+ All Categories
Home > Documents > Meso-Neoproterozoic isotope stratigraphy on carbonates platforms in the Brasilia Belt of Brazil

Meso-Neoproterozoic isotope stratigraphy on carbonates platforms in the Brasilia Belt of Brazil

Date post: 28-Jan-2017
Category:
Upload: luis-h
View: 212 times
Download: 0 times
Share this document with a friend
17
Precambrian Research 251 (2014) 164–180 Contents lists available at ScienceDirect Precambrian Research jo ur nal home p ag e: www.elsevier.com/locate/precamres Meso-Neoproterozoic isotope stratigraphy on carbonates platforms in the Brasilia Belt of Brazil Carlos J.S. Alvarenga , Roberto V. Santos, Lucieth C. Vieira, Barbara A.F. Lima, Luis H. Mancini Instituto de Geociências, Universidade de Brasília, Campus Darcy Ribeiro, Brasília, DF 70910-900, Brazil a r t i c l e i n f o Article history: Received 27 June 2013 Received in revised form 23 May 2014 Accepted 9 June 2014 Available online 20 June 2014 Keywords: Mesoproterozoic Isotope stratigraphy Cryogenian Proterozoic basin Neoproterozoic glaciation Bambuí Group a b s t r a c t Carbonate platforms were present worldwide during the Proterozoic Eon, and variations in their C and Sr isotope ratios are commonly used as a correlation tool particularly through the Neoproterozoic, when rapid secular change in marine C and Sr isotope values permit distinction between Cryogenian glacial events. In central Brazil, the late Mesoproterozoic and Neoproterozoic eras are represented by a thick succession of sedimentary rocks that were deposited, and later deformed, along the eastern margin of the São Francisco Craton. These strata are divided into the three major groups: (1) the Paranoá Group, which consists of a succession of sandstone, siltstone, rhythmite, and selected intervals of carbonate, (2) the Macaúbas Group, which consists of a glacial diamictite (Jequitaí Formation), and (3) the Bambuí Group with an important carbonate-bearing succession that includes characteristic “cap carbonate” facies in its lower strata. Carbonate facies of Paranoá and Bambuí Groups typically occur in unconformable contact, and when the diamictite of Jequitaí Formation is absent, it can be difficult to determine the stratigraphic position of these lithological similar groups. Furthermore, uncertainties in the age of the Bambuí Group has lead to several distinct interpretations regarding the age of the Jequitaí glacial diamictites. We investigated the C, O, and Sr isotopes and chemical composition of carbonate rocks in five measured sections, including both pre- and post-glaciation carbonate successions. The 13 C (pdb) values in the upper Paranoá Group occur in a narrow interval between +0.6 and +3.6, whereas the post-glacial Bambuí Group begins with substantially negative values (as low as 5.7) in cap dolomite facies and rises to values up to +11 permil in limestone of the upper Sete Lagoas Formation. Similarly, carbonate rocks of the Paranoá and Bambuí groups are distinct in terms of their 87 Sr/ 86 Sr ratio. Generally non-radiogenic ratios between 0.7056 and 0.7068 are recorded in the upper Paranoá Group, and ratios between 0.7074 and 0.7080, occurring within the Bambuí Group. The stratigraphic pattern of the C and Sr ratios indicates distinctive isotopic characteristics for these two carbonate successions. The isotopic data for the cabonates in the Paranoá Group are consistent with a sedimentation age in upper Mesoproterozoic or lowermost Neoproterozoic, preceding the first Cryogenian glaciation. Carbonate facies and the isotopic data for the lower Bambuí Group suggest a relationship with the second Cryogenian glaciation. © 2014 Elsevier B.V. All rights reserved. 1. Introduction The Brasiliano Orogeny exposes a broadly succession of Meso- Neoproterozoic sedimentary rocks in central Brazil that is more than 2.5 km thick. Although these rocks are folded near the edge of the São Francisco Craton, they are largely undeformed within the craton (Dardenne, 1978b; Alkmin et al., 2001). Corresponding author. Tel.: +55 6131076972. E-mail address: [email protected] (C.J.S. Alvarenga). The lithostratigraphic framework of the Paranoá and Bambuí Groups, which are the main Meso-Neoproterozoic units in central Brazil, were initially proposed by Braun (1968). The chronos- tratigraphic intervals are poorly constrained and were initially recognized based on the report of different species of stromatolites, such as Conophyton metula Kirichenko (Cloud and Dardenne, 1973; Dardenne et al., 1976). These stromatolites are found in carbo- nates of the Paranoá Group and display a restricted occurrence, thus hampering the regional correlations. The distinction between the Bambuí and Paranoá carbonates is well defined in areas in which the glacial Jequitaí Formation is present, and such distinctions may be http://dx.doi.org/10.1016/j.precamres.2014.06.011 0301-9268/© 2014 Elsevier B.V. All rights reserved.
Transcript

Mp

CBI

a

ARRAA

KMICPNB

1

Nttc

h0

Precambrian Research 251 (2014) 164–180

Contents lists available at ScienceDirect

Precambrian Research

jo ur nal home p ag e: www.elsev ier .com/ locate /precamres

eso-Neoproterozoic isotope stratigraphy on carbonateslatforms in the Brasilia Belt of Brazil

arlos J.S. Alvarenga ∗, Roberto V. Santos, Lucieth C. Vieira,arbara A.F. Lima, Luis H. Mancini

nstituto de Geociências, Universidade de Brasília, Campus Darcy Ribeiro, Brasília, DF 70910-900, Brazil

r t i c l e i n f o

rticle history:eceived 27 June 2013eceived in revised form 23 May 2014ccepted 9 June 2014vailable online 20 June 2014

eywords:esoproterozoic

sotope stratigraphyryogenianroterozoic basineoproterozoic glaciationambuí Group

a b s t r a c t

Carbonate platforms were present worldwide during the Proterozoic Eon, and variations in their C andSr isotope ratios are commonly used as a correlation tool particularly through the Neoproterozoic, whenrapid secular change in marine C and Sr isotope values permit distinction between Cryogenian glacialevents. In central Brazil, the late Mesoproterozoic and Neoproterozoic eras are represented by a thicksuccession of sedimentary rocks that were deposited, and later deformed, along the eastern margin of theSão Francisco Craton. These strata are divided into the three major groups: (1) the Paranoá Group, whichconsists of a succession of sandstone, siltstone, rhythmite, and selected intervals of carbonate, (2) theMacaúbas Group, which consists of a glacial diamictite (Jequitaí Formation), and (3) the Bambuí Groupwith an important carbonate-bearing succession that includes characteristic “cap carbonate” facies in itslower strata. Carbonate facies of Paranoá and Bambuí Groups typically occur in unconformable contact,and when the diamictite of Jequitaí Formation is absent, it can be difficult to determine the stratigraphicposition of these lithological similar groups. Furthermore, uncertainties in the age of the Bambuí Grouphas lead to several distinct interpretations regarding the age of the Jequitaí glacial diamictites.

We investigated the C, O, and Sr isotopes and chemical composition of carbonate rocks in five measuredsections, including both pre- and post-glaciation carbonate successions. The �13C (‰ pdb) values in theupper Paranoá Group occur in a narrow interval between +0.6 and +3.6, whereas the post-glacial BambuíGroup begins with substantially negative values (as low as −5.7‰) in cap dolomite facies and rises tovalues up to +11 permil in limestone of the upper Sete Lagoas Formation. Similarly, carbonate rocks ofthe Paranoá and Bambuí groups are distinct in terms of their 87Sr/86Sr ratio. Generally non-radiogenicratios between 0.7056 and 0.7068 are recorded in the upper Paranoá Group, and ratios between 0.7074and 0.7080, occurring within the Bambuí Group.

The stratigraphic pattern of the C and Sr ratios indicates distinctive isotopic characteristics for thesetwo carbonate successions. The isotopic data for the cabonates in the Paranoá Group are consistentwith a sedimentation age in upper Mesoproterozoic or lowermost Neoproterozoic, preceding the firstCryogenian glaciation. Carbonate facies and the isotopic data for the lower Bambuí Group suggest arelationship with the second Cryogenian glaciation.

© 2014 Elsevier B.V. All rights reserved.

. Introduction

The Brasiliano Orogeny exposes a broadly succession of Meso-eoproterozoic sedimentary rocks in central Brazil that is more

han 2.5 km thick. Although these rocks are folded near the edge ofhe São Francisco Craton, they are largely undeformed within theraton (Dardenne, 1978b; Alkmin et al., 2001).

∗ Corresponding author. Tel.: +55 6131076972.E-mail address: [email protected] (C.J.S. Alvarenga).

ttp://dx.doi.org/10.1016/j.precamres.2014.06.011301-9268/© 2014 Elsevier B.V. All rights reserved.

The lithostratigraphic framework of the Paranoá and BambuíGroups, which are the main Meso-Neoproterozoic units in centralBrazil, were initially proposed by Braun (1968). The chronos-tratigraphic intervals are poorly constrained and were initiallyrecognized based on the report of different species of stromatolites,such as Conophyton metula Kirichenko (Cloud and Dardenne, 1973;Dardenne et al., 1976). These stromatolites are found in carbo-

nates of the Paranoá Group and display a restricted occurrence, thushampering the regional correlations. The distinction between theBambuí and Paranoá carbonates is well defined in areas in which theglacial Jequitaí Formation is present, and such distinctions may be

brian R

qa

LF2CGiaCuee2rAao

rcf+iaseo(edtco(lpf

sotitit

2

s1dattuta

emru

C.J.S. Alvarenga et al. / Precam

uite difficult to locate in places where these glacially derived rocksre absent because of the similarities of the two types of carbonate.

Among other regional features, the cap carbonates of the Seteagoas Formation overlay glacially derived deposits of the Jequitaíormation (Babinski et al., 2007; Alvarenga et al., 2007; Vieira et al.,007; Misi et al., 2007, 2011; Lima, 2011; Kuchenbecker, 2011;axito et al., 2012) as well as sedimentary rocks of the Paranoároup and older metamorphic rocks, granites, and gneiss found

n areas where the glacial diamictites of the Jequitaí Formationre absent (Guimarães, 1997; Lima, 2011; Alvarenga et al., 2007;axito et al., 2012). Various studies have shown that the �13C val-es of these cap carbonates range from −6.5‰ to −2.0‰ (Santost al., 2000, 2004; Martins, 1999; Babinski et al., 2007; Alvarengat al., 2007; Vieira et al., 2007; Misi et al., 2007, 2011; Lima,011; Kuchenbecker, 2011; Caxito et al., 2012). Their 87Sr/86Sratios range between 0.7074 and 0.7077 (Misi and Veizer, 1998;lvarenga et al., 2007, 2012; Lima, 2011; Caxito et al., 2012) andre comparable to those values commonly found in carbonatesverlying the Late Cryogenian glaciation (Halverson et al., 2007).

Carbonates of the upper part of the Paranoá Group have a nar-ow range of positive �13C values that rarely exceed +3.0‰. Thesearbonates contrast with the large range of �13C values observedor the Bambuí Group carbonates, which vary between −5‰ and14.0‰ (Santos et al., 2000, 2004; Alvarenga et al., 2007). The Srsotopic compositions of the carbonates of these two units arelso distinct. For instance, the 87Sr/86Sr ratios of two limestoneamples of the Paranoá Group, 0.70626 and 0.70683, (Alvarengat al., 2007) are much lower than those reported for carbonatesf the Bambuí Group, which vary between 0.70740 and 0.70760Alvarenga et al., 2007; Vieira et al., 2007; Misi et al., 2007; Caxitot al., 2012). This difference suggests that these carbonates wereeposited under rather different sedimentary conditions. Althoughhe age for glacial rocks below the Sete Lagoas Formation is poorlyonstrained, most papers agree that these materials represent theldest Cryogenian (Sturtian) glaciation based on Pb–Pb isochronBabinski et al., 2007). However, recent interpretation based onithostratigraphy, detrital zircons and chemostratigraphy has pro-osed the existence of a second Cryogenian (Marinoan) glaciationor the Jequitaí Formation (Caxito et al., 2012).

Here we present an integrated stratigraphic and isotopic analy-is of carbonate rocks found across six sections of five different areasf the Brasília Belt (BSB), that includes intervals below and abovehe glacial record of the Jequitaí Formation. These stratigraphic andsotopic data demonstrate that a large sedimentary gap exist alonghe unconformity between the Paranoá and Bambuí Groups, anmportant feature used to connect the Jequitaí Formation relatedo the first or second Cryogenian glaciations.

. Regional setting and stratigraphy

The western edge of the São Francisco Craton (SFC) includes auccession of siliciclastic and carbonate rocks deposited between.77 and 0.56 Ga (Pimentel et al., 2011). The BSB, which waseformed during the Brasiliano-Pan-African Orogeny between 790nd 540 Ma (Pimentel and Fuck, 1992), has been separated intohree main tectonics domains: (i) an unfolded domain that covershe SFC, (ii) a domain located on the outer BSB in which only thepper strata (∼2 km) are folded and faulted, and (iii) a domain fur-her west in which both the basement and the sedimentary coverre overprinted by deformation of the BSB.

Thick succession of sedimentary rocks was deposited along the

astern margin of the SFC. These strata are divided into the threeajor units (Table 1): (1) the Paranoá Group, (2) the glaciogenic

ocks of the Jequitaí Formation, and (3) the Bambuí Group. Thepper Paranoá Group includes Conophyton metulum Kirichenkio

esearch 251 (2014) 164–180 165

with a suggested age of 0.9–1.2 Ga (Dardenne et al., 1976). Stro-matolite and microfossils (stratifera undata) data of the ParanoáGroup suggest a narrower range of ages of 1170–950 Ma (Fairchildet al., 1996). The U–Pb data from detrital zircons along the type sec-tion of the Paranoá Group indicate a maximum depositional age of1.54 Ga; however, a maximum depositional Lu-Hf age of approxi-mately 1.04 Ga was obtained from diagenetic xenotime overgrowthon detrital zircon (Matteini et al., 2012). The age of the JequitaíFormation is not known, but U–Pb data of detrital zircons in diamic-tites suggest a maximum depositional age of 850 Ma (Pimentelet al., 2011). The lower portion of the Sete Lagoas Formation (Bam-buí Group) has an estimated age of 740 ± 22 Ma based on Pb–Pbisochron data in dolostone (Babinski et al., 2007). In contrast, theupper portion of this formation has a maximum age of 620 Mabased on detrital zircon U–Pb data (Rodrigues, 2008; Pimentel et al.,2011). If this Pb–Pb isochron is the sedimentation age an intervallarger than 100 Ma occur between the lower and the upper SeteLagoas Formation.

2.1. The Paranoá Group

The Paranoá Group consists of shallow-marine strata contain-ing mature siliciclastic rocks that include quartzites and siliciclasticrhythmites (i.e., layered intercalations of siltstones and quartzites).The rhythmite facies include occasional, stromatolite-bearing car-bonate lenses (Dardenne, 1979; Alvarenga and Dardenne, 1978).The Paranoá Group unconformably overlies the Araí Group, andbegins with a conglomerate (São Miguel conglomerate) followed bymore than 1000 m of predominantly siliciclastic rocks that includestratigraphic successions of sandstones and rhythmites (siltstonesand siltstones with fine layers of sandstones). The Paranoá Grouphas been subdivided into 12 lithofacies (Faria, 1995; Dardenneand Faria, 1985; Guimarães, 1997): São Miguel conglomerate (SM),rhythmite (R1), quartzite (Q1), rhythmite (R2), quartzite (Q2), silt-stone (S), slate (A), rhythmite (R3), quartzite (Q3), rhythmite (R4),feldspatic quartzite (QF), and pelitic-carbonate rocks (PC). Dolo-stones, limestones, and stromatolitic dolostone lenses that are tensof meters thick and hundreds of meters long occur within certainrhythmic units. The upper portions of the Paranoá Group (PC), inparticular, includes stromatolic dolostones, comprising forms thatbeen described as Conophyton metulum Kirichenkio.

2.2. Jequitaí Formation

The Jequitaí Formation is represented by a succession of diamic-tites that are 0–100 m thick and contain rare intercalations ofsandstone and siltstone (Table 1). The Jequitaí Formation occursunconformably above shallow marine strata of the Paranoá Group(Walde, 1978; Uhlein et al., 1999, 2011). The thickness of theJequitaí Formation varies between 0 and 20 m in the northernportion of the Bambuí Basin (Alvarenga et al., 2007; Lima, 2011),and can reach thicknesses of up to 180 m in the south portion ofthe basin near Cristalina town (Faria, 1985; Cukrov et al., 2005).The glacial origin of the Jequitaí Formation was first recognizedby Branner (1919) and confirmed by striated clasts and preserva-tion of striated pavements (Isotta et al., 1969; Walde, 1978). Thediamictite is mostly massive and contains clasts of granite, gneiss,quartzite, limestone, dolostone, and quartz in a matrix composedof silt and fine sand cemented by diagenetic carbonate. The pres-ence of tillites resting directly on striated pavements in this glacialdeposit has been interpreted to represent continental glacial envi-ronment (Isotta et al., 1969; Karfunkel and Hope, 1988). By contrast,

the scarcity of clasts, stratified diamictites, and fine-grained inter-calation and the absence of significantly thick out-wash facies hasbeen used to suggest a glaciomarine environment (Uhlein et al.,1999; Rocha-Campos et al., 1996).

166 C.J.S. Alvarenga et al. / Precambrian Research 251 (2014) 164–180

Table 1Proterozoic lithoestratigraphic nomenclature in the eastern São Francisco Basin. Pl-C: pelitic-carbonate unit, Qzt: quartzite, Rht: rhythmite.

Era Mega-sequence Group Formation Lithology Ages

Neoproterozoic IIIBambuí

Três MariasSerra da SaudadeLagoa do Jacaré

Siltstone and arkose sandstoneSiltstoneclaystone, limestone

Serra de Sta. HelenaSete Lagoas

Siltstone, fine sandstoneDolostone, limestone, marls

U–Pb: <620 Ma*

Pb–Pb:740 ± 22 MaMacaúbas Jequitaí Diamictite and few claystone, sandstone U–Pb: <850 Ma*

Mesoproterozoic II Paranoá

Pl-CSup. rhythmite Rhythmite, dolostone stromatoliteArkose level Arkose sandstoneRhythmite 4Quartzite 3

Rhythmite, dolo-limestone lensesSandstone U–Pb: <1540 Ma*

Ardosia unitQzt. 1, 2 and Rht 1,2São Miguel

Siltstone, claystone, lime lensesSandstone and rhythmiteConglomerate

PP IEspinhac o

AraíTraíras Siltstone, sandstone, lime lenses

al., 20

2

BSag(icMiFtdsdG1cbTi

3

sBfcGt

laasauhie

Arraias

* Ages taken from detrital zircons, or the maximum age for the unit (Pimentel et

.3. The Bambuí Group

The Bambuí Group is divided into five formations (Costa andranco, 1961): Sete Lagoas, Serra de Santa Helena, Lagoa do Jacaré,erra da Saudade and Três Marias. Dardenne (1978a) described

series of transgressive/regressive cycles through the strati-raphic succession of the Bambuí Group. The lowermost formationSete Lagoas) consists of dolostone, limestone, and claystone andncludes a distinct paleokarst horizon in its upper portion that out-rops on the border of the basin (Dardenne, 1978a; Lopes, 1981;artins and Lemos, 2007). This exposure horizon has not been

dentified in the inner basin. The overlying Serra de Santa Helenaormation consists predominantly of siliciclastic mudstone withhin layers and lenses of fine-grained sandstones. Above the Serrae Santa Helena Formation, a series of claystone, marl, and silt-tone containing lenses of dark gray limestone comprise the Lagoao Jacaré Formation. These three lower formations of the Bambuíroup have been referred to as the Paraopeba Subgroup (Braun,968). Uppermost strata of the Bambuí Group are composed of sili-iclastic mudstones of the Serra da Saudade Formation followedy mudstone intercalated with layers of arkose sandstone of therês Marias Formation, which were deposited in a storm and tidallynluences (Chiavegatto, 1992).

. Sampling and analytical methods

Stratigraphic sections of this study were systematically mea-ured and sampled at five sites of the middle-western portion of theSB (Figs. 1 and 2). Outcrop and drill core samples were selected

or C, O and Sr isotopic analyses intended to provide a detailedhemostratigraphic correlation between the Paranoá and Bambuíroup. Among the five sites, four are outcrop, and one occurs within

wo drill cores near Planaltina de Goiás (Fig. 2).In total, the study includes 213 samples of dolostones and

imestones of the Paranoá and Bambuí groups. All samples werenalyzed for major and minor chemical elements as well as Cnd O isotopes. 87Sr/86Sr ratios were obtained from a variety ofamples, with samples containing >400 ppm Sr showing the leastlteration. Prior to analysis, each rock specimen was investigated

nder a petrographic microscope to avoid fractures, veins, andeavily re-crystallized zones. The isotope data produced are shown

n Table 2, including the values previously published by Alvarengat al. (2007), in Portuguese.

Sandstone, conglomerate, vulcanic U–Pb: 1770 Ma

01, 2011, Babinski et al., 2007, Matteini et al., 2012).

Determinations of minor and major elements were performedusing a Rigaku model RIX 3000 XRF X-ray fluorescence unitequipped with a Rh tube at NEG-LABISE, Department of Geology,University of Pernambuco. The samples used for chemical analysiswere initially dried at 110 ◦C to eliminate excess humidity andheated to 1000 ◦C for 2 h to determine the percentage loss onignition.

C and O isotopes were obtained on a Delta V Advantage instru-ment connected to a Gas Bench II apparatus at the GeochronosLaboratory, Geosciences Institute, University of Brasilia in Brazil.Aliquots of each sample (approximately 300 �g) were placed inglass vials that were subsequently submitted to a He flush at 72 ◦C.All C and O isotopes are presented in VPD and were calibratedagainst NBS-18 and NBS-19 standards.

For 87Sr/86Sr analysis, 50 mg of carbonate powder samples wereweighted into Teflon beakers and dilute acetic acid (0.5 N) to dis-solve only the carbonate fraction and avoid leaching of radiogenic87Sr and Rb from the non-carbonate constituents of the samples.The 87Sr/86Sr ratios were measured using a Neptune Thermo MC-ICP-MS at the Geochronos Laboratory, Institute of Geosciences,University of Brasília in Brazil. Analysis of the NBS 987 standard dur-ing the course of this work yielded an average value of 0.710230 ± 8(1 s). The uncertainties in the individual analyses were lower than0.001% (2 s).

4. Lithologic and geochemical results

4.1. Serra de São Domingos – Area 1

Carbonate rocks in the upper Paranoá Group reach a total thick-ness of 110 m at the Serra de São Domingos site (Fig. 3). Here,carbonate rock occurs in sharp contact with heterolithic siliciclasticfacies of the underlying strata. The lower portion of the carbonateinterval consists of a purple laminated dolostone intercalated withlaminated mudstone that grades upward to dark gray limestonecontaining molar tooth structures (Fig. 4A; cf. Furniss et al., 1998;Pollock et al., 2006). The upper portion of the carbonate interval ischaracterized by stratified dolostone with intercalations of massivedolarenite (ic. grainstone) and dolostone layers containing domal

columnar, and stratiform stromatolites (Fig. 4B).

Glacial strata of the Jequitaí Formation is absent in this region,but a thin (<1.5 m) breccia occurs at the same stratigraphicposition and defines the unconformity that separates the Paranoá

C.J.S. Alvarenga et al. / Precambrian Research 251 (2014) 164–180 167

Fig. 1. Major structural units in Brazil (after Almeida et al., 1981).

Fig. 2. Geological map of the studied sections area, showing the location sections: (1) Serra de São Domingos section, (2) Bezerra section, (3) JK section, (4) NW Planaltinasection, and (5) North Brasília section.

168 C.J.S. Alvarenga et al. / Precambrian Research 251 (2014) 164–180

80

90

100

110

120

130

140

150

160

170

180

190

210

200

40

50

60

70

(m) 0

10

20

30

220

230

240

250

260

280

290

Bam

bu

í

Gro

up

Sete

Lag

oas

Form

atio

n

SHF

Para

no

á

Gro

up

U

pp

er

Car

bo

nat

e

Un

it

RHT

300

-15 -10 -5 0

-15 -10 -5 0δ18O

JJJ

JJJ JJJJ JJJJJJ JJJ

0 1000 2000 3000

HH

HH

HH

HH

HH

HH

HHHH

H

HHHH

0 1000 2000 3000Sr(ppm)

Sr/ Sr87 86

-10 -5 0 5 10 15

-10 -5 0 5 10 15δ13C

0.70782

0.707620.707680.70778

0.707730.70769

0.707840.70770

0.70762

0.70761

0.70760

0.70802

0.705620.705940.705830.70580

Upp

erLo

wer

Fig. 3. Isotope stratigraphy lithostratigraphy of the Paranoá and Bambuí Groups in the Serra de São Domingos area. See Fig. 5 for symbols and Table 2 for �13C, �18O, 87Sr/86Sr,and Sr (ppm) data. Field circles are dolomite and open circles are limestone.

C.J.S. Alvarenga et al. / Precambrian Research 251 (2014) 164–180 169

F olar to( .

ai

∼al“hgttF

gphr

Gicdb�tgtlmSut

S

ig. 4. Serra de São Domingos area. Lithofacies in the upper Paranoá Group: (A) mC and D) aragonite pseudomorph in the basal contact of the Sete Lagoas Formation

nd Bambuí groups. This is composed of angular dolostone clastsn a coarse arkose matrix cemented by dolomite.

Strata directly overlying the thin boundary breccia consists of a1.5 m thick dolomite unit containing laminated dolostone layersnd layers of dolomite needle crystals ranging from 0.5 to 10 cmong (Fig. 4C and D). These large crystal fans are characterized ofcap carbonate” intervals in the Cryogenian (Hoffman, 2011), andave been interpreted as aragonite pseudomorph. The cap dolomiterades upward along a diffuse and transitional contact to a 90 mhick succession of purple to light gray limestone intercalated withhin laminae of green claystone that comprise the lower Sete Lagoasormation.

The upper carbonate Sete Lagoas Formation consists of darkray limestone and marls. The occasional presence of ooids andeloids in calcarenites and calcirudites beds indicates localizedigh-energy environments, suggesting deposition in a shelf envi-onment that shoaled upsection.

Carbon-isotope values (Table 2, Fig. 3) of the upper Paranoároup carbonate range between +0.6‰ and +3.4‰, with a slight

ncrease in the values from the base to the top of this unit. Theontact between the dolostone of the Paranoá Group and the capolostone is marked by an abrupt decrease in the �13C valuesy more than 3‰, and the thin cap dolostone exhibits negative13C values of −2.2‰. Negative C-isotope values continue upwardhrough the first 17 m of the lower Sete Lagoas Formation. Strati-raphically higher, a slight increase is observed in the �13C valueshat reach up to +3.5‰. The sharp contact between the lower clay-imestone lithofacies and the upper dark-gray limestone lithofacies

arks a major increase in the �13C values from +3.5‰ to +8.6‰.uch highly positive values occur through the remainder of the

pper Sete Lagoas Formation, and are similar to that observedhroughout the basin (Santos et al., 2004).

Oxygen-isotope composition of carbonates from the Serra deão Domingos site are variable and appear to vary according to

oth structures in limestone, (B) columnar stromatolite in dolomite. Cap dolomite:

the lithofacies (Fig. 3). For instance, limestone of the lower unitof the Paranoá Group displays �18O values ranging from −9.0‰to −6.3‰ with average values of −7.0‰, whereas dolostone faciesof the upper Paranoá Group record an abrupt increase to positive�18O. Similar to the �13C observations, the cap dolostone marksanother abrupt O-isotope change, which, in this case, is markedby negative �18O values that reach −8.5‰. Negative �18O valuesaveraging approximately −7‰ are recorded throughout the lowerSete Lagoas Formation, although values around −5‰ are found inshallower-water facies of the upper Sete Lagoas Formation (Table 2,Fig. 3).

Limestone containing molar tooth from the Paranoá Grouprecords 87Sr/86Sr ratios between 0.70562 and 0.70594 in sampleswith Sr concentrations ranging between 417 and 984 ppm. By con-trast, the 87Sr/86Sr isotope ratios for limestone of the Bambuí Grouprange from 0.70761 and 0.70802 and have high Sr concentrationsranging from 1000 to 3000 ppm (Table 2).

4.2. Bezerra-JK – Areas 2 and 3

Carbonate rocks in the upper Paranoá Group have beendescribed from a 28-m-thick succession of dololutite and lami-nated lime mudstone intercalated with clay laminae. These strataare succeeded by a 20-m-thick layer composed of lime mud-stone, marl, and occasionally calcarenite. Medium-coarse arkosewith a thickness of 40 m overlays the carbonate unit and rep-resents the top of the Paranoá Group in this section of the JK(Fig. 5).

The Jequitaí Formation in these two sections (Bezerra and JK)is between 6 and 15 m thick and overlies, in sharp contact, arkose

sandstone (Fig. 5). The massive diamictite includes angular clastsof limestone, dolomite, quartz, and feldspar immersed in a clay-siltmatrix cemented by calcite (Fig. 6A). Clasts within the diamictiteare similar to rocks found in the underlying stratigraphy of the

170

C.J.S. A

lvarenga et

al. /

Precambrian

Research

251 (2014)

164–180Table 2C, O, Sr-isotope ratio and elemental data for samples from Serra de São Domingos (Area 1), Bezerra-JK (Areas 2 and 3), NW Planaltina (Area 4) and North Brasília (Area 5).

No. Area Sample Group For. Height m Lithology �13C ‰pdb

�18O ‰pdb

SiO2% Al2O3% Mnppm

Fe2O3% Cao MgO MG/Ca Sr ppm Mn/Sr 87Sr/86Sr Ref.

1

SerradeSãoDomingosArea 1

RSD 24 Paranoá 0 Clay dolo. 0.6 −6.5 28.1 6.7 525 3.8 23.6 19.0 0.80 32 16.4 ND 12 RSD 25 Paranoá 1 Clay dolo. 0.8 −8.0 33.8 7.6 675 4.0 20.6 16.7 0.81 37 18.2 ND 13 RSD 26 Paranoá 3 Clay dolo. 0.9 −8.0 30.6 7.6 450 3.6 22.3 18.4 0.82 42 10.7 ND 14 RSD 27 Paranoá 5 Clay dolo. 1.1 −8.0 15.2 3.6 675 2.3 29.0 22.9 1.03 46 14.7 ND 15 RSD 28 Paranoá 7.5 Clay dolo. 1.3 −7.9 13.0 3.0 600 2.6 29.9 22.7 0.76 <5 120 ND 16 RSD 29 Paranoá 8.5 Clay dolo. ND 17 RSD 30 Paranoá 9 Clay dolo. 1.4 −8.7 20.9 5.2 675 3.3 21.3 26.8 1.26 43 15.7 ND 18 RSD 31 Paranoá 9.5 Clay dolo. 1.3 −8.7 21.3 5.3 750 2.9 20.8 26.7 1.28 <5 150 ND 19 RSD 32 Paranoá 12 Limestone 1.3 −8.8 4.7 0.1 225 0.6 52.0 4.2 0.08 114 2.0 ND 110 RSD 33 Paranoá 14 Limestone 2.3 −7.5 5.3 0.2 75 0.3 48.9 5.5 0.11 984 0.08 0.70562 111 RSD 34A Paranoá 16 Limestone 2.2 −6.0 8.2 0.9 75 0.5 40.9 13.0 0.32 341 0.22 ND 112 RSD34B Paranoá 17 Limestone 2.3 −9.0 5.5 0.2 75 0.2 46.7 6.3 0.13 632 0.12 0.70594 113 RSD 35 Paranoá 18 MT lime. 2.3 −4.3 17.9 2.2 150 0.9 30.2 21.8 0.72 118 1.27 0.70804 114 RSD 36 Paranoá 21 MT lime. 2.4 −7.1 6.3 0.3 75 0.3 49.1 6.2 0.13 509 0.15 0.70583 115 RSD 37 Paranoá 23 MT lime. 2.3 −7.3 3.8 0.1 75 0.2 47.5 5.6 0.12 505 0.15 0.70677 116 SD 4 Paranoá 25 MT lime. 2.5 −6.3 52 417 0.12 0.70580 117 RSD 38 Paranoá 26 MT lime. 3.0 −7.2 0.3 0.0 150 0.3 36.1 25.4 0.70 15 10.0 ND 118 SD 5 Paranoá 27 MT lime. 2.2 −6.7 31 427 0.07 0.70566 119 RSD 39 Paranoá 28 MT lime. 2.2 −7.7 4.2 0.0 75 0.1 51.6 5.1 0.10 553 0.13 0.70573 120 RSD 51 Paranoá 30 Dolostone 2.3 −1.5 26.3 1.2 75 0.5 27.2 21.1 0.77 23 3.26 ND 121 RSD 52 Paranoá 31 Dolostone 2.4 −2.5 19.6 3.0 150 1.1 27.4 23.5 0.86 23 6.52 ND 122 RSD 53 Paranoá 33 Dolostone 2.6 −3.7 10.0 1.7 150 0.8 31.3 26.6 0.85 3 50.0 ND 123 RSD 54 Paranoá 35 Dolostone 3.1 −4.4 4.3 0.3 75 0.3 32.7 26.6 0.81 43 1.74 ND 124 RSD 55 Paranoá 37 Dolostone 2.9 −4.5 2.4 0.2 75 0.3 33.3 26.8 0.80 45 1.66 ND 125 RSD 56 Paranoá 39 Dolostone 2.2 −2.4 2.6 0.2 75 0.3 33.2 26.9 0.81 36 2.08 ND 126 RSD 57 Paranoá 41 Dolostone 2.6 −4.2 15.1 0.2 150 0.4 30.6 24.8 0.81 27 5.55 ND 127 RSD 58 Paranoá 43 Dolostone 2.3 −3.1 6.3 0.2 75 0.3 32.0 26.1 0.81 44 1.70 ND 127 RSD 59 Paranoá 45 Dolostone 2.7 −4.0 6.7 0.3 150 0.3 32.6 26.0 0.80 39 3.85 ND 129 RSD 60 Paranoá 47 Dolostone 2.1 −2.3 12.1 1.9 150 0.6 29.9 25.0 0.83 29 5.17 ND 130 RSD 61 Paranoá 49 Dolostone 2.6 −3.5 10.4 0.6 75 0.5 30.9 25.1 0.81 43 1.74 ND 131 RSD 62 Paranoá 51 Dolostone 2.6 −3.4 6.1 0.3 75 0.3 32.1 26.1 0.81 40 1.87 ND 132 RSD 63 Paranoá 53 Dolostone 2.6 −2.6 7.8 1.0 75 0.5 31.6 25.2 0.80 <5 >15 ND 133 RSD 64 Paranoá 55 Dolostone 2.7 −3.6 4.0 0.3 75 0.4 32.7 26.6 0.81 49 1.53 ND 134 RSD 65 Paranoá 57 Dolostone 2.9 −3.0 14.2 0.7 75 0.6 30.0 24.5 0.82 27 2.77 ND 135 RSD 66 Paranoá 60 Dolostone 3.6 −2.2 12.7 2.7 75 0.9 29.3 24.7 0.84 14 5.36 ND 136 RSD 67 Paranoá 63.5 Dolostone 2.2 −4.2 4.6 0.4 150 0.3 32.4 26.5 0.82 35 4.29 ND 137 RSD 68 Paranoá 66.5 Dolostone 2.8 −3.1 138 RSD 69 Paranoá 70.5 Dolostone 1.8 −3.8 5.4 0.3 300 0.6 33.6 26.1 0.78 <5 >60 ND 139 RSD 70 Paranoá 75 Dolostone 3.4 −4.0 0.0 0.0 225 0.3 33.2 22.2 0.69 <5 >45 ND 140 RSD 71 Paranoá 79 Dolostone 3.2 −3.7 2.2 0.3 225 0.4 32.1 21.3 0.66 <5 >45 ND 141 RSD 72 Paranoá 83 Dolostone 2.9 −3.7 1.2 0.1 150 0.3 32.9 21.8 0.66 <5 >30 ND 142 RSD 73 Paranoá 87 Dolostone 3.6 −3.9 1.2 0.1 150 0.3 32.8 22.2 0.68 <5 >30 ND 143 RSD 74 Paranoá 91 Dolostone 3.5 −2.3 0.5 4.0 150 0.2 30.5 20.3 0.66 <5 >30 ND 144 RSD 75 Paranoá 93 Dolostone 2.2 −3.2 ND 145 RSD 80 Paranoá 97 Dolostone 1.7 −1.9 0.3 0.3 300 0.3 32.3 21.3 0.66 <5 >60 ND 146 RSD 81 Paranoá 101 Dolostone 1.8 −2.0 0.0 0.0 375 0.3 34.3 21.0 0.63 <5 >75 ND 147 RSD 82 Paranoá 101.5 Dolostone 7.0 1.6 300 0.6 47.2 2.2 0.05 147 2.04 ND 148 RSD 83 Paranoá 102.5 Dolostone 1.7 −1.6 0.9 0.5 300 0.3 32.2 21.7 0.67 <5 >60 ND 149 RSD 84 Paranoá 103.5 Dolostone 1.4 −3.0 0.0 0.0 525 0.3 34.0 21.0 0.62 <5 >99 ND 150 RSD 85 Paranoá 104.5 Dolostone 1.5 −3.9 0.0 0.0 525 0.4 33.3 21.6 0.65 <5 >99 ND 151 RSD 86 Paranoá 105.5 Dolostone 1.8 −3.6 0.0 0.0 225 0.2 32.6 27.3 0.68 <5 >45 ND 152 RSD 87 Paranoá 106.5 Dolostone 1.6 −2.9 0.0 0.0 600 0.4 33.4 22.4 0.67 <5 >120 ND 153 RSD 88 Paranoá 107 Dolostone 1.7 −3.5 0.0 0.0 450 0.3 33.3 22.3 0.67 <5 >90 ND 154 RSD 91 Paranoá 108.1 Dolo breccia 1.3 −3.1 4.3 0.0 675 0.8 31.3 20.8 0.66 <5 >135 ND 155 RSD 92 Bambuí LSL 108.15 Aragonita −2.2 −5.9 0.4 0.0 525 0.7 32.1 20.5 0.62 30 17.5 ND 1

C.J.S. A

lvarenga et

al. /

Precambrian

Research

251 (2014)

164–180

17156 RSD 93 Bambuí LSL 108.35 Aragonita −0.5 −11 16.6 4650 4.2 27.0 14.4 0.53 85 54.7 ND 157 RSD 94 Bambuí LSL 108.5 Dolostone −0.4 −8.5 5.9 1.2 375 0.5 46.1 4.2 0.09 161 2.33 ND 158 RSD 95 Bambuí LSL 109 Dolostone −0.6 −8.4 5.4 1.1 225 0.4 47.7 3.7 0.08 214 1.05 ND 159 RSD 96 Bambuí LSL 109.5 Dolostone −0.5 −7.9 5.3 1.0 300 0.5 45.9 5.2 0.11 222 1.35 ND 160 RSD 97 Bambuí LSL 110 Dolostone −0.6 −7.2 7.2 1.3 150 0.7 43.5 5.3 0.12 306 0.49 ND 161 RSD 98 Bambuí LSL 110.5 Clay lime. −0.8 −7.7 7.7 1.4 150 0.6 47.0 2.3 0.05 214 0.70 ND 162 RSD 99 Bambuí LSL 111 Clay lime. −0.9 −7.7 6.1 1.2 150 0.6 47.0 2.9 0.06 234 0.64 ND 163 RSD 100 Bambuí LSL 112 Clay lime. −0.9 −7.6 12.5 2.7 150 1.2 42.4 1.9 0.04 153 0.98 ND 164 RSD 101 Bambuí LSL 113 Clay lime. −0.7 −7.3 6.3 1.0 150 0.5 47.6 2.7 0.06 230 0.65 ND 165 RSD 102 Bambuí LSL 114 Clay lime. −0.8 −7.3 10.2 1.4 225 0.7 44.6 3.0 0.07 263 0.85 ND 166 RSD 103 Bambuí LSL 115 Clay lime. −0.7 −7.3 11.9 2.2 150 0.9 42.7 2.7 0.06 197 0.76 ND 167 RSD 104 Bambuí LSL 116 Clay lime. −0.8 −7.3 9.6 1.6 150 0.7 44.9 2.6 0.06 214 0.70 ND 168 RSD 105 Bambuí LSL 117 Clay lime. −0.7 −7.2 12.6 2.5 150 1.1 42.1 2.3 0.05 202 0.74 ND 169 RSD 106 Bambuí LSL 118 Clay lime. −0.8 −7.2 10.7 1.6 150 0.7 44.1 3.0 0.07 249 0.60 ND 170 RSD 107 Bambuí LSL 119 Clay lime. −0.7 −6.8 12.8 1.9 150 0.9 40.8 4.2 0.10 249 0.60 ND 171 RSD 108 Bambuí LSL 121 Clay lime. −1.0 −7.0 14.0 1.9 225 0.9 46.0 4.0 0.09 228 0.98 ND 172 RSD 109 Bambuí LSL 123 Clay lime. −0.8 −7.0 12.3 1.8 150 0.7 43.6 2.3 0.05 221 0.68 ND 173 RSD 110 Bambuí LSL 125 Clay lime. −0.6 −7.1 12.0 1.8 150 0.7 44.4 1.7 0.04 231 0.65 ND 174 RSD 111 Bambuí LSL 127 Clay lime. −0.2 −6.8 11.2 1.5 225 0.6 42.4 4.0 0.09 324 0.69 ND 175 RSD 112 Bambuí LSL 129 Clay lime. 0.0 −7.1 14.1 1.7 150 0.7 42.5 2.5 0.06 285 0.53 ND 176 RSD 113 Bambuí LSL 131 Clay lime. 0.2 −6.8 11.9 1.2 150 0.5 44.2 2.7 0.06 265 0.57 ND 177 RSD 114 Bambuí LSL 133 Clay lime. 0.4 −6.7 15.9 1.8 225 0.6 39.6 4.2 0.11 291 0.77 ND 178 RSD 115 Bambuí LSL 135 Clay lime. 0.5 −6.8 12.1 1.3 225 0.6 43.4 2.6 0.06 2424 0.09 0.70782 179 RSD 116 Bambuí LSL 137 Clay lime. 0.8 −6.3 16.7 2.2 225 1.1 36.0 6.2 0.17 293 0.77 ND 180 RSD 117 Bambuí LSL 139 Clay lime. 0.7 −7.1 20.9 2.6 225 1.1 38.0 1.4 0.03 236 0.95 ND 181 RSD 118 Bambuí LSL 141 Clay lime. 0.7 −7.1 19.0 2.3 225 0.9 39.2 1.7 0.04 253 0.90 ND 182 RSD 119 Bambuí LSL 143 Clay lime. 1.0 −6.6 15.3 1.9 225 1.0 39.6 4.2 0.11 342 0.66 ND 183 RSD 120 Bambuí LSL 145 Clay lime. 1.1 −6.7 18.0 2.1 225 0.9 37.9 3.9 0.10 307 0.73 ND 184 RSD 121 Bambuí LSL 147 Clay lime. 1.4 −6.7 19.4 2.9 150 1.3 37.6 2.2 0.06 488 0.31 0.70838 185 RSD 122 Bambuí LSL 149 Clay lime. 1.2 −6.9 18.3 2.7 225 1.1 38.8 2.1 0.05 368 0.61 ND 186 RSD 123 Bambuí LSL 151 Clay lime. 1.2 −6.9 20.0 3.1 225 1.3 37.6 1.6 0.04 339 0.66 ND 187 RSD 124 Bambuí LSL 153 Clay lime. 1.3 −6.7 18.0 2.9 300 1.4 38.1 2.5 0.06 445 0.67 0.70845 188 RSD 125 Bambuí LSL 155 Clay lime. 1.3 −6.9 20.1 3.8 225 1.6 36.3 1.7 0.05 432 0.52 0.70860 189 RSD 126 Bambuí LSL 158 Clay lime. 1.3 −7.0 14.8 2.6 225 0.9 42.0 1.2 0.03 524 0.43 0.70844 190 RSD 127 Bambuí LSL 161 Clay lime. 1.8 −6.7 15.1 1.9 300 0.7 42.7 1.6 0.04 497 0.60 0.70837 191 RSD 128 Bambuí LSL 164 Clay lime. 3.1 −6.7 8.5 1.6 150 0.7 47.9 1.0 0.02 993 0.15 0.70778 192 RSD 129 Bambuí LSL 167 Clay lime. 4.1 −6.2 5.0 2.8 75 0.5 49.0 1.1 0.02 1016 0.07 0.70768 193 RSD 130 Bambuí LSL 170 Clay lime. 3.7 −6.1 12.0 1.2 150 0.5 45.3 1.3 0.03 1097 0.13 0.70762 194 RSD 131 Bambuí LSL 173 Clay lime. 3.2 −6.6 11.0 1.9 300 0.8 43.8 2.6 0.06 553 0.52 0.70781 195 RSD 132 Bambuí LSL 176 Clay lime. 3.1 −6.6 18.6 4.0 375 1.6 35.8 3.9 0.11 459 0.68 0.70868 196 RSD 133 Bambuí LSL 178 Clay lime. 3.3 −6.6 18.2 3.2 375 1.4 35.5 4.6 0.13 439 0.85 0.70804 197 RSD 134 Bambuí LSL 181 Clay lime. 3.3 −6.6 21.1 4.3 375 1.9 33.4 3.8 0.11 415 0.90 0.71137 198 RSD 135 Bambuí LSL 196 Clay lime. 3.5 −7.0 22.2 4.2 450 1.9 32.8 3.7 0.11 446 1.01 0.70805 199 RSD 136 Bambuí USL 199 Limestone 8.6 −6.2 3.3 0.3 75 0.3 51.5 0.9 0.02 2266 0.03 0.70773 1100 RSD 137 Bambuí USL 202 Limestone 8.7 −5.8 2.3 0.2 0.0 0.2 53.1 0.9 0.02 2362 0.0 0.70769 1101 RSD 138 Bambuí USL 205 Limestone 9.0 −5.5 0.7 0.0 0.0 0.1 54.4 1.1 0.02 1508 0.0 0.70770 1102 RSD 139 Bambuí USL 208 Limestone 8.5 −5.0 3.0 0.4 0.0 0.3 51.3 1.3 0.03 3223 0.0 0.70866 1103 RSD 140 Bambuí USL 211 Limestone 8.5 −5.5 1.6 0.2 75 0.2 54.2 0.5 0.01 1535 0.05 0.70784 1104 RSD 141 Bambuí USL 214 Clay lime. 8.3 −6.3 10.1 1.9 225 0.8 44.1 2.7 0.06 2343 0.09 0.70758 1105 RSD 143 Bambuí USL 220 Clay lime. 8.0 −6.3 9.7 1.6 150 0.7 45.2 2.0 0.04 1643 0.09 0.70756 1106 RSD 152 Bambuí USL 227.5 Limestone 8.9 −4.4 1.9 3.3 75 0.1 50.5 2.3 0.05 1767 0.04 0.70761 1107 RSD 153 Bambuí USL 232.5 Limestone 9.1 −4.1 0.9 0.4 0.0 0.1 51.4 2.1 0.04 1914 0.0 ND 1108 RSD 154 Bambuí USL 237.5 Limestone 9.2 −3.6 0.6 0.0 0.0 0.1 53.9 0.6 0.01 1595 0.0 0.70762 1109 RSD 155 Bambuí USL 242.5 Limestone 9.5 −5.4 0.7 0.5 0.0 0.2 53.2 0.4 0.01 1402 0.0 0.70769 1110 RSD 156 Bambuí USL 247.5 Limestone 9.9 −5.0 2.6 0.4 75 0.3 50.3 5.6 0.11 1588 0.05 0.70795 1111 RSD 157 Bambuí USL 252.5 Limestone 9.9 −4.5 1.3 0.2 75 0.2 53.6 1.7 0.03 1574 0.05 0.70782 1112 RSD 158 Bambuí USL 257.5 Limestone 10.2 −4.8 2.0 0.6 75 0.3 52.2 2.1 0.04 1716 0.04 0.70760 1113 RSD158-1 Bambuí USL 257.6 Limestone 9.7 −4.3 2.0 0.2 75 0.2 53.6 1.2 0.02 1524 0.05 0.70754 1114 RSD 159 Bambuí USL 262.5 Limestone 10.4 −4.6 1.2 0.1 75 0.1 52.9 0.8 0.02 1240 0.06 0.70771 1115 RSD 160 Bambuí USL 267.5 Limestone 10.1 −4.8 1.6 0.3 75 0.2 53.2 1.3 0.02 1303 0.06 ND 1

172

C.J.S. A

lvarenga et

al. /

Precambrian

Research

251 (2014)

164–180Table 2 (Continued)

No. Area Sample Group For. Height m Lithology �13C ‰pdb

�18O ‰pdb

SiO2% Al2O3% Mnppm

Fe2O3% Cao MgO MG/Ca Sr ppm Mn/Sr 87Sr/86Sr Ref.

116 RSD 161 Bambuí USL 272.5 Oo-Lime. 10.4 −7.2 0.3 0.2 00 0.0 53.6 0.5 0.01 1493 0.0 0.70802 1117 RSD 162 Bambuí USL 280 Clay lime. 9.7 −7.4 37.1 8.1 525 3.0 28.6 7.3 0.25 860 0.61 0.71028 1118 RSD 163 Bambuí USL 285 Clay lime 11.4 −8.5 32.1 7.2 300 2.5 32.4 5.7 0.18 803 0.37 ND 1119 RSD 164 Bambuí USL 290 Clay lime. 10.9 −6.8 24.7 3.2 300 1.4 32.7 14.2 0.43 868 0.35 0.70931 1120 RSD 165 Bambuí FSH 292 Clay lime. 8.7 −6.1 54.4 14.5 300 3.6 9.0 3.6 – 246 1.22 ND 1

121

BezerraArea 2

Bz 39 Bambuí USL 250.0 Clay lime. 9.2 −10.8 50.0 10.4 1495 4.1 12.1 2.8 0.23 942 1.59 0.70797 2122 Bz 38 Bambuí USL 240.0 Limestone 6.3 −5.0 2.7 0.7 39 0.2 51.3 2.0 0.04 1990 0.02 0.70748 2123 Bz 37 Bambuí LSL 180.0 Clay lime. 2.7 −6.0 18.1 1.3 215 0.6 39.6 3.7 0.09 1616 0.13 0.70758 2124 Bz 36 Bambuí LSL 150.0 Clay lime. 3.6 −5.5 13.9 3.0 260 1.1 41.2 1.8 0.04 3064 0.08 0.70745 2125 Bz 35 Bambuí LSL 75.0 Clay lime. −0.9 −7.3 10.6 1.8 151 1.8 45.6 2.2 0.05 191 0.79 0.70808 2126 Bz 18F Bambuí LSL 17.0 Clay lime. −6.0 −8.9 11.3 2.9 177 1.3 46.5 1.6 0.03 211 0.84 0.70855 2127 Bz 18E Bambuí LSL 7.0 Clay lime. −5.7 −9.1 18.5 5.1 307 2.5 33.5 5.7 0.17 207 1.48 0.71097 2128 Bz 18D Bambuí LSL 6.5 Dolostone −4.7 −5.3 21.8 5.1 454 2.9 20.9 14.3 0.68 115 3.95 0.71245 1–2129 Bz 18 C Bambuí LSL 3.0 Dolostone −4.4 −5.4 9.5 1.6 244 0.9 27.6 19.5 0.71 95 2.57 ND 2130 Bz 18B Bambuí LSL 1.0 Dolostone −3.2 −5.6 6.8 1.4 209 0.8 29.9 19.1 0.64 164 1.27 0.71058 2131 Bz 18A Jequitaí Jqt −1.0 Diamictite −1.8 −5.1 60.0 5.0 652 2.3 7.8 6.5 0.83 42 15.5 ND 2

132

JKArea 3JKArea 3

JK 17 Bambuí LSL 64.0 Clay lime. −0.9 −7.8 12.0 2.5 245 0.9 44.0 1.8 0.03 145 1.69 ND 2133 JK 16 Bambuí LSL 52.0 Clay lime. −0.7 −9.0 10.7 2.3 193 0.9 44.8 2.2 0.04 148 1.30 ND 2134 JK 15 Bambuí LSL 40.0 Clay lime. −0.4 −7.8 14.8 3.2 382 1.5 37.6 5.2 0.12 250 1.53 0.70932 2135 JK 14 Bambuí LSL 28.0 Clay lime. −4.4 −7.6 22.1 5.4 780 6.4 30.8 4.9 0.29 195 4.00 ND 2136 JK 13 Bambuí LSL 16.0 Clay lime. −5.7 −10.6 15.5 4.2 265 1.8 38.4 2.3 0.05 141 1.88 ND 2137 JK 12 Bambuí LSL 7.0 Dolostone −4.6 −7.6 22.6 6.1 348 4.2 18.9 12.5 0.56 100 3.48 ND 2138 JK 11 Bambuí LSL 3.0 Dolostone −4.3 −5.7 7.3 1.5 300 1.0 28.1 19.7 0.58 58 5.17 ND 2139 JK 10 Bambuí LSL 0.0 Dolostone −4.2 −5.6 7.3 1.5 241 1.0 28.6 20.1 0.58 64 3.77 ND 2140 JK 9 Paranoá −46.0 Dolostone 2.7 −4.7 20.8 3.3 379 2.6 24.6 13.7 0.47 148 2.56 0.71301 1*2141 JK 8A Paranoá −49.0 Limestone 1.4 −7.7 21.5 4.2 172 1.0 35.6 1.7 0.04 232 0.74 ND 2142 JK 8 Paranoá −49.0 Limestone 1.5 −7.6 6.1 1.0 196 0.3 49.9 1.3 0.02 472 0.42 0.70626 2143 JK 7 Paranoá −55.0 Limestone 1.9 −6.9 21.3 0.5 121 0.6 36.5 6.1 0.14 479 0.25 0.70683 2144 JK 6 Paranoá −60.0 Limestone 1.2 −12.3 12.6 2.4 170 0.7 42.9 2.4 0.05 90 1.89 0.71989 2145 JK 3B Paranoá −70.0 Dolostone 0.7 −9.0 13.6 3.1 350 2.2 34.4 9.2 0.22 81 4.32 0.72303 1*–2146 JK 1 Paranoá −74.0 Dolostone 0.8 −7.3 12.1 2.3 802 2.6 25.8 15.9 0.52 63 12.7 0.74148 1*–2

147

NW –PlanaltinaArea 4NW –PlanaltinaArea 4

COu 11.4 Bambuí LSL −11.4 Limestone 2.9 −6.4 0.0 0.0 10 0.0 56.1 0.4 0.01 2763 0.00 0.70739 1148 COu 20 Bambuí LSL −20 Limestone 3.3 −5.9 1.1 0.0 <10 0.0 55.4 0.4 0.01 3128 0.00 0.70750 1149 COu 30 Bambuí LSL −30 Limestone 3.0 −5.6 0.0 0.0 10 0.0 56.0 0.5 0.01 2722 0.00 0.70748 1150 COu 39.5 Bambuí LSL −39.5 Limestone 2.8 −4.8 0.1 0.0 <10 0.0 56.1 0.5 0.01 2444 0.00 0.70743 1151 COu 55.9 Bambuí LSL −55.9 Limestone 3.0 −5.0 1.5 −0.5 18 0.1 54.6 0.6 0.01 2446 0.01 0.70749 1152 COu 61 Bambuí LSL −61 Limestone 2.9 −5.1 0.6 0.1 16 0.1 55.6 0.5 0.01 2638 0.01 0.70748 1153 COu 69 Bambuí LSL −69 Limestone 2.7 −5.7 0.6 0.1 28 0.1 55.8 0.5 0.01 2487 0.01 0.70745 1154 COu 80 Bambuí LSL −80 Clay lime. 1.1 −7.6 26.5 6.3 319 2.7 29.1 3.2 0.11 458 0.70 ND 1155 COu 85.9 Bambuí LSL −85.9 Clay lime. 1.0 −7.4 26.5 5.4 275 1.7 30.6 3.0 0.10 468 0.58 0.70789 1156 COu 90 Bambuí LSL −90 Clay lime. 0.9 −7.2 13.6 2.5 211 0.9 43.1 1.7 0.04 1107 0.19 0.70770 1157 Cou 103 Bambuí LSL −103 Limestone 0.5 −6.7 13.0 2.7 195 1.0 40.8 3.9 0.09 251 0.78 ND 1158 COu 105 Bambuí LSL −105 Limestone 0.5 −6.0 9.94 1.9 227 0.8 38.7 9.0 0.23 164 1.38 ND 1159 COu 106.3 Bambuí LSL −106.3 Limestone −0.1 −4.3 5.3 1.6 210 0.7 33.0 17.1 0.52 121 1.73 ND 1160 COu 107.3 Bambuí LSL −107.3 Limestone 0.8 −4.0 3.1 0.6 435 0.4 33.3 19.1 0.57 188 2.31 ND 1161 COu 108 Bambuí LSL −108 Limestone −0.2 −5.9 6.8 1.0 422 0.5 31.5 18.1 0.57 195 2.16 ND 1162 COu 110 Bambuí LSL −110 Limestone 0.6 −3.7 6.2 1.3 1288 1.1 31.0 18.1 0.58 174 7.40 ND 1163 COu 112 Bambuí LSL −112 Limestone −1.7 −3.9 5.8 0.9 531 1.5 31.0 17.3 0.56 224 2.37 0.71015 1164 COu 114 Bambuí LSL −114 Lime-breccia −1.9 −5.0 8.7 1.4 290 0.6 28.0 19.2 0.69 88 3.29 ND 1165 CCOu 115 Paranoá −115 Dolostone 1.4 −3.4 0.7 0.1 127 0.8 36.7 14.0 0.38 55 2.31 ND 1166 COu 120 Paranoá −120 Dolostone 1.6 −3.8 2.5 0.1 132 0.4 32.5 12.1 0.37 55 2.40 ND 1167 COu 125.4 Paranoá −125.4 Dolostone 1.5 −3.5 1.0 0.2 206 0.5 36.5 13.5 0.37 66 3.12 ND 1168 COu 130 Paranoá −130 Dolosrone 1.7 −2.9 0.2 0.1 94 0.2 37.0 13.8 0.37 54 1.74 ND 1

C.J.S. A

lvarenga et

al. /

Precambrian

Research

251 (2014)

164–180

173

169 F34–1 Bambuí LSL −23.1 Limestone 3.2 −5.6 1.7 0.2 48 0.1 35.2 17.1 0.49 271 018 ND 1170 F34–2 Bambuí LSL −38.3 Limestone 4.2 −7.8 0.0 0.0 38 0.1 35.1 18.7 0.53 324 0.12 ND 1171 F34–3 Bambuí LSL −45.7 Limetone 3.7 −7.3 0.4 0.0 34 0.1 43.3 11.1 0.26 776 0.44 0.70806 1172 F34–4 Bambuí LSL −55.7 Limestone 2.1 −7.5 0.6 0.1 29 0.0 55.6 0.6 0.01 1733 0.02 0.70754 1173 F34–5 Bambuí LSL −60.8 Limestone 2.6 −6.5 2.5 0.4 52 0.1 40.3 11.5 0.28 750 0.07 0.70789 1174 F34–6 Bambuí LSL −64.3 Limestone 1.5 −6.7 4.6 0.5 45 0.1 52.5 0.4 0.01 1059 0.04 0.70775 1175 F34–7 Bambuí LSL −67.1 Limestone 2.0 −6.8 1.9 0.6 43 0.2 52.1 1.1 0.02 594 0.07 0.70808 1176 F34–8 Bambuí LSL −72.6 Limestone 2.0 −6.6 1.6 0.4 43 0.2 50.7 1.3 0.03 687 0.06 0.70798 1177 F34–9 Bambuí LSL −76.5 Limestone 2.5 −6.6 2.1 0.7 56 0.3 46.4 3.1 0.07 345 0.16 ND 1178 F34–10 Bambuí LSL −85.1 Limestone 2.5 −7.0 1.7 0.6 69 0.3 44.4 5.0 0.11 363 0.19 ND 1179 F34–11 Bambuí LSL −85.1 Limestone 2.2 −6.7 6.4 1.6 85 0.6 44.1 5.8 0.13 445 0.19 0.70812 1180 F34–12 Bambuí LSL −86.1 Limestone 1.8 −6.1 5.0 1.3 73 0.5 43.0 7.3 0.17 365 0.20 ND 1181 F34–13 Bambuí LSL −86.3 Dolostone −1.2 −4.6 5.0 1.7 178 0.7 34.4 14.1 0.41 321 0.55 ND 1182 F34–14 Bambuí LSL −86.4 Dolostone −1.7 −6.1 3.6 1.0 317 0.6 33.1 15.1 0.46 107 2.96 ND 1183 F34–15 Paranoá −88.1 Dolostone 1.6 −3.2 0.1 0.1 85 0.1 33.3 15.9 0.48 64 1.33 ND 1184 F34–16 Paranoá −91.7 Dolostone 1.0 −5.2 0.3 0.0 98 0.1 33.1 15.8 0.48 67 1.46 ND 1185 F34–17 Paranoá −91.4 Dolostone 1.8 −2.8 0.2 0.1 101 0.1 34.3 16.6 0.48 76 1.33 ND 1186 F34–18 Paranoá −98.7 Dolostone 58.0 15.0 84 6.6 2.5 3.2 <10 8.40 ND 1187 F34–19 Paranoá −103.5 Dolostone 2.0 −2.9 0.7 0.1 79 0.1 34.9 15.2 0.44 73 1.08 ND 1188 F34–20 Paranoá −107.2 Dolostone 1.8 −4.6 1.4 0.1 132 0.2 34.6 15.6 0.45 63 2.09 ND 1

189

NorthBrasíliaArea 5

Ciplan23B Paranoá −8.0 Dolostone 0.1 −4.5 4.2 0.5 41 0.2 44.7 5.1 0.11 686 0.06 0.71750 1190 Ciplan23A Paranoá −4.0 Dolostone 0.5 −4.0 0.6 0.1 141 0.1 53.4 0.7 0.01 336 0.42 ND 1191 Brechoso Bambuí LSL −0.3 Lime breccia 2.6 −7.7 2.2 0.4 34 0.1 53.8 0.6 0.01 2985 0.01 0.70754 1192 Ciplan23 C Bambuí LSL 0 Dolo breccia −3.6 −6.0 4.1 0.0 221 0.5 31.3 21.1 0.67 108 2.05 ND 1193 Ciplan24 Bambuí LSL 0.5 Dolostone −2.3 −6.3 28.3 5.3 1821 5.5 18.0 12.0 0.66 98 18.6 ND 1194 Ciplan25A Bambuí LSL 2.0 Clay dolo. 0.1 −7.5 32.6 8.4 890 4.7 16.4 9.6 0.58 140 6.36 ND 1195 Ciplan25B Bambuí LSL 4.0 Clay dolo. −0.6 −9.2 11.4 2.9 177 1.3 43.5 1.6 0.04 211 0.84 0.70743 1196 Ciplan 17 Bambuí LSL 75 Clay dolo. 1.3 −9.1 23.4 7.1 720 2.1 22.3 5.1 0.23 959 0.75 0.70839 1197 Ciplan 16 Bambuí LSL 79 Clay dolo. 1.6 −9.0 41.5 4.8 727 0.5 12.3 9.8 0.80 66 11.0 ND 1198 Ciplan 15 Bambuí LSL 84 Limestone 3.1 −5.8 1.1 0.3 24 0.1 54.5 0.5 0.01 3582 0.01 0.70742 1199 Ciplan 02 Bambuí LSL 124 Limestone 3.1 −6.3 1.1 0.3 24 0.1 54.5 0.5 0.01 3582 0.01 0.70749 1200 Ciplan 05 Bambuí LSL 166 Limestone 0.0 0.0 <10 0.0 55.9 0.6 0.01 2537 0.01 0.70760 1201 Ciplan 08 Bambuí LSL 175 Limestone 4.9 −9.1 1.9 0.5 67 0.2 53.7 1.0 0.02 1924 0.03 0.70782 1202 Ciplan 10 Bambuí LSL 195 Dolostone 1.4 −9.1 0.3 0.1 84 0.1 32.6 22.1 0.68 209 0.40 ND 1203 Ciplan11A Bambuí LSL 205 Dolostone 1.9 −6.0 1.3 0.2 257 0.4 31.7 21.0 0.66 266 0.97 ND 1204 Ciplan11B Bambuí LSL 206 Clay lime. 9.8 −4.5 11.6 2.2 161 0.8 44.6 1.8 0.04 622 0.26 0.70815 1205 Contg 5A Bambuí LSL −5.5 Dolostone 0.8 −7.2 0.6 0.2 121 0.1 35.1 19.2 0.55 318 0.38 ND 1206 Contg 5B Bambuí LSL −4.5 Dolostone 1.3 −5.6 0.9 0.2 708 0.3 32.7 20.2 0.62 233 3.04 ND 1207 Contg 4A Bambuí LSL −1.3 Dolostone 1.4 −6.0 0.3 0.1 54 0.1 54.5 0.6 0.01 1610 0.03 ND 1208 Contg 4B Bambuí LSL −0.5 Dolostone 1.6 −7.8 1.0 0.2 704 0.3 41.5 13.2 0.32 477 1.47 ND 1209 Contg 4 C Bambuí USL 0.0 Siltstone 62.1 6.1 419 4.0 9.5 5.4 0.57 62 6.76 ND 1210 Contg 4D Bambuí USL 3.0 Limestone 7.6 −8.2 18.5 5.1 307 2.5 28.8 5.7 0.20 207 1.48 ND 1211 Contg 3 Bambuí USL 5.5 Limestone 5.4 −6.8 6.2 7.8 100 0.6 44.9 1.4 0.03 810 0.12 0.70796 1212 Contg 2 Bambuí USL 12 Limestone 8.5 −5.8 22.6 4.7 310 2.4 35.1 2.9 0.08 1024 0.30 ND 1213 Contg 1 Bambuí USL 22 Limestone 10.6 −6.8 20.5 4.5 261 1.9 35.6 2.0 0.06 1467 0.18 0.70758 1

Ref.: 1 = This paper, 2 = Alvarenga et al. (2007), 1*–2 = Only 87Sr/86Sr from this paper.For.: Formation, LSL: Lower Sete Lagoas Formation, USL: Upper Sete Lagoas FormationHeight: Datums for stratigraphic height.Clay dolo: Dolostone intercalated with mudstone. MT lime: Molar tooth limestone. Dolo breccia: Dolostone breccia. Clay lime: limestone intercalated with mudstone. Oo-lime: oolite limestone. Lime breccia: limestone breccia.

174 C.J.S. Alvarenga et al. / Precambrian Research 251 (2014) 164–180

F : (A) Bf

Pbd

ao

Ff

ig. 5. Isotope stratigraphy and lithostratigraphy of the Paranoá and Bambuí groupsor �13C, �18O, 87Sr/86Sr, and Sr (ppm) data.

aranoá Group. The diamictite in the Bezerra section is succeededy a 0.5-m-thick layer of feldspar sandstone underlying the capolomite.

The 7-m thick cap dolomite of the Sete Lagoas Formationbruptly overlies diamictites of the Jequitaí Formation and consistsf laminated gray-pink dolostone (Fig. 6B). This dolostone is

ig. 6. Glaciogenic diamictite and cap dolostone in Bezerra and JK sections: (A) glacial

eldspar immersed in a clay-silt matrix cemented by calcite and (B) laminated gray-pink

ezerra section and (B) JK section (modified from Alvarenga et al., 2007). See Table 2

then sharply overlain by intercalated limestone and purple-greenclaystone (Fig. 7) of the lower Sete Lagoas Formation. Thesestrata include thin-bedded peloidal limestones that often display

low-angle cross-lamination. The lower Sete Lagoas Formation thengrades upward to a gray-colored 200-m-thick succession of clayeylimestone, followed by a 40-m-thick dark gray limestone layer and

diamictites of the Jequitaí Formation with angular clasts of dolomite, quartz, andcap dolomite, that occurs in the first 7 m of the Sete Lagoas Formation.

C.J.S. Alvarenga et al. / Precambrian R

Ft

aleF

Fi

ig. 7. Intercalated limestone and purple claystone of the lower Sete Lagoas Forma-ion.

few meters of marls (Fig. 5). The presence of ooids and peloids inocalized calcarenites and calcirudites facies indicates high-energynvironments and suggests gradual shoaling of the Sete Lagoasormation.

ig. 8. Isotope stratigraphy and lithostratigraphy of the upper Paranoá Group and the lown two drill cores from Cimento Tocantins. See Table 2 for �13C, �18O, 87Sr/86Sr, and Sr (pp

esearch 251 (2014) 164–180 175

Isotope data in the Bezerra-JK area were previously publishedby Alvarenga et al. (2007), in Portuguese. �13C values of carbonatein the Paranoá Group range between +0.74‰ and +2.6‰ (Table 2,Fig. 5). The �18O values vary from −7.3‰ to −12.3‰ near the baseof the section to −4.7‰ near the top of the Paranoá Group. The capdolomite displays �13C values between −3‰ and −5‰, decreasingupward in the section by 2‰ (Fig. 5). The limestone and clayeylimestone facies above the cap dolostone continue to preserve neg-ative �13C values over approximately 70 m of stratigraphic sectionbefore and increasing to highly positive �13C values near 9 permilin the dark gray limestone of the upper Sete Lagoas Formation. Thecap dolomite presents a range of �18O values between −7.6‰ and−5.5‰ (Fig. 5, Table 2). Toward the top of the succession, the O iso-topic value exhibits an abrupt drop, which is also accompanied byan abrupt increase in the SiO2 and Al2O3 contents.

The 87Sr/86Sr ratio of the entire Bezerra-JK profile rangesbetween 0.70626 and 0.70797. Samples with high and variable87Sr/86Sr are associated with a substantially lower Sr content(<148 ppm) and may have been affected by post-depositionalalteration related to diagenetic fluid reactions. Limestone samples

with a Sr concentration of greater than 450 ppm and a low Mn/Srratio (<0.4), are believed to have preserved the original Sr isotopiccomposition display 87Sr/86Sr ratios varying between 0.70626 and0.70683 for the limestone of the Paranoá Group and 0.70745 and

er Sete Lagoas Formation in the NW-Planaltina de Goiás. Samples were collectedm) data.

176 C.J.S. Alvarenga et al. / Precambrian R

Fig. 9. (A) Conophyton metula Kirichenko stromatolite showing the conical lami-nmt

0F

4

pssml(tf

tdbwlgas

gro

pM((t

4

fasolbS(tscd

ation of the upper Paranoá Group in the NW-Planaltina de Goiás and (B) Gray,icro-crystalline dolomite intercalated with fine breccia in the first few meters of

he Sete Lagoas Formation. See Fig. 8 for stratigraphic location.

.70758 for the limestone of the Sete Lagoas Formation (Table 2,ig. 5).

.3. NW Planaltina – Area 4

In the NW Planaltina de Goiás (Fig. 2) profile, whole-rock sam-les were collected from two drill cores (Fig. 8). The dolostone andtromatolitic dolostone described in the lower portion of these twoections is similar to that found in outcrops in the region. The stro-atolitic intervals contain convex laminae and cylinder-conical

aminae identified as Conophyton Metula Kirichenko (Fig. 9A)Dardenne et al., 1976). Dolostone breccia (approximately 1-mhick), including dolostone with angular clasts, marks the uncon-ormity between the Paranoá and Bambuí Groups.

Overlying the dolostone breccia there is a cap dolostone upo 6-m thick dolarenite, and dolorudite described in these tworill cores (Fig. 8). The cap dolomite appears as gray and thin-edded, micro-crystalline dolomite intercalated with fine brecciaith angular clasts (Fig. 9B). Purple to light gray limestone interca-

ated with green–purple claystone overlies the cap dolostone andrades upward to limestone with rare mud cracks and to ooliticnd intraclastic calcarenite at the top of the section, indicating ahallow tidal environment.

Carbonate strata of these two cores record �13C values ran-ing between −1.7‰ and +4.2‰, with the negative �13C values areestricted to the cap dolomite. The �18O values are similar to thether sections, with values ranging from −3.0 to −7.8‰ (Fig. 8).

87Sr/86Sr ratios vary between 0.70730 and 0.70800 for sam-les with a total Sr content ranging from 450 to 3100 ppm andn/Sr value of less than 0.2 (Table 2). Partly dolomitized samples

Mg/Ca > 0.25) with a significant amount of terrigenous detritusSiO2 + Al2O3 > 20%) exhibit more radiogenic Sr compositions of upo 0.71015 (Table 2).

.4. North Brasília – Area 5

The studied sections in northern Brasília (Fig. 2) were describedrom the Cimento-Ciplan and Engexplo quarries (Fig. 10A) as wells from a quarry of the Contagem Mining Company (Fig. 10B). Dolo-tones and stromatolitic dolostone of the upper Paranoá Groupccur in the lower section (Fig. 10A) followed by a thin brecciaayer (0.30-m thick), marking the unconformity preceding Bam-uí Group sedimentation. In this section, the cap dolomite of theete Lagoas Formation is restricted to a thin layer of dolostone<0.5 m) placed a few centimeters above of the breccia that marks

he unconformity. Above the cap dolomite is a 80-m-thick succes-ion of purple–light gray limestone intercalated with thin-laminaelaystone with a sharp contacts that shift upward to a gray-pinkolostone. This dolostone displays an irregular and rippled upper

esearch 251 (2014) 164–180

surface followed by a transgressive surface that is subsequentlyoverlain by a 1.5-m thick shale layer that grades upward to lime-stone and clay limestone (Fig. 10B).

�13C values at the base of the 0.5-m thick breccia and dolo-stone layer in Sete Lagoas Formation range between −3.6‰ and+2.6‰, with the negative values found only in the first 3 m abovethe unconformity. Toward the upper portion of the succession,the �13C values become increasingly more positive reaching morethan 10‰ to top of the succession (Fig. 10). Seven limestonesamples with high Sr contents (>810 ppm) and low Mn/Sr ratios(<0.2) Exhibit 87Sr/86Sr values between 0.70742 and 0.70782. Themost radiogenic ratio (0.71750) recorded occurs within dolomi-tized limestone. Samples with Sr isotope ratios between 0.70815and 0.70839 or greater have a significant detrital component andmay have not preserved primary isotopic ratios; these samples alsoexhibit a high content of SiO2 and Al2O3 (Table 2).

5. Discussion

The stratigraphic and isotopic data presented in this paper sug-gest significant differences between rocks from the Paranoá andBambuí Goups. The Paranoá Group is composed mainly of siliciclas-tic rock, and its carbonate units are restricted to a few stratigraphicintervals. By contrast, the Bambuí Group includes two formationscomposed predominantly of carbonate (Sete Lagoas and Lagoa doJacaré). The Paranoá Group is, furthermore, dominated by dolo-stone, with limestone restricted to a few intervals, such as themolar tooth limestone. This unit is also characterized by abundantstromatolites, exemplified by Conophyton metula Kirichenko andothers (Dardenne, 2000). By contrast, the Bambuí Group is dom-inated by limestone, with dolostone restricted to the lower SeteLagoas Formation. Stromatolites within the Sete Lagoas Formationare also dominated by columnar and stratiform, rather than conical,morphologies.

Although glacial rocks of the Jequitaí Formation are absent inmost of the studied sections, the contact between the Paranoá andBambuí Groups is consistently marked by an unconformity overlainby a thin cap dolostone interval that contains negative �13C values(Figs. 3, 5, 8 and 10). The negative �13C values, cap dolomite, and thepresence of glacial diamictites in certain sections provide evidenceof the glacial record prior to the Sete Lagoas Formation sedimenta-tion. The thickness of the diamictite is variable and ranging between0 and 15 m in the northern Bambuí Basin. In the southern portionof the basin, diamictites of the Jequitaí Formation have thicknessesof 80 m, and can reach up to 180 m in the Cristalina region (Cukrovet al., 2005; Uhlein et al., 2011). This observation suggests a shal-lower glaciomarine environment or a glaciocontinental domain inthe northern basin, and potentially more extensive erosion relatedto post-glacial uplift.

5.1. C and O isotopes

C and Sr isotopes record the temporal variations through theMesoproterozoic and Neoproterozoic (Kah et al., 1999, 2012;Halverson et al., 2007, 2010). In general Mesoproterozoic to earlyNeoproterozoic (Tonian) samples are characterized by moderatelyvariable �13C values, that rarely exceeds outside the −4‰ to +4‰range (Gorokhov et al., 1995; Kah et al., 1999, 2012; Bartley et al.,2001, 2007; Santos et al., 2000, 2004; Semikhatov et al., 2002; Guoet al., 2013). By contrast, in the Cryogenian and Ediacaran �13Cvalues may vary between −10‰ to +10‰ (Brasier and Lindsay,1998; Santos et al., 2000; Xiao et al., 1997; Halverson et al., 2005,

2010). Particularly large isotopic excursions described in pre- andpost-glacial time, may further help refine the chronostratigraphicposition of units deposited during this time (Halverson et al., 2005;Halverson and Shields-Zhou, 2011).

C.J.S. Alvarenga et al. / Precambrian Research 251 (2014) 164–180 177

A

250

200

150

100

50

0

-50

Bam

buí

G

roup

Sete

Lago

as

Fo

rmat

ion

Para

noá

Gr.

0

5

10

15

20

25

30

B

Low

erUp

per

(m)

(m)

Limestone

Intraclast dolostone

Dolostone

Clay limestone

Siltstone

Stromatolite

Dolomite

Limestone

-10 -5 0

0.70758

0.70796

Sr/ Sr87 86

10 15 5

B

0 20001000 3000

BB

B

B

B

B

Sr (ppm)-15 -10 -5 0

δ1313 C C δ1818 O O

-10 -5 0 10 15 5 -15 -10 -5 0 0 20001000 3000

-10 -5 0 5 10 15

0.70815

0.70782

0.70760

0.707490.70742

0.708390.70754

Sr/ Sr87 86

δ1313 C C0 20001000 3000Sr (ppm)

-15 -10 -5 0

δ1818 O O

-10 -5 0 5 10 15 -15 -10 -5 0 0 2000 1000 3000

Fig. 10. Isotope stratigraphy and lithostratigraphy of the upper Paranoá Group and Sete Lagoas Formation in northern Brasília. See Table 2 for �13C, �18O, 87Sr/86Sr, andS ries anF in text

oam2cBGM

dnLvlit1Cvmrtci2st

r (ppm) data. (A) Section described from the Cimento-Ciplan and Engexplo quarormation from the Contagem Quarry. (For interpretation of the references to color

The �13C values of the Paranoá Group in the northern portionf the BSB present a narrow range of isotope values (+0.6‰nd +3.6‰) that is similar to the isotope range observed in theesoproterozoic units of the Espinhac o Group, Brazil (Santos et al.,

004). This narrow isotope range is observed, and appears to beharacteristic of late Mesoproterozoic rocks including those of theylot Supergroup in Canada (Kah et al., 1999), the Turukhanskroup of Siberia (Bartley et al., 2001), and the Atar Group ofauritania (Kah et al., 2012).In sharp contrast to Paranoá Group strata, the Bambuí Group

ata preserve C-isotope values between −5‰ and +11‰. Stronglyegative �13C values always occur along the first 4 m of the Seteagoas Formation, which can be diagnosed as a cap dolomite inter-al, but can extend up to 75 m upsection as in the JK and Bezerraocalities (Fig. 5). These negative values are consistent with thosenterpreted as a primary marine signal characteristic of the Neopro-erozoic post-glacial oceans (Kaufman et al., 1997; Hoffman et al.,998; Hoffman and Schrag, 2002; Halverson et al., 2005). Negativearbon isotope values in the lower Sete Lagoas Formation rise toalues of +4.9‰ in the upper portion of the lower Sete Lagoas For-ation (Martins and Lemos, 2007). However, the �13C values can

each +5.6‰ in other localities (Alvarenga et al., 2012). Strata ofhe upper Sete Lagoas Formation is marked by an abrupt lithologi-al contact between dolostone and limestone in Area 5 (Fig. 2) and

n other regions of the Bambuí Group (Dardenne, 1978a; Santana,011; Tonietto, 2010; Lima, 2011; Alvarenga et al., 2012). Thisharp stratigraphic contact coincides with an abrupt increase ofhe �13C values, typically with values above +6.0‰ and reaching up

d (B) section showing the contact between the lower and the upper Sete Lagoas near the reference citation, the reader is referred to the web version of this article.)

to +10.9‰ as reported in this paper, and +14.5‰ in other reports(Santana, 2011).

In contrast to the C-isotopes, the �18O values of the ParanoáGroup present a large variation range, with the lowest values asso-ciated with the limestone and molar tooth structures (−5‰) and thehighest values associated with the dolostone together with stroma-tolites and algal mats (Fig. 11). The �18O values between 0‰ and−4‰ can be interpreted as related to the primary seawater records(Knauth and Kennedy, 2009).

Strongly negative O-isotope values associated with Cryogenianglaciation have also been interpreted to result from meteoric orburial diagenesis (Knauth and Kennedy, 2009). Oxygen isotopevalues for the Paranoá and Bambuí groups range from −12.5‰to −1.5‰, with the majority of samples falling within the rangeof −8‰ to −3‰ (Fig. 11). O-isotope compositions reflect distinctfacies intervals within the stratigraphic succession, with generallyopen marine carbonate facies of both the Paranoá and Bam-buí groups, recording O-isotope values near −7 permil (Fig. 11).These values are consistent with O-isotope values from a widerange of open marine carbonate facies in the Proterozoic (Kah,2000; Kah et al., 2012). Two exceptions are the dolomitic faciesof the Paranoá Group, with O-isotope values ranging from −5‰to −2‰, and shallow-marine (oolitic, etc.) facies of the upperSete Lagoas Formation, with O-isotope values near −5‰. Slightly

heavier O-isotope values, such as these, are consistent with thatwell-preserved restricted to evaporitic marine facies elsewhere(Kah, 2000; Kah et al., 1999, 2012). Thus O-isotope compositionsrecorded here are consistent with marine values of the Proterozoic

178 C.J.S. Alvarenga et al. / Precambrian Research 251 (2014) 164–180

-10

-5

0

5

10

15

-15 -10 -5 0

Upper Paranoá GroupLimestone

Molar tooth limestone

Clay limestone

Dolomite

Bambuí Group

Dolomite

Clay limestone

limestone

limestone

Cap dolomite

δ18O (VPDB)

δ13 C

(VP

DB)

Upper Sete Lagoas Formation

Lower Sete Lagoas Formation

Clay limestone

Fig. 11. C vs. O isotope cross-plot for carbonates from the Paranoá and Bambuí Groups: (a) dolomites from the upper Paranoá Group exhibit the highest �18O values and canb nd low �18O values, that can be interpreted as result from meteoric or burial diagenesis,(

ar

5

t1S0swb2a02NS(zom(

cceHrMDtc0itpD

Fig. 12. Cross-plots of 87Sr/86Sr vs. Sr(ppm) content for carbonates from the Para-noá and Bambuí Groups. Dolostone samples with low Sr content concentration(<300 ppm) have high 87Sr/86Sr ratios, and are related to radiogenic Sr or post-

e related to a primary seawater record, (b) cap carbonates with low �13C values ac) limestones with high C-isotope values and slightly heavier O-isotope values.

nd do not support a diagenetic origin for the preserved C-isotopeecord.

.2. Sr isotope

Low 87Sr/86Sr ratios < 0.7065 has been reported in late Mesopro-erozoic strata in southern Urals and Siberia, Russia (Gorokhov et al.,995; Bartley et al., 2001, 2007; Kuznetsov et al., 2006) and in Bylotupergroup, Canada (Kah et al., 2001). 87Sr/86Sr ratios between.7055 and 0.7070 are common in the Tonian and Early Cryogenianuccessions that precede the first Cryogenian glaciation (Sturtian),hereas 87Sr/86Sr ratios that remain below 0.7075 are common

efore the Late Cryogenian glaciation (Marinoan) (Halverson et al.,007, 2010; Sawaki et al., 2010). The 87Sr/86Sr data in carbonatesfter the Late Cryogenian glacial age (Marinoan) increase from.7072 to 0.7085 in the Ediacaran Period (Melezhick et al., 2001,009; Halverson et al., 2007). During the Mesoproterozoic andeoproterozoic Eras, carbonates from the Turukhansk region iniberia present 87Sr/86Sr values that decrease from 0.7060 to 0.7055Bartley et al., 2001). Similar data can be found in the Mesoprotero-oic (approximately 1.2 Ga) rocks from the Society Cliff Formationf Canada, for which the 87Sr/86Sr ratios decrease from approxi-ately 0.70600 to 0.70550 in the lower portion of this formation

Kah et al., 2001).The chemical composition should be included in the pro-

ess of identifying whether post-sedimentary processes may havehanged the primary 87Sr/86Sr ratios of the limestone (Fairchildt al., 2000; James et al., 2001; Alvarenga et al., 2007, 2008;alverson et al., 2007, 2010; Shields, 2007). The high 87Sr/86Sr

atio in dolomite with low Sr concentrations (<400 ppm) and highn/Sr ratios (>0.45) has been related to post-depositional effects.olomite is the dominant rock in the Paranoá Group, which reduces

he success of the Sr isotope. Nevertheless, limestone with a Sr con-entration of grater than 400 ppm Exhibits 87Sr/86Sr values from.70626 to 0.70683 in the JK section and from 0.70562 to 0.70594

n the molar tooth structures from the Serra de São Domingos sec-ion. These data are interpreted as primary values of the seawaterresented during the Mesoproterozoic sedimentation (Fig. 12). Capolomite samples with high Mn/Sr ratios, low Sr concentrations

depositional effects. Limestone with a Sr concentration of grater than 400 ppmExhibits 87Sr/86Sr ratios from 0.7056 to 0.7068 in the upper Paranoá Group. In theBambuí Group (Sete Lagoas Formation) 87Sr/86Sr ratios range from 0.7074 to 0.7080.

(<300 ppm), and a terrigenous content of more than 15% are relatedto radiogenic Sr or post-depositional effects (Fig. 12). In the SeteLagoas Formation 87Sr/86Sr ratios from 0.7074 to 0.7080 show avery clear range of least-radiogenic values (Fig. 12). These ratios

can be interpreted as a marine Sr isotope record related to theEarly Ediacaran Period (Halverson et al., 2007, 2010), suggestingsedimentation after the late Cryogenian glaciation, as previouslyproposed by Caxito et al. (2012).

brian R

6

BottsSta

i(St0

uNtKtLMm

orh

A

d3mrflvttfLt

R

A

A

A

A

A

A

B

B

C.J.S. Alvarenga et al. / Precam

. Conclusion

The unconformity between the carbonates of the Paranoá andambuí groups is marked by sedimentary breccia with a thicknessf up to 1.5 m or glacial diamictites with a thickness of up to 15 m;hese layers separate two domains of distinct isotopic patterns athe studied locations. Despite the absence of glacial rocks, threeections with negative �13C values in the first few meters of theete Lagoas Formation provide evidence of a glacial trace, similaro the aragonite pseudomorphs overlying the unconformity brecciand the coeval cap carbonates elsewhere.

The �13C values for the Bambuí Group range from −5‰ to +11‰,n contrast with the narrow range of the Paranoá Group limestone+0.6‰ to +3.6‰). These isotopic differences are also noted for ther isotope, with low values ranging between 0.7056 and 0.7068 forhe Paranoá Group and high values ranging between 0.7074 and.7080 for the Bambuí Group.

The low ratios of 87Sr/86Sr and the constant positive �13C val-es suggest an age between the Late Mesoproterozoic and Earlyeoproterozoic for the Paranoá Group, which is consistent with

he previous age interpretation based on the Conophyton metulairichenko stromatolite. When compared with published Neopro-

erozoic 87Sr/86Sr marine record, the Sr isotope data for the Seteagoas Formation suggest a sedimentation age linked to the post-arinoan glaciation. Similar age can be suggested based on theore positive �13C that may reach more than 10‰.The unconformity between these two stratigraphic successions

f different ages may be marked by the absence of Early Cryogenianocks because either they were eroded or not deposited due to theigh paleo-topography along the northwester edge of the basin.

cknowledgments

Research for this study was supported by Conselho Nacionale Desenvolvimento Científico e Tecnológico (CNPq, grant no.06627/2011-6, 476484/2007-3). We thank M.A.Dardenne (inemoria) for the enthusiastic discussions for years. Valderez Fer-

eira e Alcides N. Sial are thanked for determinations by X-Rayuorescence and the stable isotope data measured at LABISE Uni-ersidade Federal de Pernambuco, Brazil. We also would like tohank Jessica Bogossian and André Cadamuro for the field assis-ance as well as Cimento Tocantins and Wiliam Marcelino Coelhoor access to company drillcore. Finally, we would like to thankinda Kah and an anonymous reviewer for helpful comments onhe manuscript.

eferences

lkmin, F.F., Marshak, S., Fonseca, M.A., 2001. Assembling West Gondwana in theNeoproterozoic: clues from the São Francisco craton region, Brazil. Geology 29,319–322.

lmeida, F.F., Hasui, Y., De Brito Neves, B.B., Fuck, R.A., 1981. Brazilian structuralprovinces: an introduction. Earth Sci. Rev. 17, 1–29.

lvarenga, C.J.S., Dardenne, M.A., Vieira, L.C., Martinho, C.T., Gumarães, E.M., Santos,R.V., Santana, R.O., 2012. Stratigraphy of Western edge of the São Francisco Basin.Bol. Geociênc. Petrob. 20, 145–164.

lvarenga, C.J.S., Dardenne, M.A., 1978. Geologia dos grupos Bambuí e Paranoá, naSerra de São Domingos, MG. In: Congresso Brasileiro de Geologia, 30, Recife.Anais. . . Recife: Sociedade Brasileira de Geologia, vol. 2, pp. 546–556.

lvarenga, C.J.S., Della Giustina, M.E.S., Silva, N.G.C., Santos, R.V., Gioia, S.M.C.L.,Guimarães, E.M., Dardenne, M.A., Sial, A.N., Ferreira, V.P., 2007. Variac ões dos isó-topos de C e Sr em carbonato pré e pós-glaciac ão Jequitaí (Esturtiano) na regiãode Bezerra-Formosa, Goiás. Rev. Brasil. Geociênc. 37 (suplemento), 147–155.

lvarenga, C.J.S., Dardenne, M.A., Santos, R.V., Brod, E.R., Gioia, S.M.C.L., Sial, A.N.,Dantas, E.L., Ferreira, V.P., 2008. Isotope stratigraphy of Neoproterozoic capcarbonates in the Araras Group, Brazil. Gondwana Res. 13, 469–479.

abinski, M., Vieira, L.C., Trindade, R.I.F., 2007. Direct dating of the Sete Lagoas

cap carbonate (Bambuí Group, Brazil) and implications for the Neoproterozoicglacial events. Terra Nova 19, 401–406.

artley, J.K., Semikhatov, M.A., Kaufman, A.J., Knoll, A.H., Pope, M.C., Jacobsen, S.B.,2001. Global events across the Mesoproterozoic-Neoproterozoic boundary: Cand Sr isotopic evidence from Siberia. Precambrian Res. 111, 165–202.

esearch 251 (2014) 164–180 179

Bartley, J.K., Kah, L.C., Williams, J.L., Stagner, A.F., 2007. Carbon isotope chemostratig-raphy of the Middle Riphean type section (Avzyan Formation, Southern Urals,):signal recovery in a fold-and-thrust belt. Chem. Geol. 237, 211–232.

Branner, J.C., 1919. Outlines of the geology of Brazil to accompany the geologicalmap of Brazil. Geol. Soc. Am. Bull. 30, 189–338.

Brasier, M.D., Lindsay, J.F., 1998. A billion years of environmental stability and emer-gence of eukaryotes: new data from northern Australlia. Geology 26, 555–558.

Braun, O.P.G., 1968. Contribuic ão a estratigrafia do Grupo Bambuí. In: CongressoBrasileiro de Geologia, 22, Belo Horizonte, Anais, Sociedade Brasileira de Geolo-gia, pp. 155–166.

Caxito, F.A., Halverson, G.P., Uhlein, A., Ross, S., Dias, T.G., Uhlein, G.J., 2012. Marinoanglaciation in east central Brazil. Precambrian Res. 200–203, 38–58.

Chiavegatto, J.R.S., (Thesis) 1992. Análise estratigráficadas sequencias tempestíticasda Formacão Três Marias (Proterozóico Superior), na porc ão meridional da Baciado São Francisco. Universidade Federal de Ouro Preto, pp. 196.

Cloud, P.E., Dardenne, M.A., 1973. Proterozoic age of Bambuí Group in Brazil. Geol.Soc. Am. Bull. 85, 1673–1676.

Costa, M.T., Branco, J.J.R., 1961. Roteiro da excursão Belo Horizonte-Brasília. In:Escola de Engenharia-UMG, Instituto de Pesquisas Radioativas, Publicac ão no15, Belo Horizonte, pp. 9–62.

Cukrov, N., Alvarenga, C.J.S., Uhlein, A., 2005. Litofácies da glaciac ão neoproterozóicanas porc ões sul do Cráton do São Francisco: exemplos de Jequitaí, MG eCristalina, GO. Rev. Brasil. Geociênc. 35, 69–76.

Dardenne, M.A., 1978a. Síntese sobre a estratigrafia do Grupo Bambuí no BrasilCentral. In: Congresso Brasileiro de Geologia, 30, Recife. Anais. . . São Paulo:Sociedade Brasileira de Geologia, v. 2, pp. 597–610.

Dardenne, M.A., 1978b. Zonac ão tectônica na borda ocidental do Craton SãoFrancisco. In: Congresso Brasileiro de Geologia, 30, Recife. Anais. . . São Paulo:Sociedade Brasileira de Geologia, v. 1, pp. 299–308.

Dardenne, M.A., (Thesis) 1979. Les minéralizations de plumb, zinc, flúor Du Protéro-zoïque Supérieur dans Le Brésil Central. Université Paris VI, pp. 251.

Dardenne, M.A., 2000. The Brasília fold belt. In: Cordani, U.G., Milani, E.J., ThomazFilho, A., Campos, D.A. (Eds.), Tectonic Evolution of South America. Rio de Janeiro:31st International Geological Congress. , pp. 231–263.

Dardenne, M.A., Faria, A., 1985. Estratigrafia do Grupo Paranoá na região de AltoParaíso-GO. In: Simposio de Geologia do Centro-Oeste, 2, Ata. Goiânia, SociedadeBrasileira de Geologia, pp. 65–71.

Dardenne, M.A., Faria, A., Andrade, G.F., 1976. Occurrence de Stromatolites Colum-naires dans Le Group Bambuí. Anais da Academia Brasilieira de Ciências, Goiás,Brésil, pp. 555–566.

Fairchild, T.R., Schopf, J.W., Shen-Miller, J., Guimarães, E.M., Edwards, M.D., Lag-stein, A., Li, X., Pabst, M., Melo-Filho, L.S., 1996. Recent discoveries of Protrozoicmicrofossils in south-central Brazil. Precambrian Res. 80, 125–152.

Fairchild, I.J., Spiro, B., Herrington, P.M., Song, T., 2000. Controls on Sr and C isotopecompositions of Neoproterozoic Sr-rich limestones of E Greenland and N China.In: Grotzinger, J.P., James, N.P. (Eds.), Carbonate Sedimentation and Diagenesis inthe Evolution Precambrian World. SEPM, Special Publications 67. , pp. 297–313.

Faria, A., 1985. Geologia do domo de Cristalina, Goiás. Rev. Brasil. Geociênc. 15,231–240.

Faria, A., (Thesis) 1995. Estratigrafia e sistemas deposicionais do Grupo Paranoá nasáreas de Cristalina, Distrito Federal e São João da Alianc a-Alto Paraíso de Goiás.Universidade de Brasília, Brazil, pp. 199.

Furniss, G., Rittel, J.F., Winston, D., 1998. Gas bubble and expansion crack originof molar-tooth calcite structures in the Middle Proterozoic Belt Supergroup,western Montana. J. Sediment. Res. 68, 104–114.

Gorokhov, I.M., Semikhatov, M.A., Baskakov, A.V., Kutyavin, E.P., Melnikov, N.N.,Sochava, A.V., Turchenko, T.L., 1995. Sr isotopic composition in Riphean, Vendianand lower Cambrian carbonates from Siberia. Stratigr. Geol. Correl. 3, 1–28.

Guimarães, E.M., (Thesis) 1997. Estudos de proveniência e diagênese, com ênfasena caracterizac ão de filossilicatos dos grupos Paranoá e Bambuí, na região deBezerra-Cabeceiras, GO. Brasília. Universidade de Brasília, Brazil, pp. 270.

Guo, H., Yuansheng, D., Kah, L.C., Huang, J., Hu, C., Huang, H., Wenchao, Y., 2013.Isotopic composition of organic and inorganic carbon from the MesoproterozoicJixian Group, North China: implications for biological and oceanic evolution.Precambrian Res. 224, 169–183.

Halverson, G.P., Dudás, F.Ö., Maloof, A.C., Bowring, S.A., 2007. Evolution of the87Sr/86Sr composition of Neoproterozoic seawater. Palaeogeogr. Palaeoclimatol.Plaeoecol. 256, 103–129.

Halverson, G.P., Hoffman, P., Schrag, D., Maloof, A.C., Rice, A., 2005. Towards aNeoproterozoic composite carbon isotope Record. Geol. Soc. Am. Bull. 117,1181–1207.

Halverson, G.P., Wade, B.P., Hurtgen, M.T., Barovich, K.M., 2010. Neoproterozoicchemostratigraphy. Precambrian Res. 182, 337–350.

Halverson, G.P., Shields-Zhou, G., 2011. Chemostratigraphy and the Neoproterozoicglaciations. Geol. Soc. London, Memoirs 36, 51–66.

Hoffman, P.F., 2011. Strange bedfellows: glacial diamictite and cap carbonate fromthe Marinoan (635 Ma) glaciation in Namibia. Sedimentology 58, 57–119.

Hoffman, P.F., Kaufman, A.J., Halverson, G.P., Schrag, D.P., 1998. A Neoproterozoicsnowball Earth. Science 281, 1342–1346.

Hoffman, P.F., Schrag, D.P., 2002. The Snowball Earth hypothesis: testing the limitsof global change. Terra Nova 14, 129–155.

Isotta, C.A.L., Rocha Campos, A.C., Yoshida, R., 1969. Striated pavement of the upperPrecambrian glaciations in Brazil. Nature 222, 466–468.

James, N.P., Narbonne, G.M., Kyser, T.K., 2001. Late Neoproterozoic cap carbonate:Mackenzie Mountains, northwestern Canadá: precipitation and global melt-down. Can. J. Earth Sci. 36, 1229–1262.

1 brian R

K

K

K

K

K

K

K

K

K

L

L

M

M

M

M

M

M

M

M

80 C.J.S. Alvarenga et al. / Precam

ah, L.C., 2000. Depositional �18O signatures in Proterozoic dolostones: constraintson seawater chemistry and early diagenesis. In: Grotzinger, J.P., James, N.P.(Eds.), Carbonate Sedimentation and Diagenesis in the Evolution PrecambrianWorld. SEPM, Special Publications 67, pp. 345–360.

ah, L.C., Sherman, A.G., Narbonne, G.M., Knoll, A.H., Kaufman, A.J., 1999. �13C stratig-raphy of the Proterozoic Bylot Supergroup, Baffin Island, Canadá: implicationsfor regional lithostratigraphic correlations. Can. J. Earth Sci. 36, 313–332.

ah, L.C., Lyons, T.W., Chesley, J.T., 2001. Geochemistry of a 1.2 Ga carbonate-evaporite succession, northern Baffin and Bylot Island: implications forMesoproterozoic marine evolution. Precambrian Res. 111, 203–234.

ah, L.C., Bartley, J.K., Teal, D.A., 2012. Chemostratigraphy of the Late Mesoprotero-zoic Atar Group, Taoudeni Basin, Mauritania: muted isotopic variability, faciescorrelations, and global isotopic trends. Precambrian Res. 200–203, 82–103.

arfunkel, J., Hope, A., 1988. Late Proterozoic glaciation in Central Eastern Brazil:synthesis amd model. Palaeogeogr. Palaeoclimatol. Plaeoecol. 65, 1–21.

aufman, A.J., Knoll, A.H., Narbonne, G.M., 1997. Isotopes, ice age and terminal Pro-terozoic earth History. Proc. Natl. Acad. Sci. U. S. A. 94, 6600–6605.

nauth, L.P., Kennedy, M., 2009. The late Precambrian greening of the Earth. Nature460, 728–732.

uchenbecker, M., (Thesis) 2011. Quimioestratigrafia e proveniência sedimentarda porc ão basal do Grupo Bambuí em Arcos, MG. IGC-Universidade Federal deMinas Gerais, Belo Horizonte, Brazil, pp. 91.

uznetsov, A.B., Semikhatov, M.A., Maslov, A.V., Gorokhov, I.M., Prasolov, E.M., Kru-penin, M.T., Kislova, I.V., 2006. New Data on Sr- and C-isotope chemostratigraphyof the upper riphean type section (Southern Urals). Stratigr. Geol. Correl. 14,602–628.

ima, O.N.B., (Thesis) 2011. Estratigrafia isotópica e evoluc ão sedimentar do GrupoBambuí na borda ocidental do Cráton do São Francisco: implicac ão tectônica epaleo-ambiental. IG-Universidade de Brasília, Brasília, Brazil, pp. 114.

opes, O.F., 1981. Evoluc ão paleogeográfica e estrutural da porc ão centralda BaciaBambuí, no norte do Estado de Minas Gerais. Rev. Brasil. Geociênc. 11, 115–127.

artins, M., (Thesis) 1999. Análise estratigráficadas sequencias mesoproterozóicas(borda oeste) e neoproterozóicas da Bacia do São Francisco. Universidade Federaldo Rio Grande do Sul, Porto Alegre, Brazil, pp. 214.

artins, M., Lemos, V.B., 2007. Análise estratigráfica das seqüências neoproterozói-cas da Bacia do São Francisco. Rev. Brasil. Geociênc. 37 (suplemento), 156–167.

atteini, M., Dantas, E.L., Pimentel, M.M., Alvarenga, C.J.S., Dardenne, M.A., 2012.U–Pb and Hf isotope study on detrital zircons from the Paranoá Group, BrasíliaBelt, Brazil: constraints on depositional age at Mesoproterozoic-Neoproterozoictransition and tectono-magmatic events in the San Francisco craton. Precam-brian Res. 206–207, 168–181.

elezhick, V.A., Gorokhov, I.M., Kuznetsov, A.B., Fallick, A.E., 2001. Chemostratig-raphy of Neoproterozoic carbonates: implications for ‘blind dating’. Terra Nova13, 1–11.

elezhick, V.A., Pokrovsky, B.G., Fallick, A.E., Kuznetsov, A.B., Bujakaite, M.I., 2009.Constraints on the 87Sr/86Sr of Late Ediacaran seawater: insights from high-Srlimestones. J. Geol. Soc. London 166, 183–191.

isi, A., Kaufman, A.J., Azmy, K., Dardenne, M.A., Sial, A.N., Oliveira, T.F., 2011. Neo-proterozoic successions of the São Francisco Craton, Brazil: the Bambuí, Una,Vazante and Vaza Barris/Miaba groups and their glaciogenic deposits. Geol. Soc.London, Memoirs 36, 509–522.

isi, A., Kaufman, A.J., Veizer, J., Powis, K., Azmy, K., Boggiani, P.C., Gaucher, C.,

Teixeira, J.B.G., Sanches, A.L., Iyer, S.S.S., 2007. Chemostratigraphy correlationof Neoproterozoic successions in South America. Chem. Geol. 237, 143–167.

isi, A., Veizer, J., 1998. Neoproterozoic carbonate sequence of the Una Group,Irecê Basin, Brazil: chemostratigraphy, age and correlation. Precambrian Res.89, 87–100.

esearch 251 (2014) 164–180

Pimentel, M.M., Dardenne, M.A., Fuck, R.A., Viana, M.G., Junges, S.L., Fischel, D.P., Seer,H.J., Dantan, E.L., 2001. Nd isotopes and the provenance of detrital sediments ofthe Neoproterozoic Brasília Belt, central Brazil. J. S. Am. Earth Sci. 14, 571–585.

Pimentel, M.M., Fuck, R.A., 1992. Neoproterozoic crustal accretion in central Brazil.Geology 20, 375–379.

Pimentel, M.M., Rodrigues, J.B., Della Giustina, M.E.S., Junges, S., Matteini, M., Arm-strong, R., 2011. The tectonic evolution of the Neoproterozoic Brasília Belt,central Brazil, based on SHRIMP and LA-ICPMS U–Pb sedimentary provenancedata: a review. J. S. Am. Earth Sci. 31, 345–357.

Pollock, M.D., Kah, L.C., Bartley, J.K., 2006. Morphology of molar-tooth structure inPrecambrian carbonates: influence of substrate rheology and implications forgenesis. J. Sediment. Res. 76, 310–323.

Rocha-Campos, A.C., Young, G.M., Santos, P.R., 1996. Re-examination of a stri-ated pavement near Jequitaí, MG: implications for proterozoic stratigraphy andglacial geology. An. Acad. Brasil. Ciênc. 68, 593.

Rodrigues, J.B., (Thesis) 2008. Proveniência de sedimentos dos grupos Canastra, Ibiá,Vazante e Bambuí–Um estudo de zircões detríticos e idades modelo SM-Nd.Instituto de Geociências, Universidade de Brasília, pp. 141.

Santana, R.O., (Thesis) 2011. Estratigrafia, geoquímica e isótopos de C, O e Sr do GrupoBambuí a leste da Falha de São Domingos. Brasília. Universidade de Brasília,Brazil, pp. 93.

Santos, R.V., Alvarenga, C.J.S., Babinski, M., Ramos, M.L., Cukrov, N., Fonseca, M.A.,Sial, A.N., Dardenne, M.A., 2004. The Mesoproterozoic-Neoproterozoic transitionin the southeast portion of the São Francisco Craton, Brazil. J. S. Am. Earth Sci.17, 27–39.

Santos, R.V., Alvarenga, C.J.S., Dardenne, M.A., Sial, A.N., Ferreira, V.P., 2000. Car-bon and oxygen isotope profiles across Meso-Neoproterozoic limestones fromcentral Brazil: Bambuí and Paranoá groups. Precambrian Res. 104, 107–122.

Sawaki, Y., Kawai, T., Shibuya, T., Tahata, M., Omori, S., Komiya, T., Yoshida, N.,Hirata, T., Ohno, T., Windley, B., Maruyama, S., 2010. 87Sr/86Sr chemostratigra-phy of Neoproterozoic Dalradian carbonates below the Port Askaig GlaciogenicFormation, Scotland. Precambrian Res. 179, 150–164.

Semikhatov, M., Kuznetsov, A., Gorokhov, I., Konstantinova, G., Melnikov, N., Pod-kovyrov, V., Kutyavin, E., 2002. Low 87Sr/86Sr ratios in seawater of the Grenvilleand post-Grenville time: determining factors. Stratigr. Geol. Correl. 10, 1–41.

Shields, G.A., 2007. A normalised seawater strontium isotope curve: possible impli-cations for Neoproterozoic-Cambrian weathering rates and further oxygenationof the Earth. eEarth 2, 35–42.

Tonietto, S.N., (Thesis) 2010. Diagênese e hidrotermalismo em rochas carbonáticasproterozóicas: Grupos Bambuí e Vazante, Bacia do São Francisco. Universidadede Brasília, Brazil, pp. 167.

Uhlein, A., Trompette, R., Alvarenga, C.J.S., 1999. Neoproterozoic glacial and grav-itational sedimentation on a continental rifted margin: the Jequitaí-Macaúbassequence, Minas Gerais, Brazil. J. S. Am. Earth Sci. 12, 435–451.

Uhlein, A., Alvarenga, C.J.S., Dardenne, M., Trompette, R.R., 2011. The glacio-genic Jequitaí Formation, southeastern Brazil. Geol. Soc., London, Memoirs 36,541–546.

Vieira, L.C., Almeida, R.P., Trindade, R.I.F., Nogueira, A.C.R., Janikian, L.A., 2007.Formac ão Sete Lagoas em sua área-tipo: fácies, estratigrafia e sistemas deposi-cionais. Rev. Brasil. Geociênc. 37 (suplemento), 168–181.

Walde, D.H.D., 1978. Desenvolvimento faciológico do Pré-Cambriano entre a SerraMineira e a Serra do Cabral, região sudeste da Serra do Espinhac o, Minas Gerais.

In: Congresso Brasileiro de Geologia, 30, Recife. Anais. . . Recife: SociedadeBrasileira de Geologia, v. 2, pp. 711–724.

Xiao, S., Knoll, A.H., Kaufman, A.J., Yin, L., Zhang, Y., 1997. Neoproterozoic fossilsin Mesoproterozoic rocks? Chemostratigraphic resolution of a biostratigraphicconundrum from the North China Platform. Precambrian Res. 84, 197–220.


Recommended