesThelper2(Th2)Lymphocytes

    CytokineResponse...81

    2.4.6. APN Mediates Protective Effects of BMCs CdM on

    AHR...81

    2.4.7. APN Mediates Protective Effects of BMCs CdM on

    AirwayRemodeling..82

    2.4.8. BMCs CdM Induces Subsets of IL10Producing T

    RegulatoryCells(Tregs)andMacrophages..83

    2.5.Discussion.84

    2.6.References94

    2.7.Figures.....108

    CHAPTER3STEMCELLCONDITIONEDMEDIUMPREVENTSACUTE

    LUNGINJURYINMICE:INVIVOEVIDENCEFORSTEMCELLPARACRINE

    ACTION125

    3.1.Abstract...126

    3.2.Introduction..128

    3.3.MaterialsandMethods......130

  • 3.3.1. MSCs and Lung Fibroblasts Isolation, Culture and

    Characterization.....130

    3.3.2.ConditionedMedium(CdM)Preparation...131

    3.3.3.MurineLPSInducedALI...132

    3.3.4.BALFAnalysisandAlveolarMacrophages(AM)Isolation..133

    3.3.5.AssessmentofLungPermeability...134

    3.3.6.LungHistologicalAnalysis...134

    3.3.7.AMLPSExposureandAMPhenotypeCharacterization135

    3.3.8.AntibodyArrayofMSCCdM.......137

    3.3.9.StatisticalAnalysis....137

    3.4.Results.....138

    3.4.1.MSCsDisplayFunctionalCharacteristicsandSurfaceMarker

    PhenotypeofMurineMSCs..138

    3.4.2.MSCCdMDecreased Lung Inflammation and LungVascular

    PermeabilityinLPSInducedLungInjury...138

    3.4.3. MSC CdM Failed to Prevent LPSInduced Body Weight

    Loss.139

    3.4.5.MSCCdMImprovedLPSInducedLungInjury139

    3.4.6. MSC CdM Determined Alternative Activation of AMs

    FollowingLPSExposureInVitroandInVivo.139

    3.4.7. MSC CdM Contains Soluble Factors That May Convey

    TherapeuticBenefit...140

  • 3.5.Discussion.........142

    3.6.References.....149

    3.6.Figures.....161

    CHAPTER4GENERALDISCUSSION..171

    4.1.Overview....172

    4.2.StudyLimitations..175

    4.3. Conclusions and Future Perspectives on Lung Regenerative

    Therapies.177

    4.4.References.....180

    APPENDIX 1 INDUCED PLURIPOTENT STEM CELLS (IPSC)

    DIFFERENTIATE INTOALVEOLAREPITHELIALCELLS INVITROAND

    PREVENTHYPEROXIAINDUCEDLUNGINJURYINVIVO...187

  • LISTOFTABLES

    Table11.Summaryofputativeendogenouslungstemcell

    populations29

    Table21.Cytokineprofileintheacuteasthmamodel.107

    Table22.Cytokineprofileinthechronicasthmamodel....108

  • LISTOFFIGURES

    Figure22.MesenchymallineagedifferentiationofBALB/cBMCs...108

    Figure 23. Flowcytometric characterization of BALB/c BMCs surface

    markerprofile..109

    Figure24.BALFanalysis....111

    Figure25.InvasiveLFT...113

    Figure26.Bronchodilatorresponsetosalbutamol..115

    Figure27.Airwayremodelinginchronicasthma...116

    Figure28.EffectsofAPNonAHR.118

    Figure29.EffectsofAPNonchronicairwayremodelingparameters120

    Figure210.FACSoflunganddraininglymphnodeslymphocytes..122

    Figure211.FACSoflunglymphocytes.....123

    Figure212.FlowcytometricevaluationofCD45,Sca1,CD29expression

    byWTBMCs,CD45+BMCsandBMMSCs...124

    Figure 31. Mesenchymal lineage differentiation of C57BL/6 BM

    MSCs.......................................................................................................................................162

    Figure 32. Flowcytometric characterization of C57BL/6 BMMSCs

    surfacemarkerprofile...163

    Figure33.BALFandlungpermeabilityanalyses...164

  • Figure 34. LPSinduced body weight loss and lung histological

    assessment....166

    Figure35.AMpolarizationfollowinginvitroLPSexposure....168

    Figure36.AMpolarizationfollowinginvivoLPSadministration.....169

    Figure37.MSCsecretomeanalysis....170

    Figure 38. Factors up or downregulated in MSC compared to LF

    secretome...171

  • LISTOFABBREVIATIONS

    ALI acutelunginjury

    AHR airwayhyperresponsiveness

    AM alveolarmacrophage

    ANOVA analysisofvariance

    APC allophycocyanin

    APN adiponectin

    ARDS acuterespiratorydistresssyndrome

    Arg1 arginase1

    AT2 alveolarepithelialtype2cells

    ASM airwaysmoothmuscle

    AT1 alveolarepithelialtypeIcell

    AT2 alveolarepithelialtypeIIcell

    BALF bronchoalveolarlavagefluid

    BASC bronchoalveolarstemcell

    Bmi1 BlymphomaMoMLVinsertionregion1homolog

    BMC plasticadherentbonemarrowderivedstromalcell

    BMSC bonemarrowderivedstromalcell

    BOOP bronchiolitisobliteransorganizingpneumonia

    BPD bronchopulmonarydysplasia

    ckit protooncogenec(tyrosineproteinkinase)Kit

  • CCL chemokine(CCmotif)ligand

    CCSP Claracellsecretoryprotein(also:CC10,Scg1b1)

    CdM conditionedmedium

    CD clusterofdifferentiation

    CFTR cysticfibrosistransmembraneregulator

    CGRP calcitoningenerelatedpeptide

    CHI3L3 chitinase3like3(also:ECFL,Ym1)

    COPD chronicobstructivepulmonarydisease

    CXC chemokine(CXCmotif)

    CXCL chemokine(CXCmotif)ligand

    DALY disabilityadjustedlifeyears

    DMEM DulbeccosmodifiedEaglemedium

    DNA deoxyribonucleicacid

    ECFL Tlymphocytederived eosinophil chemotactic factor (also:

    CHI3L3,Ym1)

    ECM extracellularmatrix

    ECMO extracorporealmembraneoxygenation

    EDTA ethylenediaminetetraaceticacid

    ELISA enzymelinkedimmunosorbentassay

    eNOS endothelialnitricoxidesynthase

    EPC endothelialprogenitorcell

    EpCAM epithelialcelladhesionmolecule

  • ESC embryonicstemcell

    FACS fluorescenceactivatedcellsorting

    FBS fetalbovineserum

    FcRIIB FcreceptorforimmunoglobulinG

    Fib fibroblast

    FiO2 oxygenfraction

    FITC fluorescein

    FIZZ1 foundininflammatoryzone1(also:RELM)

    Foxp3 forkheadboxp3

    H&E hematoxylinandeosin

    HELP HumanExVivoLungProject

    HSC hematopoieticstemcell

    IBMX isobutylmethylxanthine(1methyl3(2methylpropyl)7H

    purine2,6dione)

    IFN interferongamma

    IGF1 insulinlikegrowthfactor1

    IGFBP6 insulinlikegrowthfactorbindingprotein6

    IL interleukin

    IL1ra IL1receptorantagonist

    iNOS induciblenitricoxidesynthase

    iPSC inducedpluripotentstemcell

    i.n. intranasal

  • i.p. intraperitoneal

    i.t. intratracheal

    i.v. intravenous

    IVIG intravenousimmunoglobulin

    JAK Janusactivatedkinase

    KGF keratinocytegrowthfactor

    KO knockout

    LF lungfibroblast

    LFT lungfunctiontesting

    LIX lipopolysaccharideinducibleCXCchemokine

    LPS lipopolysaccharide

    M1 classically(canonically)activatedmacrophages

    M2 alternativelyactivatedmacrophages

    MAPK mitogenactivatedproteinkinase

    MCP1 monocyte chemotactic protein1 (also: CCL2, small

    induciblecytokineA2)

    MCSF macrophage/monocytecolonystimulatingfactor

    MDC macrophagederivedchemoattractant/chemokine

    MDSCmyeloidderivedsuppressorcells

    MIP2macrophageinflammatoryprotein2

    MIP1macrophageinflammatoryprotein1alpha

    MSC mesenchymalstemcells

  • NEB neuroendocrinebody

    OVA ovalbumin

    PaO2 partialarterialpressureofoxygen

    PBS phosphatebufferedsaline

    PE phycoerythrin

    PEEP positiveendexpiratorypressure

    PF4 plateletfactor4(also:CXCL4)

    PI3K phosphoinositide3kinase

    PLSD probableleastsignificantdifference

    PMN polymorphonuclearcell

    PMSF phenylmethylsulphonylfluoride

    PNEC pulmonaryneuroendocrinecell

    PTEN phosphataseandtensinhomolog

    PSF penicillinstreptomycinfungizone(amphotericinB)

    RANTES regulated on activation, normal T cell expressed and

    secreted

    RIPA radioimmunoprecipitationassay

    RPMI1640 RoswellParkMemorialInstitutemedium1640

    qRTPCR quantitative reverse transcriptase polymerase chain

    reaction

    RELM resistinlikemoleculealpha(also:FIZZ1)Sca1 stemcellantigen1

  • SCF stemcellfactor

    SDF1 stromalderivedfactor1alpha

    SEM standarderrorofthemean

    SP sidepopulationcells

    SPC surfactantproteinC

    STAT6 signaltransducerandactivatoroftranscription6

    sTNFRII solubleTNFreceptorII

    TARC thymusandactivationregulatedchemokine

    TGF transforminggrowthfactorbeta

    TLC totallungcapacity

    TGF transforminggrowthfactorbeta

    Th1 Thelper1

    Th2 Thelper2

    Tr1 interleukin10inducedandsecretingregulatoryTcell

    Treg regulatoryTcell

    TNF tumornecrosisfactoralpha

    VCAM1 vascularcelladhesionmolecule1

    VEGFR2 vascularendothelialgrowthfactorreceptor2

    WT wildtype

    Ym1 see:CHI3L3,ECFL

  • 1

    CHAPTER1GENERALINTRODUCTION

    ThischapterwaswrittenbyLIIandeditedbyBT.Fragmentsofthis

    chapterhavebeenpublishedaspartof:

    ColtanL,ThbaudB.Chapter30:Lung.inRegenerativeMedicine,Steinhoff,

    Gustav(Ed.),1stEdition.,2011.ISBN9789048190744

  • 2

    1.1. Overview

    Therespiratorysystemsupports thevital functionofbreathing. It

    canbeviewedastheinterfacebetweentheoxygenrichenvironmentand

    thecarbondioxideproducing livingorganism.Thefailureof the lungsto

    completetheirfunctionisimmediatelylifethreatening.

    From a functional and anatomical viewpoint, the respiratory

    system comprises two compartments: the conducting airways (nasal

    cavity, pharynx, larynx, trachea, bronchi and bronchioles) and the gas

    exchanging airways (respiratory bronchioles and the saccularalveolar

    compartment,where alveolarwalls come in close contactwith capillary

    walls in order to facilitate the exchange of oxygen and carbon dioxide).

    Lung injury can occur at any of these levels leading to impairment of

    breathing function,which can be reversible or irreversible.Obstructive

    respiratorydiseases,suchasasthmaandchronicbronchitis,arecausedby

    damage at the airway level, which limits airflow, whereas restrictive

    pulmonary diseases, such as lung fibrosis, acute respiratory distress

    syndrome (ARDS) and sarcoidosis are determined by inflammatory

    processesinthelunginterstitium,whichleadtoreducedlungcompliance

    with limitation of lung expansion. Although the advancements of

    biomedicalresearchoverthepastdecadeshavebroughtnoveltherapeutic

    approachesforrespiratorydisorders,manylungdiseases,suchaschronic

  • 3

    lung disease of prematurity (or bronchopulmonary dysplasia, BPD),

    chronicobstructivepulmonarydisease(COPD)andcysticfibrosisarestill

    lackingefficient treatments.According to theWHOWorldHealthReport

    2000,lungdiseasescontributetoatotalof17.4%ofdeathsand13.3%of

    disabilityadjusted life years (DALY) worldwide [180]. These facts

    highlight the absolute necessity to study the potential applicability of

    recentdevelopments in the fieldofregenerativemedicineas therapeutic

    optionsforlungdiseases.

    1.2. LungDevelopmentandRegeneration

    Accordingtooneofitsmostrecentdefinitions,regenerativemedicine

    is an interdisciplinary field of research () focused on the repair,

    replacement or regeneration of cells, tissues, or organs to restore

    impairedfunctionresultingfromanycause(). Itusesacombinationof

    convergingtechnologicalapproaches()[which]mayinclude()theuse

    of soluble molecules, gene therapy, stem and progenitor cell therapy,

    tissueengineering,andthereprogrammingofcellandtissuetypes.[32]

    Thisfieldhasevolveddramaticallyoverthepastcoupleofdecadesand

    evenmoresointherecentyears.Asearchforscientificpublicationsusing

    the keyword regenerative medicine on the United States Library of

    Medicine / National Institutes of Health database is returning 12,000

  • 4

    results[158].Asforspecializedjournals,the17%increaseinthenumber

    ofarticlespublishedinCellTransplantationTheRegenerativeMedicine

    Journal over only one year (2008 compared to 2007) can serve as an

    eloquentexample[109].

    Thefundamentalparadigmsinregenerativemedicineare:

    (i) insituorganregenerationfollowinginjurymayoccuraslongas

    theorganframeworkhasbeensufficientlypreserved;

    (ii) the regeneration principles would normally follow

    evolutionaryprinciplesandwouldlikelyrecapitulateontogeny

    [26, 168]. This brings forth the need to understand organ

    development, as new developmental concepts may have

    immediateapplicabilityinregenerativemedicine.

    The intrauterine development of the lung has traditionally been

    subdivided in five overlapping stages, on the basis of gross histological

    features[24].Therespiratorysystemstartsformingasearlyasthethird

    week of gestation as an outpouching of the primitive forgut bifurcating

    intothetwomainstembronchi(embryonicstage).Duringthefollowing

    pseudoglandular stage, rudimentary bronchi divide by dichotomous

    branching; the resulting tubular structures are lined by columnar

    epitheliumsurroundedbymesenchymal tissue.Thecanalicularstage is

    characterizedby thebifurcationof the lastgenerationsofdistalbronchi.

    In thisstagethere isalsocapillary invasionanddifferentiationof theair

  • 5

    spaceepitheliumintoalveolartype2cells(AT2,responsibleforsurfactant

    production)andtype1cells(AT1,whichformthethinairbloodbarriers).

    Next, during the saccular stage, the peripheral air spaces expand in

    length andwidth, and, around 36weeks of gestation these spaces form

    sacculesattheexpenseoftheinterveningmesenchyme.Alveolarization,

    thefinalstageoflungdevelopment,beginsintheneartermlungpriorto

    birth but primarily occurs postnatally, during the first 23 years of life,

    andmaycontinuebeyondchildhood,albeitataslowerrate.

    Thealveolusisthedefinitivegasexchangingunitofthelung.Alveoli

    are, in part, formedby subdivision (septation) of the saccules. Septation

    involvesbuddingof septal crests,which is followedbyelongationof the

    septal walls to form individual alveoli. Septation increases the gas

    exchange surface area,without a proportionate increase of lung volume

    (i.e. alveoli have a larger surface/volume ratio than saccules).

    Microvascularmaturation,thefinalimportantstepinlungdevelopment,

    follows and partly overlaps the alveolar stage. Initially, capillaries form

    doublelayersintheimmaturegasexchangeregion;duringthematuration

    step, these microvessels remodel to form a single capillary layer. The

    thickness of the alveolarwall decreases by about 20% and the distance

    between alveolar gas and capillary blood diminishes by about 25%.

    Morphometricstudiesshowthatfrombirthtoadulthoodthealveolarand

  • 6

    capillarysurfaceareasexpandabout20foldandthecapillaryvolume35

    fold.

    Whilethehistologicalchangesarewelldescribed[76,87,190],much

    moreneedstobelearnedaboutthemechanismsthatregulatenormallung

    developmentinordertoharnesstheseprocessesfortherapeuticpurposes

    [168]. This is particularly relevant for the perinatal care of extremely

    premature infantswho are born at the late canalicular stage, before the

    completion of the alveolar stage. The immaturity of the lungs, together

    with the ventilator support required places these infants at risk of

    developing BPD, which may lead to an irreversible arrest in alveolar

    developmentandimpairedlungfunctionbeyondchildhood[179].

    Thelungsareparticularlyvulnerableorgansduetotheirroleasoneof

    theportsofentryforenvironmentaltoxinsandallergens.Thecomplexity

    of the lungs and their developmental programme, together with the

    current lack of efficient therapies that would prevent or repair lung

    damage, render the lung an especially challenging candidate for the

    current arsenal of regenerative medicine. Traditionally, respiratory

    diseases have been assigned to several pathophysiological categories;

    however, new insights into disease mechanisms may offer new

    approaches to old problems. One example is cystic fibrosis, which is

    caused by mutations in the gene encoding for the cystic fibrosis

  • 7

    transmembrane regulator (CFTR), an ion channel normally present in

    epithelialcells.Thismonogenicdiseasehasbeenclassicallyregardedasa

    purely electrophysiological disease due to the CFTR dysfunction;

    however, recent findingssuggest thatCFTR isalsoexpressed in immune

    effector cells, such as macrophages [22], which opens new therapeutic

    perspectives that place more emphasis on the inflammatory aspects of

    cysticfibrosis.

    Aside fromandalsoalike cystic fibrosis,numerous lungdiseasesare

    currentlylackingefficienttherapies:whileALI/ARDSorasthmahavean

    overwhelminginflammatorycomponent,othertypesofinjurymayhavea

    more obscure etiology (emphysema, COPD, pulmonary fibrosis). BPD

    impairslungdevelopment,yet,inrecentyears,advancesinperinatalcare

    havepermitted the survival of extremelyprematurebabieswhose lungs

    areinearlierdevelopmentalstages;whereastheoldBPDhadastronger

    fibrotic component, the new BPD is an arrest in alveolarization with

    minimalinflammation[11].Theprolongedstalemateinfindingsolutions

    forpatientssufferingfromtheseincurablediseaseshasbroughtstemcell

    researchat thecoreofRMtoday. Thehallmarkabilitiesofstemcells to

    selfrenew and differentiate along multiple cell lineages (stem cell

    plasticity) have rendered both tissueresident and circulating stem and

    progenitor cells extremely appealing for tissue regeneration purposes.

  • 8

    Together with advances in creating animal models of lung disease, the

    promise of stem cells has become a crucial research avenue in lung

    regenerativemedicine[80].

    1.3.StemCells

    Theconceptofaplasticcelltypethatcanrespondtothedemandsof

    itsmicroenvironmentbyacquiring traitsspecifictoothercell typeswas

    proposed by the German pathologist Julius Cohnheim in 1867 [27]. He

    theorizedthatthefibroblaststhatparticipateinwoundhealinghadabone

    marrow origin, a hypothesis that to this day has not yet been starkly

    resolved.Itwasnotuntilthedawnofthetwentiethcenturythatasimilar

    visionof thebonemarrowas anorigin and reservoirofblood cellswas

    elaboratedby theRussianscientistAlexanderMaximow.Hedevelopeda

    noveltheoryofhematopoiesis,inwhichtheseelusivecellsthathenamed

    stem cells [92], had an overarching role. It is acknowledged that

    MaximowscommunicationduringascientificcongressinBerlinin1908

    wasthefirstinstanceofthetermstemcells.Hisworkdescribedcomplex

    cellular interactions where the marrow stroma orchestrated the

    conditions of hematopoietic stem cell differentiation [46, 93]. The

    modernmilestoneofstemcellresearchwassetin1961withJ.E.Tilland

    E.A.McCullochsdescriptionofcoloniesconsistingofmultiplecelltypesin

  • 9

    thespleensofirradiatedmicethathadreceivedunirradiatedmarrowcells

    [153]. Before the end of that decade, the first allogeneic bone marrow

    transplantations[54]weretoprovidetheclinicalproof for theexistence

    of hematopoietic stem cells (HSCs). These cells are the basis of the

    complete reconstitution of blood cells following transplantation of bone

    marrow into irradiated patients. To date, HSCs have been extensively

    characterized and are often employed as amodel of stem cell hierarchy

    [145,173],whileresearchmethodsinitiallydevelopedtostudyHSCs,such

    as lineage tracing methods [45], have been enthusiastically adopted by

    otherfieldsofresearch.

    Theunprecedentedemergenceofresultsthatsuggestedacontinuous,

    organismwiderenewalofpostnataltissuesalsocomprisedthepioneering

    reportsofJosephAltmanandGopalDas,indicatingpostnatalneurogenesis

    inseveralanimalspecies:rats(1965)[7],Guineapigs(1967)[8]andcats

    (1971) [34]; however, the existence of a neural stem cell had to await

    more than a few years for the confirmation by SamuelWeiss group in

    1992[125].

    Meanwhile, evidence had started to gather with regards to the

    presence of a different type of stem cell harbored by the bone marrow,

    this time in the stromal compartment, which was, at the time, mainly

    regarded as a support for HSCs. These cells were the focus of A.

    Friedensteins 1976 report that named them colony forming units

  • 10

    fibroblast (CFUF) [47]; later, these cellswere going to be assigned the

    termmesenchymalstemcells(MSCs)[4,115].

    Stemcellsaredefinedascells thathaveclonogenicandselfrenewal

    potential and are able todifferentiate alongmultiple cell lineages [173].

    The size, shape and cellular compartments of the adult organs are

    determined by embryonic and fetal stem/progenitor cell behavior

    [121].Traditionally, stem cells are categorized based on their origin and

    differentiationpotentialintoembryonicandadult(postnatal)stemcells.

    Embryonic stem cells (ESCs), definitively established in culture in

    1981[41,90],areisolatedfromtheinnermassofthetrophoblastandare

    pluripotent, i.e. able to differentiate along multiple cell lineages

    originating in any of the three germ layers: ectoderm, mesoderm or

    endoderm, whereas the differentiation potential of adult stem cells

    (multipotent or, for progenitor cells, oligo or unipotent) has been

    consideredtoberestricted to theiroriginalgerm layer.However, recent

    studies are challenging this paradigm, as stem cells derived from bone

    marrow, classically considered to be partially committed to either the

    hematopoieticormesenchymallineages,havebeenshowntocrosslineage

    boundariesandtransdifferentiatealonglineagesderivedfromadifferent

    germlayer.

  • 11

    The discovery of ESCs determined another golden era of

    exponential discovery and reconceptualized biomedical research in its

    entiretybyallowingthegenerationofgeneticallyengineered(specifically

    knockout)mice [25, 40, 138] that are nowwidely used tomodel the

    effectsofanabundanceoffactors.Todate,ESCsarebettercharacterized

    thanadultstemcells.Yet,thelineagerelationshipbetweenembryonicand

    adultstem/progenitorcellshasnotbeenclearlydescribed.

    Oneof thedefining featuresof stemcells is theirability to divide

    either symmetrically, generating two identical daughter cells or

    asymmetrically,givingrisetoanidenticaldaughterstemcellandamore

    specialized, lineagecommitted progenitor cell [121, 149] that lacks the

    selfrenewalabilitybutpossessesahigherproliferationratecomparedto

    itsparentstemcell.

    It becomesobvious that a tight regulatory control of thebalance

    between symmetrical and asymmetrical division, as well as the

    proliferation rate of these cells, is critical for organ development and

    homeostasis.Forinstance,ithasbeenproposedthatateachstageoflung

    development the stem cells divide mostly in an asymmetrical fashion,

    leaving thespecializedprogenitorbehindas the identical daughtercell

    movesdistallywiththebuddinglungtips[121].

    Regenerativeapproachesmaythereforefollowseveraltherapeutic

    directions:

  • 12

    1) Targeting of endogenous local (resident) stem cell

    populationsprotecting/stimulatingthesecells(potential

    regenerativemechanismseffectors)asameanstopromote

    organ regeneration or, conversely, targeting cancer stem

    cells(e.g.lungcancerstemcells[6])inastemcelloriented

    therapeuticapproachtotreatcancer;

    2) Cellreplacementbyexogenousstemcells, as stem cells

    may be able to regenerate damaged organs by

    differentiatingandengraftinginvivo.Thisholdspromisefor

    degenerative diseases (e.g. multiple sclerosis, Parkinsons

    disease) or genetic diseases (cystic fibrosis, alpha1

    antitrypsindeficiency);

    3) Standardized stemcell based preparations (e.g.

    conditioned medium) may eliminate the risks typically

    associated with heterologous stem cell transplantation

    (infectious agents carried over to the recipient [130],

    immune rejection, tumorigenesis [5, 155]) and even allow

    forautologoustherapy.

    4) Regeneration/reconstructionofdamagedorgansusing

    stem cells as a source of terminally differentiated cells for

    tissueengineering.

  • 13

    1.4.ResidentLungStem/ProgenitorCells

    Atbirth,thenormallydevelopedlungiscomprisedofmorethan40

    cell types that originate in both endoderm and mesoderm layers. In

    healthy adults, lung cellular homeostasis is viewed as a slow process

    compared to highly proliferating tissues such as the bone marrow,

    intestine or skin, which makes it more difficult to study lung resident

    stem/progenitor cells. However, it is widely accepted that

    stem/progenitorcellscontributetomaintenanceof lungcellpopulations

    andthereisevidencethat

    (i) stem cell proliferation rate in the lung increases

    dramaticallyfollowinginjury;

    (ii) the type and amplitude of injury also determines the

    intensity,durationandtypeofcellularresponse[56].

    Current approaches in lung regeneration include therapeutic

    approaches aimed at the protecting and/or exogenously administering

    both lungresident and circulating stem/progenitor cells. Local

    stem/progenitor cells divide to replace injured or postmitotic cells and

    require strict control over their proliferation rate. Traditionally, local

    endodermderived adult stem/progenitor cell populations have been

    considered to reside in welldelineated niches and categorized by lung

    region. Several cell populations have displayed progenitorlike behavior

  • 14

    following chemicalinduced lung injury in rodents, and the common

    feature generally employed to functionally define these cells has been

    their ability to incorporate [H3]thymidine into theirDNA [30, 91, 139].

    Lung cell populations that have been ascribed stem/progenitor cell

    functions [reviewed in 18, 84, 105, 119, 120, 122] are summarized in

    Table11.

    One particular category of cells, endothelial progenitor cells

    (EPCs),havebeentraditionallyconsideredtobecirculatingcells(foundin

    the bloodstream) that contribute to the homeostasis of the endothelium

    [64,142,186,187], consistentwithprevious findingsdemonstrating the

    beneficialeffectofangiogenicgrowthfactorsinexperimentallungdisease

    models[79,151].ThereisevidencethatcirculatingEPCsmaycontribute

    tothemaintenanceofthelungparenchymainLPS[183],hyperoxia[15]

    and elastaseinduced lung injury [66, 67]. In patients, the number of

    circulatingEPCscorrelateswithsurvivalanddiseaseseverityinacutelung

    injury[23],severeCOPD[106]orrestrictivelungdiseases[42],idiopathic

    pulmonaryarterialhypertension[36,71,146]andpneumonia[184].

    Recent findings have identified the presence of resident EPCs

    within the pulmonary microvascular endothelium with angiogenic

    capacity[9],highlightingthepotentialofnewtoolsinstemcellbiologyto

    identify resident lung progenitor cells. The significance of these cells in

  • 15

    healthanddiseaseaswellastheirtherapeuticpotentialiscurrentlybeing

    explored.

    1.5.TherapeuticPotentialofExogenousStem/Progenitorcells

    1.5.1.CellReplacementbyMSCs

    Beside local stem/progenitor cell populations, there is evidence

    that nonresident stem/progenitor cells contribute to lung repair

    following injury [1,2,56,97,100,137,144,169172,178].Kottonetal.

    [77]andKrauseetal. [78]showedthatbonemarrowderivedstemcells

    cangiverisetodaughtercellsintheairways.Thisabilityofthecellsto

    engraft and differentiate has led to the hypothesis that they may

    reconstituteinjuredtissuesbyreplacingthedamagedcells.Thereisnowa

    large body of evidence in support of the hypothesis that bonemarrow

    derived multipotent MSCs can differentiate into airway [166, 177] or

    alveolar[159]epithelialcellsinvitro,engraftanddifferentiateinvivoand

    prevent lung injury in various disease models including bleomycin

    inducedlungfibrosis[102,103,129,131,191],lipopolysaccharide(LPS)

    induced ALI/ARDS [57, 181, 183, 184], oxygeninduced BPD [13, 159],

    radiation[1]andnaphthalene[135]inducedlunginjury,haemorrhhagic

    shock [110].TheabilityofadultMSCs todifferentiate into lungcellshas

  • 16

    rendered them particularly important candidates for lung regeneration

    approaches; today, MSCs are the most widely used stem cells in

    regenerativemedicine.Theestablishmentofaminimalsetofcriteria for

    defininghumanMSCs[37]createdaframeofreferenceforcomparisonof

    reportsfromdifferentgroups;however,anequivalentforrodentMSCsis

    still lacking. MSCs have proven therapeutic abilities in numerous organ

    injury models, including myocardial infarction [16], acute renal failure

    [61, 154], type1 diabetes [43, 53, 162] andneurodegenerative diseases

    [70]. As of May, 2012, there are 238 clinical trials listed on

    clinicaltrials.gov,awebsitehostedbytheUnitedStatesNationalInstitutes

    ofHealth.AsofaruniqueclinicalsuccessemployedtheabilityofMSCsto

    differentiateintochondrocytesthatwereusedtorepopulateanacellular

    trachealacellularscaffold[86].Theengineeredstructurewassuccessfully

    transplantedasmainbronchusintoapatientwhoseownairwayhadbeen

    irreversibly damaged. Beyond their classically described mesenchymal

    lineage differentiation ability, the fact that MSCs can cross lineage

    boundariesanddifferentiateintolungepithelialcellscouldbeharnessed

    for diseases such as cystic fibrosis, in which the symptoms are mainly

    causedbymutationsinthegeneencodingfortheCFTR,achloridechannel

    typically expressed in the apicalmembrane of epithelial cells. The stem

    cells would be engineered to overexpress functional CFTR and act as a

    deliveryvehicletothedamagedtissues,includingthelung[22].Thesame

  • 17

    approachwouldbeapplicableforothermonogenicdiseasesthatseverely

    affect the lung such as alpha1 antitrypsin deficiency (which leads to

    irreversible emphysemalike lesions) or surfactant protein B deficiency

    (whichresults in fatal respiratory failure innewborns).Moreover, ithas

    been suggested that stem cells could act asdrugdelivery vehicles [107]

    based on observed therapeutic effects inmyocardial infarction [83] and

    cancer[73,85].ThepossibilityofisolatingMSCsfromavarietyofsources,

    includingthecordbloodandtheadiposetissue,makesautologoustherapy

    averypromisingclinicalapproachintheclosefuture.

    1.5.2.CellReplacementVersusParacrineActivityofMSCs

    Despite the hope originally placed in cell replacementdriven

    studies,numerousreportsthatevaluatedthetherapeuticpotentialofstem

    celltransplantationinanimalmodelsoflungdiseasesharedonecommon

    feature: the degree of stem cell engraftment in the target organs was

    generally low and therefore alternate mechanisms needed to be

    considered in order to account for the observed therapeutic benefit.

    Moreover, MSCs have been shown effective in inflammatory diseases

    [136], such as graftversushost disease in humans [81] and rodent

    modelsofLPSinducedALI[57,95],fulminanthepaticfailure[108],sepsis

    [98]andasthma[20,55,99],wherethelocalcellengraftmentmaynotbe

  • 18

    the primarybeneficial component. This has led to the current view that

    stemcells act throughaparacrinemechanismby secreted factors [116].

    Indeed,MSCssecreteantiapoptotic,angiogenic,andimmunomodulatory

    factors. Since the initial report indicating paracrinemediated protective

    effectsofMSCsoverexpressing theprosurvivalgeneAkt in the ischemic

    heart [52], this paracrine activity has now extensively been explored in

    vitro [57, 62, 159], showing cellprotective, proangiogenic and anti

    inflammatory properties. Ex vivo [82] and in vivo in oxygen [13],

    ventilator[31] and LPS [57] induced lung injury, MSCderived

    conditionedmediumconferredtherapeuticbenefit,evenwhencompared

    directly with wholecell therapy [13, 82]. The immunomodulatory,

    paracrine activity ofMSCsmay also have therapeutic potential in other

    inflammatorydiseases [68, 116, 136]. Several factors found in theMSCs

    secretome, among which are interleukin10 [98], transforming growth

    factorbeta (TGF) [92], stanniocalcin1 [19] and keratinocyte growth

    factor (KGF) [82], have been proposed tomediateMSCs crosstalkwith

    variouseffectorcelltypes,suchasmacrophages[98].Recentobservations

    also indicate cellprotective effects of MSCs on endogenous stem cells,

    such as bronchoalveolar stem cells (BASC) [157]. Identification of these

    MSCsecreted factors, along with clarification of their mechanisms of

    action,mayallowthedevelopmentofnewtreatments.

  • 19

    1.5.3.ESCsandInducedPluripotentStemCells(iPSCs)

    ESCs represent the most pluripotent stem cells but the clinical

    applicability of ESCbased clinical solution is hampered by the ethical

    controversy surrounding the need to isolate these cells from the early

    embryo. The recent landmark generation of ESClike, induced

    pluripotentstemcells(iPSC)usingviraldeliveryofpluripotencygenesto

    somaticcells[148]mayrelievemanyethicalconcernsrelatedtotheuseof

    ESCs forresearchandhasopenedthewayto largescaleproductionand

    evaluationofpluripotentstemcellsforlungregenerationandrepair.

    Whenmaintained in conditions that support the undifferentiated

    state,pluripotentstemcellsshowunlimitedproliferationpotential,which

    renders them ideal candidates for studies in developmental biology

    regeneration. ESCs can be directed to differentiate into definitive

    endoderm fromwhich theymaybe furtherdifferentiated into lung cells

    using specific factors [128, 161]. Another method employed was the

    exposure of ESCs to microenvironments mimicking lung conditions

    (coculturewith lungmesenchyme or lung cell extracts) [160]. Although

    thereareisolatedreportsindicatingtheattainmentoffullydifferentiated

    proximal airwaylike tissue [28], airway epithelium [133], distal lung

    progenitors[127]orevenpurepopulationsofAT2cells[165]fromESCs,

    most of the available literature indicates cellular heterogeneity of the

  • 20

    cultureswitharelativelylowyieldoflungcells.Invivoadministrationof

    ESCs or progenitor cells derived fromESCs or iPSCs has also generated

    inconclusive results so far,with limited and transient ESC expression in

    the lung [128, 174]. Further steps, such as stable differentiation and

    purificationofdesiredcellpopulationsneedtobetakeninordertoassess

    thepotentialofESCsandiPSCsforlungdiseases.

    1.5.4.StemCellsandCarcinogenesis

    Thetermlungcancerencompassesseveraldifferentpathological

    entities: squamous cell carcinomas, small cell carcinomas and

    adenocarcinomaswhichappearwithdifferentfrequencyindifferentareas

    ofthelung,suggestingthatlocallungenvironmentmayactuponcellfate.

    Thehypothesisoftumorinitiatingcells(cancerstemcells)couldexplain

    the relapseof certain tumorsowing to the fact that these cellsmightbe

    resistant to many conventional cancer therapies [111, 113, 182]. The

    identificationofputativeresidentstemcells in lungtumors[75] leadsto

    the question whether the resident cells that survive pollutantinduced

    injurymayinfactbesuchacancerstemcell.Theexistenceofcancerstem

    cellsinthelungissupportedbyworkindicatingthatCD133+isamarker

    ofselfrenewingcellsthatsustaintumorpropagationinmice[39].These

    cellsareresistanttocisplatintreatment[17];however,theproportionof

  • 21

    cells expressing this marker lacks prognostic value [132]. Other work

    suggeststhatactivationofthekrasgene,whoseactivationwasshownto

    be directly linked to earlyonset lung cancer [69], upregulates the SP

    C+/CCSP+ (BASC) cells and leads to development of lung

    adenocarcinomas [75]. Similarly, deletion of phosphatase and tensin

    homolog (PTEN), phosphoinositide 3kinase (PI3K) or p38a mitogen

    activatedproteinkinase(MAPK)ledtoproliferationofSPC+/CCSP+cells

    simultaneous with the increase in susceptibility to develop lung

    neoplasms[185],whereasBmi1(BlymphomaMoMLVinsertionregion1

    homolog)deletionhadoppositeeffects[38].Bmi1hasbeenshowntobe

    crucial for stem cell selfrenewal [189]. However, it has not yet been

    clearlydeterminedwhetherthereisalinkbetweentheCD133expressing

    and the dual SPC/CCSPexpressing cell population orwhether either of

    these populations acts as an initiator or propagator of lung malignant

    tumors. Also, the cells in small cell carcinomas have been shown to

    express basal cell markers, whereas small cell carcinomas have been

    found to express markers reminiscent of PNECs [51], but the direct

    relationship between the putative stem/progenitor cells and the

    neoplastic cells, aswell as the proposed contributions of bonemarrow

    derived cells to cancer progression [48] has yet to be investigated.

    Althoughmuch work is still needed to identify and characterize cancer

  • 22

    stem cellsinitiating cells, the discovery opens therapeutic avenues for

    designingspecificcellulartargetsforthetreatmentofcancer[192].

    1.6.BiotechnologyEngineeringLungTissue

    Currently, lung transplantation is the only viable solution for

    incurable lung disease in patients under 65 years of age. These lung

    diseases include lung fibrosis, COPD, cystic fibrosis, primary pulmonary

    hypertension, sarcoidosis, lymphangioleiomyomatosis. However, the

    mortalityratefromthemomentthepotentialrecipientsareplacedonthe

    waiting list until they receive the transplant is currently around 30%

    [118].Moreover, lung transplantation is not an option for patientswith

    othermajoraccompanyinghealthproblems.Thishighlightsthenecessity

    to seek for alternative approaches, such as the development of the

    artificiallungorbioengineeredlungcomponents.

    1.6.1.HumanExVivoLungProject(HELP)

    Currently, the supply of donor lungs does notmatch the demand

    andoneofthefactsthatcontributetothisshortageisthatonlyabout20%

    of donor organs are considered acceptable for transplantation [118].

    Improper oxygenation capacity (reflected by a PaO2 below 300mm Hg

  • 23

    afteroxygenationwithaFiO2of100%for5minandPEEPgreaterthan5

    cmH2O) leads to rejectionofdonor lungs.HELP involves the conceptof

    reconditioning and transplantation of these otherwise rejected donor

    lungs.Lungsarereconditionedexvivobycontinuousperfusionwithalung

    evaluationpreservation solution (Steen solution) [175] mixed with

    erythrocytes for several hours, until the functional parameters reach

    acceptable values. After reconditioning, these lungs can be transplanted

    immediately or stored at 8C in ex vivo extracorporeal membrane

    oxygenation(ECMO)untiltransplantationcanbeperformed[63].Thefirst

    transplantoflungsharvestedfromadonorandreconditionedexvivowas

    performed successfully in 2007 [141]. The impact of this promising

    strategyremainstobeevaluated.

    1.6.2.ArtificialLungNovaLung

    Theartificiallungisarelativelynewmethod,similarinconceptto

    dialysisanddesignedtosupportrespiratory functionwhile thepotential

    lungtransplantrecipientiswaitingforthedonorlungs[44].Thepatients

    blood flows into a device that removes carbon dioxide and enriches the

    blood in oxygen. As compared to conventional ECMO, the artificial lung

    eliminatestheneedforanextracorporealbloodpumpandcanbeusedfor

    extendedperiodsoftime(upto100days)[163]incentreswhereECMOis

  • 24

    not available. Other advantages of this system over ECMO are reduced

    anticoagulation and avoidanceof longtermmechanical ventilation [150,

    164].

    1.6.3.BioengineeredLungTissue

    The structural and functional complexity of the lung has so far

    restrictedthedevelopmentofbioengineeredlungtissue,whencompared

    totheprogressmadeinengineeringlesscomplexorgans,suchastheskin

    or the urinary bladder [12, 14]. A recent in silicomodel of the alveolar

    capillaryinterfacehasbeendevelopedemployingbiomaterialsandhuman

    alveolar epithelial cells at airliquid interface, along with human

    pulmonarymicrovascular endothelial cells [60]. This type of biomimetic

    microsystems could facilitate drug screening and toxicology studies by

    allowinghighthroughputprocessing.Ona larger scale, so far bothESCs

    and adult multipotent stem cells, as well as mixed cell populations

    containing progenitor cells or terminally differentiated cells such as

    fibroblasts or chondrocytes have been used with promising results to

    generate lung cell lineagesorbioengineered lung components, including

    recellularization of a human tracheal scaffold with MSCsderived

    chondrocytes,followedbysurgicalimplantationasamainbronchus[86].

    However, the lack of conclusive information with respect to the

  • 25

    tumorigenic potential of stem cells, especially ESCs, known for their

    karyotypic instability, togetherwith the unanswered question regarding

    the local progenitor cells as potential cancer stem cells, demand careful

    safety evaluation of stem cellbased approaches. Also, the biomaterials

    used as scaffolds on which the lung tissue would be grown need to be

    evaluated with regards to their biocompatibility in terms of elasticity,

    adsorption kinetics, porosity and degradation kinetics [101]. So far,

    scaffoldscomposedofnaturalpolymerslikecollagen,Matrigel(amixture

    of basement membrane proteins and / or synthetic polymers, such as

    polyacrylamidehavebeenused inattempts toengineer lung tissue [12].

    Aside from constructed scaffolds, a recent breakthrough in lung

    bioengineering has been achieved by demonstrating that decellularized

    lungmatriceshavetheabilitytosupportrepopulationwithnewlyseeded

    epithelial and endothelial cells and, moreover, to sustain lung function

    followingtransplantationintoanimals[104,112,140].

    1.7.ClinicalStudies:Experience,Outcome,Limitations

    Severallimitationshavehamperedclinicaltrialsofstemcellbased

    therapies for lung diseases. There are certain risks to heterologous cell

    transplantation. The cells may carry infectious agents, which poses an

    evenenhancedperil in the caseof recipientswhohavedevelopedgraft

  • 26

    versushost disease [130]. Furthermore, there have been reports of

    bronchiolitis obliterans organizing pneumonia (BOOP) in patients who

    had undergone HSC transplantation [58]. Both heterologous and

    autologous transplantation bear the risk of tumor formation. ESCs and

    iPSCsdevelopteratomasinvivoandtherearealsoreportsindicatingthat

    transplantationofneural stemcells led to thedevelopmentof tumors in

    the recipient brain [10]. MSCs, generally considered less prone to

    acquiring karyotypic abnormalities compared to ESCs, may also pose

    tumorigenicrisks[155].However,thesedangersmaybeovercome:recent

    findings indicating that stem cellsecreted factors exert therapeutic

    benefits may abrogate the need to deliver the cells themselves to the

    damagedtissues.

    Anotherlimitationistheinsufficientcharacterizationofstemcells

    in termsofbothphenotypeand function. ForMSCs,minimal criteria for

    defininghumanMSCs,establishedbytheInternationalSocietyforCellular

    Therapy[37],havereducedsomeofthevariationswithregardstocellular

    compositionofMSCpopulationsisolatedaccordingtodifferentprotocols.

    Lung injurypreventionobtainedwithMSCs in various animalmodelsof

    lungdisease, togetherwith theireaseof isolationandculture,aswellas

    their immunomodulatory properties make these cells very promising

    candidatesforclinicaltrials.

  • 27

    Thusfar,MSCshavebeentransplantedinhumansaspartofwhole

    bonemarrow transplantation for various disorders (including leukemia

    and genetic diseases of the immune system). Gendermismatched

    transplantation(maledonorbonemarrowtofemalerecipient)hasproven

    tobeausefultoolinassessingtheimpactofstemcelltransplantationon

    otherorgans thanbonemarrow.Donormalecellswere identified in the

    lungsofrecipientsasepithelialandendothelialcells[147]andalsointhe

    liver[152],heart[35],brain[29,96]andkidney[114].Also,inthereverse

    casewheremaleswere recipients of sexmismatched organ transplants,

    theYchromosomeindicatingrecipientoriginwasidentifiedinavariable

    proportion of organspecific cells.With regards to lungs, the chimerism

    was present in bronchial epithelial cells, AT2 and seromucous glands

    [115].

    Currently, one phase I clinical trial aimed at evaluating the

    tolerabilityandsafetyofprogenitorcells forthetreatmentofpulmonary

    arterial hypertension (Pulmonary Hypertension: Assessment of Cell

    Therapy, PHACeT) is underway. Autologous endothelial progenitor cells

    areengineeredexvivotoexpressendothelialnitricoxidesynthase(eNOS),

    followed by injection of the cells via a pulmonary artery line. Previous

    pilotstudieshavesupportedthefeasibilityof thisapproachinidiopathic

    pulmonaryhypertension[167,193].

  • 28

    On the basis of initial reports of safety and efficacy following

    allogeneicadministrationofMSCstopatientswithCrohnsdiseaseorwith

    graftversushost disease, several trials studying the effect of MSCs in

    patients with lung diseases (COPD, BPD, idiopathic pulmonary fibrosis,

    emphysema)areongoingandprogramssuchastheProductionAssistance

    for Cellular Therapies (PACT) [124] in the United States have been

    initiatedtofacilitatethetranslationofcellbasedtherapiestotheclinical

    environment. Information on current clinical trials involving the use of

    stem cells or stem cellderived products is regularly updated on the

    United States National Institute of Healths website

    www.ClinicalTrials.gov.

  • 29

    Celltype Location Phenotype Lunginjurymodel

    Remarks

    Basalandparabasalcells

    proximalairwayepitheliumsubmucosalglandularductsandintercartilaginouszone

    cytokeratin5/14+

    polydocanolorSO2induced[21]

    clonogeniccapacity,multilineagedifferentiation[134];repopulateairwayepitheliumpostinjury[59]

    TypeA(new,variant)Claracells

    bronchioalveolarjunction;proximityofneuroepithelialbodies(NEBs)[49]

    Claracellsecretoryprotein(CCSP)+;nosecretorygranules,nosmoothER

    naphthaleneorozoneinduced

    retainlabeledDNAprecursors[121];repopulateinjuredairwayepitheliumwithbothmature,quiescentClaracellsandciliatedepithelialcells

    Bronchioalveolarstemcells(BASC)

    Sca1+/CD34+/CD45/CD31[74,75]

    maycoexpressSPC

    TypeIIalveolarepithelialcells(AT2)

    SPC proliferateandgenerateAT1cellsfollowinginjury[4,123].AT1differentiateintoAT2invitro[33]:alternateprogenitorcellsdependingontypeoflunginjury

    Sidepopulation(SP)[146]

    heterogeneouspopulationeffluxtheDNAdyeHoechst[50]

    derivedfrombonemarrow,identifiedinlung[88];differentiatealongendodermandmesodermderivedlineages[89,143];endothelialpotential(newbornmice);decreasedinoxygeninducedarrestedalveolargrowth[65]

    Pulmonaryneuroendocrinecells(PNECs)

    foundwithtypeAClaracellsinNEBsassociatedregenerativefoci[126].

    calcitoningenerelatedpeptide(CGRP)

    naphthaleneinduced

    oxygensensing[188];ifbothnaphthalenesensitiveandresistantClaracellsareablatedairwayepitheliumdoesnotregeneratePNECsarenotairwayepithelialprogenitors[59]

    Lungepithelialprogenitors

    EpCAM(hi)/CD104+/CD24(low)

    giverisetobronchialandalveolarepithelium[94]

    Multipotentlungprogenitors

    ckit+

    selfrenewing,clonogenic[72]

    Table11.Summaryofputativeendogenouslungstemcellpopulations.

  • 30

    1.8.References

    1. AbeS,LaubyG,BoyerC,RennardSI,SharpJG(2003)Transplanted

    BM and BM side population cells contribute progeny to the lung

    andliverinirradiatedmice.Cytotherapy5,523533

    2. Abe S Boyer C, Liu X, Wen FQ, Kobayashi T, Fang Q, Wang X,

    HashimotoM,Sharp JG,RennardSI (2004)Cellsderived fromthe

    circulationcontributetotherepairoflunginjury.Am.J.Respir.Crit.

    CareMed170,11581163

    3. Adamson IY, BowdenDH (1974)The type 2 cell as progenitor of

    alveolarepithelialregeneration.Acytodynamicstudyinmiceafter

    exposuretooxygen.Lab.Invest30,3542

    4. Afanasyev BV, Elstner EE, Zander RA (2009) A. J. Friedenstein,

    founder of the mesenchymal stem cell concept. Cellular Therapy

    andTransplantation(CTT),Vol.1,No.3,doi:10.3205/ctt2009en

    000029.01

    5. Aguilar S, Nye E, Chan J, Loebinger M, SpencerDene B, Fisk N,

    Stamp G, Bonnet D, Janes SM (2007) Murine but not human

    mesenchymalstemcellsgenerateosteosarcomalikelesionsinthe

    lung.StemCells25(6):158694

    6. AlisonMR,LebrenneAC,IslamS(2009)Stemcellsandlungcancer:

    futuretherapeutictargets?ExpertOpinBiolTher9,11271141

  • 31

    7. AltmanJ,DasGD(1965)Postnataloriginofmicroneuronesinthe

    ratbrain.Nature207(5000):9536

    8. AltmanJ,DasGD(1967)Postnatalneurogenesisintheguineapig.

    Nature214(5093):1098101

    9. AlvarezDF,HuangL,King JA, ElZarradMK, YoderMC, StevensT.

    (2008) Lung microvascular endothelium is enriched with

    progenitor cells that exhibit vasculogenic capacity. Am J Physiol

    LungCellMolPhysiol294(3):L41930

    10. AmariglioN,HirshbergA,ScheithauerBW,CohenY,LoewenthalR,

    Trakhtenbrot L, Paz N, KorenMichowitz M, Waldman D, Leider

    Trejo L, Toren A, Constantini S, Rechavi G (2009) Donorderived

    braintumorfollowingneuralstemcelltransplantationinanataxia

    telangiectasiapatient.PLoSMed6(2):e1000029

    11. Ambalavanan N, Carlo WA (2004) Bronchopulmonary dysplasia:

    newinsights.ClinPerinatol31(3):61328

    12. Ashton RS, Keung AJ, Peltier J, Schaffer DV (2011) Progress and

    prospects for stem cell engineering. Annu Rev Chem Biomol Eng

    2:479502

    13. Aslam M, Baveja R, Liang OD, FernandezGonzalez A, Lee C,

    Mitsialis SA, Kourembanas S (2009) Bone marrow stromal cells

    attenuate lung injury in amurinemodel of neonatal chronic lung

    disease.AmJRespirCritCareMed180(11):112230

  • 32

    14. AtalaA. (2007)Engineering tissues,organsandcells. JTissueEng

    RegenMed1(2):8396

    15. BalasubramaniamV,Mervis CF,Maxey AM,MarkhamNE, Abman

    SH. (2007)Hyperoxiareducesbonemarrow,circulating,and lung

    endothelialprogenitorcellsinthedevelopinglung:implicationsfor

    the pathogenesis of bronchopulmonary dysplasia. Am J Physiol

    LungCellMolPhysiol292(5):L107384

    16. BeitnesJO,LundeK,BrinchmannJE,AakhusS(2011)Stemcellsfor

    cardiacrepairinacutemyocardialinfarction.ExpertRevCardiovasc

    Ther9(8):101525

    17. Bertolini G, Roz L, Perego P, Tortoreto M, Fontanella E, Gatti L,

    PratesiG,FabbriA,AndrianiF,TinelliS,RozE,CaseriniR,LoVullo

    S, CameriniT,Mariani L,DeliaD, CalabrE, PastorinoU, SozziG.

    (2009)HighlytumorigeniclungcancerCD133+cellsdisplaystem

    likefeaturesandaresparedbycisplatintreatment.ProcNatlAcad

    SciUSA106,1628116286

    18. BertoncelloI,McQualterJ(2010)Endogenouslungstemcells:what

    is their potential for use in regenerative medicine? Expert Rev

    RespirMed4(3):34962

    19. BlockGJ,OhkouchiS,FungF,FrenkelJ,GregoryC,PochampallyR,

    DiMattia G, Sullivan DE, Prockop DJ (2009) Multipotent stromal

    cellsareactivatedtoreduceapoptosisinpartbyupregulationand

  • 33

    secretionofstanniocalcin1.StemCells27(3):67081

    20. BonfieldTL,KolozeM,LennonDP,ZuchowskiB,YangSE,CaplanAI

    (2010) Humanmesenchymal stem cells suppress chronic airway

    inflammationinthemurineovalbuminasthmamodel.AmJPhysiol

    LungCellMolPhysiol299(6):L76070

    21. Borthwick DW, Shahbazian M, Krantz QT, Dorin JR, Randell SH

    (2001)Evidenceforstemcellnichesinthetrachealepithelium.Am

    JRespirCellMolBiol24(6):662670

    22. BrusciaEM,ZhangPX,FerreiraE,CaputoC,Emerson JW,TuckD,

    KrauseDS,EganME(2009)Macrophagesdirectlycontributetothe

    exaggerated inflammatory response in cystic fibrosis

    transmembrane conductance regulator/ mice. Am J Respir Cell

    MolBiol40(3):295304

    23. BurnhamEL,TaylorWR,QuyyumiAA,RojasM,BrighamKL,Moss

    M. (2005) Increased circulating endothelial progenitor cells are

    associatedwithsurvivalinacutelunginjury.AmJRespirCritCare

    Med172(7):85460

    24. BurriPH.(2006)Structuralaspectsofpostnatallungdevelopment

    alveolarformationandgrowth.BiolNeonate89(4):31322

    25. CapecchiMR (2008)Themakingof a scientist II (Nobel Lecture).

    Chembiochem9,15301543

    26. CardosoWV,Whitsett JA (2008)ResidentCellularComponentsof

  • 34

    theLung:DevelopmentalAspects.ProcAmThoracSoc5,767771

    27. CohnheimJ(1867)berentzndungundEiterung.ArchPathAnat

    PhysiolKlinMed40:179

    28. Coraux C, NawrockiRaby B, Hinnrasky J, Kileztky C, Gaillard D,

    Dani C, Puchelle E (2005) Embryonic stem cells generate airway

    epithelialtissue.AmJRespirCellMolBiol32(2):8792

    29. Crain BJ, Tran SD, Mezey E (2005) Transplanted human bone

    marrowcellsgeneratenewbraincells.JNeurolSci233(12):1213

    30. CrystalRG,RandellSH,EngelhardtJF,VoynowJ,SundayME(2008)

    AirwayEpithelialCells:CurrentConceptsandChallenges.ProcAm

    ThoracSoc5,772777

    31. CurleyGF,HayesM,AnsariB,ShawG,RyanA,BarryF,O'BrienT,

    O'Toole D, Laffey JG (2011) Mesenchymal stem cells enhance

    recoveryandrepairfollowingventilatorinducedlunginjuryinthe

    rat.Thorax67(6):496501

    32. Daar AS, Greenwood HL (2007) A proposed definition of

    regenerativemedicine.JTissueEngRegenMed1(3):17984

    33. Danto SI, Shannon JM, Borok Z, Zabski SM, Crandall ED (1995)

    Reversible transdifferentiation of alveolar epithelial cells. Am J

    RespirCellMolBiol12(5):497502

    34. DasGD,AltmanJ(1971)Postnatalneurogenesisinthecerebellum

    of the cat and tritiated thymidine autoradiography. Brain Res

  • 35

    30(2):32330

    35. DebA,WangS,SkeldingKA,MillerD,SimperD,CapliceNM(2003)

    Bonemarrowderivedcardiomyocytesarepresentinadulthuman

    heart:Astudyofgendermismatchedbonemarrowtransplantation

    patients.Circulation107(9):12479

    36. DillerGP,vanEijlS,OkonkoDO,HowardLS,AliO,ThumT,WortSJ,

    BdardE,Gibbs JS,Bauersachs J,HobbsAJ,WilkinsMR,Gatzoulis

    MA, Wharton J (2008) Circulating endothelial progenitor cells in

    patients with Eisenmenger syndrome and idiopathic pulmonary

    arterialhypertension.Circulation117(23):302030

    37. DominiciM, Le Blanc K,Mueller I, SlaperCortenbach I,Marini F,

    Krause D, Deans R, Keating A, Prockop Dj, Horwitz E (2006)

    Minimal criteria for defining multipotent mesenchymal stromal

    cells. The International Society for Cellular Therapy position

    statement.Cytotherapy8(4):3157

    38. Dovey JS,ZacharekSJ,KimCF,Lees JA (2008)Bmi1 is critical for

    lungtumorigenesisandbronchioalveolarstemcellexpansion.Proc

    NatlAcadSciUSA105,1185711862

    39. Eramo A, Lotti F, Sette G, Pilozzi E, Biffoni M, Di Virgilio A,

    Conticello C, Ruco L, Peschle C, DeMaria R (2007) Identification

    andexpansionofthetumorigeniclungcancerstemcellpopulation.

    CellDeathDiffer15,504514

  • 36

    40. Evans M (2011) Discovering pluripotency: 30 years of mouse

    embryonic stem cells. Nat Rev Mol Cell Biol 12(10):6806. doi:

    10.1038/nrm3190

    41. Evans MJ, Kaufman MH (1981) Establishment in culture of

    pluripotentialcellsfrommouseembryosNature292,154156

    42. Fadini GP, Schiavon M, Cantini M, Baesso I, Facco M, Miorin M,

    Tassinato M, de Kreutzenberg SV, Avogaro A, Agostini C (2006)

    Circulating progenitor cells are reduced in patients with severe

    lungdisease.StemCells24(7):180613

    43. FiorinaP,JurewiczM,AugelloA,VerganiA,DadaS,LaRosaS,Selig

    M,Godwin J, LawK,PlacidiC, SmithRN,CapellaC,Rodig S,Adra

    CN, Atkinson M, Sayegh MH, Abdi R (2009) Immunomodulatory

    function of bone marrowderived mesenchymal stem cells in

    experimentalautoimmunetype1diabetes.JImmunol183(2):993

    1004

    44. Fischer S, SimonAR,WelteT,HoeperMM,MeyerA,TessmannR,

    GohrbandtB, Gottlieb J,HaverichA, StrueberM (2006)Bridge to

    lung transplantationwith the novel pumpless interventional lung

    assistdeviceNovaLung.JThoracCardiovascSurg131(3):71923

    45. Fox,DT,MorrisLX.,NystulT,Spradling,AC(2009)Lineageanalysis

    of stem cells. StemBook, ed. The Stem Cell Research Community,

    StemBook,doi/10.3824/stembook.1.33.1

  • 37

    46. Friedenstein A (2009) Stromalhematopoietic interrelationships:

    Maximov's ideas and modern models. Cell Ther Transplant

    1:e.000033.01. doi:10.3205/ctt2009en000033.01; Republished

    fromModernTrends inHumanLeukemiaVIII (1989), Ed.R.Neth,

    withkindpermissionbySpringerScienceandBusinessMedia

    47. Friedenstein AJ, Gorskaja JF, Kulagina NN (1976) Fibroblast

    precursors innormalandirradiatedmousehematopoieticorgans.

    ExpHematol4(5):26774

    48. GaoD,Mittal V (2009) The role of bonemarrowderived cells in

    tumor growth, metastasis initiation and progression. TrendsMol

    Med15,333343

    49. GiangrecoA,ReynoldsSD,StrippBR(2002)Terminalbronchioles

    harbor a unique airway stem cell population that localizes to the

    bronchoalveolarductjunction.AmJPathol161,173182

    50. Giangreco A, Shen H, Reynolds SD, Stripp BR (2004) Molecular

    phenotype of airway side population cells.Am JPhysiolLungCell

    MolPhysiol286(4):L62430

    51. GiangrecoA,GrootKR,JanesSM(2007)Lungcancerandlungstem

    cells:strangebedfellows?AmJRespirCritCareMed175,547553

    52. GnecchiM,HeH,LiangOD,MeloLG,MorelloF,MuH,NoiseuxN,

    Zhang L, Pratt RE, Ingwall JS, Dzau VJ (2005) Paracrine action

    accountsformarkedprotectionof ischemicheartbyAktmodified

  • 38

    mesenchymalstemcells.NatMed11(4):3678

    53. GodfreyKJ,MathewB,BulmanJC,ShahO,ClementS,GallicanoGI

    (2012) Stem cellbased treatments for Type 1 diabetes mellitus:

    bone marrow, embryonic, hepatic, pancreatic and induced

    pluripotent stem cells. Diabet Med 29(1):1423. doi:

    10.1111/j.14645491.2011.03433.x

    54. Good R (1987) Bone Marrow Transplantation Symposium: Bone

    Marrow Transplantation for Immunodeficiemcy Diseases. Am J

    MedicalSciences294(2)6874

    55. Goodwin M, Sueblinvong V, Eisenhauer P, Ziats NP, Leclair L,

    Poynter ME, Steele C, Rincon M, Weiss DJ (2011) Bone marrow

    derived mesenchymal stromal cells inhibit Th2mediated allergic

    airways inflammation in mice. Stem Cells 29(7):113748. doi:

    10.1002/stem.656

    56. Gomperts BN, Strieter RM (2007) Stem cells and chronic lung

    disease.AnnuRevMed58,285298

    57. Gupta N, Su X, Popov B, Lee JW, Serikov V, Matthay MA (2007)

    Intrapulmonary delivery of bone marrowderived mesenchymal

    stem cells improves survival and attenuates endotoxininduced

    acutelunginjuryinmice.JImmunol179,18551863

    58. HildebrandtGC,GranellM,UrbanoIspizuaA,WolffD,Hertenstein

    B,GreinixHT,BrenmoehlJ,SchulzC,DickinsonAM,HahnJ,Rogler

  • 39

    G,AndreesenR,HollerE(2008)RecipientNOD2/CARD15variants:

    a novel independent risk factor for the development of

    bronchiolitis obliterans after allogeneic stem cell transplantation.

    BiolBloodMarrowTransplant14(1):6774

    59. HongKU,ReynoldsSD,GiangrecoA,HurleyCM,StrippBR(2001)

    Clara cell secretory proteinexpressing cells of the airway

    neuroepithelial body microenvironment include a labelretaining

    subset and are critical for epithelial renewal after progenitor cell

    depletion.AmJRespirCellMolBiol24(6):67181

    60. Huh D, Matthews BD, Mammoto A, MontoyaZavala M, Hsin HY,

    IngberDE(2010)ReconstitutingOrganLevelLungFunctionsona

    Chip.Science328(5986):16628

    61. Humphreys BD, Bonventre JV (2008) Mesenchymal stem cells in

    acutekidneyinjury.AnnuRevMed59:31125

    62. Hung SC, Pochampally RR, Chen SC, Hsu SC, Prockop DJ (2007)

    Angiogenic effects of humanmultipotent stromal cell conditioned

    mediumactivatethePI3KAktpathwayinhypoxicendothelialcells

    to inhibitapoptosis, increasesurvival,andstimulateangiogenesis.

    StemCells25(9):236370

    63. Ingemansson R , Eyjolfsson A, Mared L, Pierre L, Algotsson L,

    EkmehagB,GustafssonR,JohnssonP,KoulB,LindstedtS,LhrsC,

    Sjberg T, Steen S (2009) Clinical transplantation of initially

  • 40

    rejecteddonorlungsafterreconditioningexvivo.AnnThoracSurg

    87(1):25560

    64. Ingram DA, Caplice NM, Yoder MC (2005) Unresolved questions,

    changingdefinitions,andnovelparadigmsfordefiningendothelial

    progenitorcells.Blood106(5):152531

    65. IrwinD,HelmK,CampbellN,ImamuraM,FaganK,HarralJ,CarrM,

    YoungKA,KlemmD,GebbS,DempseyEC,West J,MajkaS(2007)

    Neonatal lung side population cells demonstrate endothelial

    potential and are altered in response to hyperoxiainduced lung

    simplification.AmJPhysiolLungCellMolPhysiol293(4):L94151

    66. IshizawaK,KuboH,YamadaM,KobayashiS,NumasakiM,UedaS,

    SuzukiT,SasakiH(2004)Bonemarrowderivedcellscontributeto

    lung regeneration after elastaseinduced pulmonary emphysema.

    FEBSLett556:249252

    67. IshizawaK,KuboH, YamadaM,Kobayashi S, SuzukiT,Mizuno S,

    Nakamura T, Sasaki H (2004) Hepatocyte growth factor induces

    angiogenesis in injured lungs through mobilizing endothelial

    progenitorcells.BiochemBiophysResCommun324:276280

    68. IyerSS,RojasM(2008)Antiinflammatoryeffectsofmesenchymal

    stemcells:novelconceptforfuturetherapies.ExpertOpinBiolTher

    8,569581

    69. Johnson L, Mercer K, Greenbaum D, Bronson RT, Crowley D,

  • 41

    Tuveson DA, Jacks T (2001) Somatic activation of the Kras

    oncogene causes early onset lung cancer in mice. Nature 410,

    11111116

    70. Joyce N, Annett G, Wirthlin L, Olson S, Bauer G, Nolta JA (2010)

    Mesenchymal stem cells for the treatment of neurodegenerative

    disease.RegenMed5(6):93346

    71. JunHuiZ,XingxiangW,GuoshengF,YunpengS,FurongZ,JunzhuC.

    (2008) Reduced number and activity of circulating endothelial

    progenitor cells in patients with idiopathic pulmonary arterial

    hypertension.RespiratoryMedicine102,10731079

    72. KajsturaJ,RotaM,HallSR,HosodaT,D'AmarioD,SanadaF,Zheng

    H, Ogrek B, RondonClavo C, FerreiraMartins J, Matsuda A,

    Arranto C, Goichberg P, Giordano G, Haley KJ, Bardelli S,

    RayatzadehH,LiuX,QuainiF,LiaoR,LeriA,PerrellaMA,Loscalzo

    J,AnversaP (2011)Evidence forhuman lung stem cells.NEngl J

    Med364(19):1795806

    73. Kidd S, Spaeth E, Dembinski JL, Dietrich M, Watson K, Klopp A,

    BattulaVL,WeilM,AndreeffM,MariniFC(2009)Directevidenceof

    mesenchymal stem cell tropism for tumor and wounding

    microenvironments using in vivo bioluminescent imaging. Stem

    Cells27(10):261423

    74. Kim CF (2007) Paving the road for lung stem cell biology:

  • 42

    bronchioalveolar stem cells and other putative distal lung stem

    cells.AmJPhysiolLungCellMolPhysiol293,L10921098

    75. KimCF, JacksonEL,WoolfendenAE,LawrenceS,Babar I,VogelS,

    Crowley D, Bronson RT, Jacks T (2005) Identification of

    BronchioalveolarStemCellsinNormalLungandLungCancer.Cell

    121,823835

    76. KitaokaH,BurriPH,WeibelER(1996)Developmentofthehuman

    fetal airway tree: Analysis of the numerical density of airway

    endtips.TheAnatomicalRecord244,207213

    77. Kotton DN, Ma BY, Cardoso WV, Sanderson EA, Summer RS,

    Williams MC, Fine A (2001) Bone marrowderived cells as

    progenitors of lungalveolar epithelium.Development 128, 5181

    5188

    78. KrauseDS,TheiseND,CollectorMI,HenegariuO,HwangS,Gardner

    R, Neutzel S, Sharkis SJ (2001) Multiorgan, multilineage

    engraftmentbyasinglebonemarrowderivedstemcell.Cell105,

    369377

    79. Kunig AM, Balasubramaniam V, Markham NE, Morgan D,

    MontgomeryG,GroverTR,AbmanSH(2005)Recombinanthuman

    VEGF treatment enhances alveolarization after hyperoxic lung

    injury in neonatal rats. Am J Physiol Lung Cell Mol Physiol

    289:L529535

  • 43

    80. LaneS,RipponHJ,BishopAE(2007)Stemcellsinlungrepairand

    regeneration.RegenMed2(4):40715

    81. LeBlancK,FrassoniF,BallL,LocatelliF,RoelofsH,LewisI,Lanino

    E, Sundberg B, Bernardo ME, Remberger M, Dini G, Egeler RM,

    Bacigalupo A, FibbeW, Ringdn O; Developmental Committee of

    theEuropeanGroupforBloodandMarrowTransplantation(2008)

    Mesenchymalstemcells for treatmentofsteroidresistant,severe,

    acutegraftversushostdisease:aphaseIIstudy.Lancet371,1579

    1586

    82. LeeJW,FangX,GuptaN,SerikovV,MatthayMA(2009)Allogeneic

    humanmesenchymalstemcellsfortreatmentofE.coliendotoxin

    inducedacutelunginjuryintheexvivoperfusedhumanlung.Proc

    NatlAcadSciUSA106,1635716362

    83. LeeRH,PulinAA,SeoMJ,KotaDJ,YlostaloJ,LarsonBL,Semprun

    Prieto L, Delafontaine P, Prockop DJ (2009) Intravenous hMSCs

    improvemyocardial infarction inmicebecause cells embolized in

    lungareactivatedtosecretetheantiinflammatoryproteinTSG6.

    CellStemCell5(1):5463

    84. Liu X, Engelhardt JF (2008) The Glandular Stem/Progenitor Cell

    Niche inAirwayDevelopment andRepair.ProcAmThoracSoc5,

    682688

    85. LoebingerM, EddaoudiA,DaviesD, Janes S (2009)Mesenchymal

  • 44

    stemcelldeliveryofTRAILcaneliminatemetastaticcancer.Cancer

    Res69:413442

    86. MacchiariniP,JungebluthP,GoT,AsnaghiMA,ReesLE,CoganTA,

    Dodson A, Martorell J, Bellini S, Parnigotto PP, Dickinson SC,

    HollanderAP,ManteroS,ConconiMT,BirchallMA(2008)Clinical

    transplantationofa tissueengineeredairway. Lancet372,2023

    2030

    87. MaedaY,DavV,WhitsettJA(2007)Transcriptionalcontroloflung

    morphogenesis.PhysiolRev87,219244

    88. MajkaSM,BeutzMA,HagenM,IzzoAA,VoelkelN,HelmKM(2005)

    Identification of novel resident pulmonary stem cells: form and

    functionofthelungsidepopulation.StemCells23(8):107381

    89. Martin J,HelmK,RueggP, VarellaGarciaM,BurnhamE,Majka S

    (2008) Adult lung side population cells have mesenchymal stem

    cellpotential.Cytotherapy10(2):14051

    90. Martin, GR (1981) Isolation of a pluripotent cell line from early

    mouse embryos cultured in medium conditioned by

    teratocarcinomastemcells.ProcNatlAcadSciUSA78,76347638

    91. MartinU(2008)Methodsforstudyingstemcells:Adultstemcells

    forlungrepair.Methods45,121132

    92. Maximow A (1909) Der Lymphozyt als gemeinsame Stammzelle

    derverschiedenenBlutelemente inderembryonalenEntwicklung

  • 45

    und im postfetalen Leben der Sugetiere (The Lymphocyte as a

    stem cell common to different blood elements in embryonic

    developmentandduringthepostfetallifeofmammals).Originally

    in German: Folia Haematologica 8: 125134. English translation:

    CellTherTransplant2009,1:e.000032.01.doi:10.3205/ctt2009en

    000032.01

    93. MaximowAA (1924)Relation of blood cells to connective tissues

    andendothelium.PhysiologicalRevue4(4):533563

    94. McQualterJL,YuenK,WilliamsB,BertoncelloI(2010)Evidenceof

    an epithelial stem/progenitor cell hierarchy in the adult mouse

    lung.ProcNatlAcadSciUSA107(4):14149

    95. Mei SHJ, McCarter SD, Deng Y, Parker CH, Liles WC, Stewart DJ

    (2007) Prevention of LPSinduced acute lung injury in mice by

    mesenchymal stemcells overexpressingangiopoietin1.PLoSMed

    4(9):e269

    96. MezeyE,KeyS,VogelsangG,SzalayovaI,LangeGD,CrainB(2003)

    Transplanted bone marrow generates new neurons in human

    brains.ProcNatlAcadSciUSA100(3):13649

    97. MoraAL,RojasM (2008)Agingand lung injury repair:A role for

    bonemarrowderivedmesenchymalstemcells.JCellBiochem105,

    641647

    98. NmethK,LeelahavanichkulA,YuenPS,MayerB,ParmeleeA,Doi

  • 46

    K, Robey PG, Leelahavanichkul K, Koller BH, Brown JM, Hu X,

    Jelinek I, Star RA, Mezey E (2009) Bone marrow stromal cells

    attenuatesepsisviaprostaglandinE(2)dependentreprogramming

    of hostmacrophages to increase their interleukin10 production.

    NatMed15(1):429

    99. Nemeth K , KeaneMyers A, Brown JM, Metcalfe DD, Gorham JD,

    Bundoc VG, Hodges MG, Jelinek I, Madala S, Karpati S, Mezey E

    (2010) Bone marrow stromal cells use TGFbeta to suppress

    allergic responses in amousemodel of ragweedinduced asthma.

    ProcNatlAcadSciUSA107(12):56527

    100. Neuringer IP, Randell SH (2004) Stem cells and repair of lung

    injuries.RespirRes5,6

    101. Nichols JE, Cortiella J (2008) Engineering of a Complex Organ:

    ProgressTowardDevelopment of a TissueengineeredLung.Proc

    AmThoracSoc5,723730

    102. OrtizLA,DutreilM,FattmanC,PandeyAC,TorresG,GoK,Phinney

    DG (2007) Interleukin 1 receptor antagonist mediates the

    antiinflammatoryandantifibroticeffectofmesenchymalstemcells

    duringlunginjury.ProcNatlAcadSciUSA104(26):110027

    103. OrtizLA,GambelliF,McBrideC,GauppD,BaddooM,KaminskiN,

    PhinneyDG(2008)Mesenchymalstemcellengraftment in lung is

    enhanced in response to bleomycin exposure and ameliorates its

  • 47

    fibroticeffects.ProcNatlAcadSciUSA100,84078411

    104. Ott HC, Clippinger B, Conrad C, Schuetz C, Pomerantseva I,

    Ikonomou L, Kotton D, Vacanti JP (2010) Regeneration and

    orthotopic transplantation of a bioartificial lung. Nat Med

    16(8):92733

    105. OttoWR(2002)Lungepithelialstemcells.JPathol197(4):52735

    106. PalangeP,TestaU,HuertasA,CalabrL,AntonucciR,PetrucciE,

    PelosiE,PasquiniL,SattaA,MoriciG,VignolaMA,BonsignoreMR

    (2006) Circulating haemopoietic and endothelial progenitor cells

    aredecreasedinCOPD.EurRespirJ27(3):52941

    107. Parekkadan B, Milwid JM (2010) Mesenchymal stem cells as

    therapeutics.AnnuRevBiomedEng12:87117

    108. ParekkadanB, van Poll D, SuganumaK, Carter EA, Berthiaume F,

    Tilles AW, Yarmush ML (2007) Mesenchymal stem cellderived

    moleculesreversefulminanthepaticfailure.PLoSOne2(9):e941

    109. ParkDH, EveDJ (2009) Regenerativemedicine: advances in new

    methodsandtechnologies.MedSciMonit15(11):RA23351

    110. PatiS,GerberMH,MengeTD,WatahaKA,ZhaoY,BaumgartnerJA,

    Zhao J, LetourneauPA,HubyMP,BaerLA, Salsbury JR,KozarRA,

    WadeCE,WalkerPA,DashPK,CoxCSJr,DoursoutMF,HolcombJB

    (2011) Bone marrow derived mesenchymal stem cells inhibit

    inflammation and preserve vascular endothelial integrity in the

  • 48

    lungsafterhemorrhagicshock.PLoSOne6(9):e25171

    111. Peacock CD, Watkins DN (2008) Cancer stem cells and the

    ontogenyoflungcancer.JClinOncol26(17):28839

    112. PetersenTH,CalleEA,ZhaoL,LeeEJ,GuiL,RaredonMB,Gavrilov

    K,YiT,ZhuangZW,BreuerC,HerzogE,NiklasonLE(2010)Tissue

    engineeredlungsforinvivoimplantation.Science329(5991):538

    41

    113. PineSR,MarshallB,Varticovski L(2008)Lungcancerstemcells.

    DisMarkers24,257266

    114. Poulsom R, Forbes SJ, HodivalaDilke K, Ryan E, Wyles S,

    Navaratnarasah S, Jeffery R, Hunt T, Alison M, Cook T, Pusey C,

    WrightNA(2001)Bonemarrowcontributestorenalparenchymal

    turnoverandregeneration.JPathol195(2):22935

    115. Prockop DJ (1997) Marrow stromal cells as stem cells for

    nonhematopoietictissues.Science276(5309):714

    116. ProckopDJ(2009)Repairoftissuesbyadultstem/progenitorcells

    (MSCs): controversies, myths, and changing paradigms.Mol Ther

    17,939946

    117. ProckopDJ,GregoryCA,SpeesJL(2003)Onestrategyforcelland

    gene therapy: harnessing the power of adult stem cells to repair

    tissues.ProcNatlAcadSciUSA100Suppl1,1191711923

    118. PunchJD,HayesDH,LaPorteFB,McBrideV,SeelyMS(2007)Organ

  • 49

    donation and utilization in the United States, 19962005. Am J

    Transplant7(5Pt2):132738

    119. Randell SH (2006) Airway epithelial stem cells and the

    pathophysiology of chronic obstructive pulmonary disease. Proc

    AmThoracSoc3,718725

    120. Rawlins EL, Hogan BL (2006) Epithelial stem cells of the lung:

    privileged few or opportunities for many? Development

    133(13):245565

    121. RawlinsEL (2008)LungEpithelialProgenitorCells:Lessons from

    Development.ProcAmThoracSoc5,675681

    122. RawlinsEL,OkuboT,QueJ,XueY,ClarkC,LuoX,HoganBL(2008)

    Epithelial stem/progenitor cells in lung postnatal growth,

    maintenance, and repair. Cold Spring Harb Symp Quant Biol 73,

    291295

    123. ReddyR, Buckley S,DoerkenM,Barsky L,WeinbergK, Anderson

    KD, Warburton D, Driscoll B (2004) Isolation of a putative

    progenitor subpopulation of alveolar epithelial type 2 cells. Am J

    PhysiolLungCellMolPhysiol286,L658667

    124. ReedW, Noga SJ, Gee AP, Rooney CM, Wagner JE, McCullough J,

    McKenna DH,Whiteside TL, Donnenberg AD, Baker AK, Lindblad

    RW, Wagner EL, Mondoro TH (2009) Production Assistance for

    Cellular Therapies (PACT): fouryear experience from the United

  • 50

    StatesNationalHeart, Lung, andBlood Institute (NHLBI) contract

    researchprogramincellandtissuetherapies.Transfusion49,786

    796

    125. ReynoldsBA,WeissS(1992)Generationofneuronsandastrocytes

    fromisolatedcellsoftheadultmammaliancentralnervoussystem.

    Science255:17071710

    126. Reynolds SD, Giangreco A, Power JH, Stripp BR (2000)

    Neuroepithelialbodiesofpulmonaryairwaysserveasa reservoir

    of progenitor cells capable of epithelial regeneration.Am JPathol

    156,269278

    127. RipponHJ,PolakJM,QinM,BishopAE(2006)Derivationofdistal

    lungepithelialprogenitorsfrommurineembryonicstemcellsusing

    a novel threestep differentiation protocol. Stem Cells 24, 1389

    1398

    128. RipponHJ,LaneS,QinM,IsmailNS,WilsonMR,TakataM,Bishop

    AE (2008) Embryonic stem cells as a source of pulmonary

    epitheliuminvitroandinvivo.ProcAmThoracSoc5(6):71722

    129. RojasM,XuJ,WoodsCR,MoraAL,SpearsW,RomanJ,BrighamKL

    (2005)Bonemarrowderivedmesenchymalstemcellsinrepairof

    theinjuredlung.AmJRespirCellMolBiol33(2):145152

    130. RundeV,RossS,TrenschelR,LagemannE,BasuO,RenzingKhler

    K, Schaefer UW, Roggendorf M, Holler E (2001) Adenoviral

  • 51

    infectionafterallogeneicstemcelltransplantation(SCT):reporton

    130patientsfromasingleSCTunitinvolvedinaprospectivemulti

    centersurveillancestudy.BoneMarrowTransplant28(1):517

    131. SaitoS,NakayamaT,HashimotoN,MiyataY,EgashiraK,NakaoN,

    Nishiwaki S, Hasegawa M, Hasegawa Y, Naoe T (2011)

    Mesenchymal stem cells stably transduced with a dominant

    negative inhibitor of CCL2 greatly attenuate bleomycininduced

    lungdamage.AmJPathol179(3):108894

    132. SalnikovAV,GladkichJ,MoldenhauerG,VolmM,MatternJ,HerrI

    (2009)CD133isindicativeforaresistancephenotypebutdoesnot

    represent a prognosticmarker for survival of nonsmall cell lung

    cancerpatients.IntJCancer15;126(4):9508

    133. Samadikuchaksaraei A, Bishop AE (2006) Derivation and

    characterizationofalveolarepithelialcellsfrommurineembryonic

    stemcellsinvitro.MethodsMolBiol330,233248

    134. SchochKG,LoriA,BurnsKA,EldredT,OlsenJC,RandellSH(2004)

    A subset of mouse tracheal epithelial basal cells generates large

    colonies invitro.Am JPhysiolLungCellMolPhysiol286(4):L631

    L642

    135. SerikovVB,PopovB,MikhailovVM,GuptaN,MatthayMA (2007)

    Evidence of temporary airway epithelial repopulation and rare

    clonalformationbyBMderivedcellsfollowingnaphthaleneinjury

  • 52

    inmice.AnatRec(Hoboken)290,10331045

    136. SingerNG,CaplanAI(2011)Mesenchymalstemcells:mechanisms

    ofinflammation.AnnuRevPathol6:45778

    137. SiniscalcoD,SulloN,MaioneS,RossiF,D'AgostinoB(2008)Stem

    celltherapy:thegreatpromiseinlungdisease.TherAdvRespirDis

    2,173177

    138. SmithiesO(2008)Turningpages(Nobel lecture).Chembiochem9,

    13421359

    139. Snyder JC, Teisanu RM, Stripp BR (2009) Endogenous lung stem

    cellsandcontributiontodisease.JPathol217,254264

    140. Song JJ,KimSS, LiuZ,Madsen JC,MathisenDJ,Vacanti JP,OttHC

    (2011)Enhancedinvivofunctionofbioartificiallungsinrats.Ann

    ThoracSurg92(3):9981006

    141. SteenS, IngemanssonR,ErikssonL,PierreL,AlgotssonL,Wierup

    P,LiaoQ,EyjolfssonA,GustafssonR,SjbergT(2007)FirstHuman

    Transplantation of a Nonacceptable Donor Lung After

    ReconditioningExVivo.AnnThoracSurg83,21912194

    142. Stevens T, Phan S, Frid MG, Alvarez D, Herzog E, Stenmark KR

    (2008) Lung Vascular Cell Heterogeneity: Endothelium, Smooth

    Muscle,andFibroblasts.ProcAmThoracSoc5,783791

    143. Stripp BR (2008) Hierarchical Organization of Lung Progenitor

    Cells:IsthereAnAdultLungTissueStemCell?ProcAmThoracSoc

  • 53

    5,695698

    144. SueblinvongV,WeissDJ (2009)Cell therapy approaches for lung

    diseases:currentstatus.CurrOpinPharmacol9,268273

    145. SummerR,FineA(2008)MesenchymalProgenitorCellResearch:

    LimitationsandRecommendations.ProcAmThoracSoc5,707710

    146. Summer R, Kotton DN, Sun X, Fitzsimmons K, Fine A (2004)

    Translational physiology: origin and phenotype of lung side

    populationcells.AmJPhysiolLungCellMolPhysiol287,L477483

    147. Suratt BT, Cool CD, Serls AE, Chen L, VarellaGarciaM, Shpall EJ,

    BrownKK,WorthenGS(2003)Humanpulmonarychimerismafter

    hematopoieticstemcelltransplantation.AmJRespirCritCareMed

    168(3):31822

    148. Takahashi K, Yamanaka S (2006) Induction of Pluripotent Stem

    Cells from Mouse Embryonic and Adult Fibroblast Cultures by

    DefinedFactors.Cell126,663676

    149. Tajbakhsh S, Rocheteau P, Le Roux I (2009) Asymmetric cell

    divisionsandasymmetriccellfates.AnnuRevCellDevBiol25:671

    99

    150. TaylorK,HoltbyH(2009)Emergencyinterventionallungassistfor

    pulmonaryhypertension.AnesthAnalg109(2):3825.

    151. ThbaudB,LadhaF,MichelakisED,SawickaM,ThurstonG,Eaton

    F,HashimotoK,HarryG,HaromyA,KorbuttG,Archer SL (2005)

  • 54

    Vascularendothelialgrowthfactorgenetherapyincreasessurvival,

    promotes lung angiogenesis, and prevents alveolar damage in

    hyperoxiainduced lung injury: evidence that angiogenesis

    participatesinalveolarization.Circulation112:24772486

    152. Theise ND, Nimmakayalu M, Gardner R, Illei PB, Morgan G,

    Teperman L, Henegariu O, Krause DS (2000) Liver from bone

    marrowinhumans.Hepatology32(1):116

    153. TillJE,McCullochEA(1961)Adirectmeasurementoftheradiation

    sensitivityofnormalmousebonemarrowcells.RadiatRes14:213

    22

    154. Togel F, Hu Z, Weiss K, Isaac J, Lange C, Westenfelder C (2005)

    Administered mesenchymal stem cells protect against ischemic

    acute renal failure through differentiationindependent

    mechanisms.AmJPhysiolRenalPhysiol289:F3142

    155. Tolar J, Nauta AJ, Osborn MJ, Panoskaltsis Mortari A, McElmurry

    RT,Bell S, Xia L, ZhouN,RiddleM, SchroederTM,Westendorf JJ,

    McIvor RS,Hogendoorn PC, Szuhai K, Oseth L, Hirsch B, Yant SR,

    Kay MA, Peister A, Prockop DJ, Fibbe WE, Blazar BR (2007)

    Sarcomaderivedfromculturedmesenchymalstemcells.StemCells

    25(2):3719

    156. ToshnerM,VoswinckelR, SouthwoodM,AlLamkiR,HowardLS,

    MarchesanD,YangJ,SuntharalingamJ,SoonE,ExleyA,StewartS,

  • 55

    HeckerM, ZhuZ, GehlingU, SeegerW, PepkeZaba J,MorrellNW

    (2009) Evidence of dysfunction of endothelial progenitors in

    pulmonaryarterialhypertension.Am JRespirCritCareMed180,

    780787

    157. Tropea KA, Leder E, Aslam M, Lau AN, Raiser DM, Lee JH,

    BalasubramaniamV,FredenburghLE,MitsialisSA,KourembanasS,

    Kim CF (2012) Bronchioalveolar stem cells increase after

    mesenchymal stromal cell treatment in a mouse model of

    bronchopulmonary dysplasia. Am J Physiol Lung CellMol Physiol

    302(9):L82937

    158. U.S.NationalLibraryofMedicinedatabaseathttp://pubmed.org

    (AccessedApril9th,2012)

    159. van Haaften T, Byrne R, Bonnet S, Rochefort GY, Akabutu J,

    BouchentoufM,ReyParraGJ,GalipeauJ,HaromyA,EatonF,Chen

    M,HashimotoK,AbleyD,KorbuttG,ArcherSL,ThbaudB(2009)

    Airway Delivery of Mesenchymal Stem Cells Prevents Arrest


Recommended