+ All Categories
Home > Documents > Metabolic networks · Humboldt-Universität zu Berlin – Theoretische Biophysik Metabolic networks...

Metabolic networks · Humboldt-Universität zu Berlin – Theoretische Biophysik Metabolic networks...

Date post: 24-Oct-2020
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
46
Humboldt-Universität zu Berlin – Theoretische Biophysik Metabolic networks Wolfram Liebermeister ASIM-Workshop Trends in Computational Science and Engineering: Foundations of Modeling and Simulation
Transcript
Page 1: Metabolic networks · Humboldt-Universität zu Berlin – Theoretische Biophysik Metabolic networks Wolfram Liebermeister ASIM-Workshop Trends in Computational Science and Engineering:

Humboldt-Universität zu Berlin – Theoretische Biophysik

Metabolic networks

Wolfram Liebermeister

ASIM-Workshop Trends in Computational Science and Engineering: Foundations of Modeling and Simulation

Page 2: Metabolic networks · Humboldt-Universität zu Berlin – Theoretische Biophysik Metabolic networks Wolfram Liebermeister ASIM-Workshop Trends in Computational Science and Engineering:

How can a living being emerge just from sugar, water, and a couple of salts?

Glucose 5 g/l Na

2HPO

4 6 g/l

KH2PO

4 3 g/l

NH4Cl 1 g/l

NaCl 0.5 g/l MgSO

4 0.12 g/l

CaCl2 0.01 g/l

Minimal Medium for E. coli

Page 3: Metabolic networks · Humboldt-Universität zu Berlin – Theoretische Biophysik Metabolic networks Wolfram Liebermeister ASIM-Workshop Trends in Computational Science and Engineering:

L'essentiel est invisible pour les yeux.

How can a living being emerge just from sugar, water, and a couple of salts?

Glucose 5 g/l Na

2HPO

4 6 g/l

KH2PO

4 3 g/l

NH4Cl 1 g/l

NaCl 0.5 g/l MgSO

4 0.12 g/l

CaCl2 0.01 g/l

Minimal Medium for E. coli

Page 4: Metabolic networks · Humboldt-Universität zu Berlin – Theoretische Biophysik Metabolic networks Wolfram Liebermeister ASIM-Workshop Trends in Computational Science and Engineering:
Page 5: Metabolic networks · Humboldt-Universität zu Berlin – Theoretische Biophysik Metabolic networks Wolfram Liebermeister ASIM-Workshop Trends in Computational Science and Engineering:

Metabolic networks produce materials and energy for the cell

Nutrients Small molecules

BIOMASS

Waste products

Macromolecules

catabolismanabolism

Glucose 5 g/l Na

2HPO

4 6 g/l

KH2PO

4 3 g/l

NH4Cl 1 g/l

NaCl 0.5 g/l MgSO

4 0.12 g/l

CaCl2 0.01 g/l

Minimal Medium for E. coli

Page 6: Metabolic networks · Humboldt-Universität zu Berlin – Theoretische Biophysik Metabolic networks Wolfram Liebermeister ASIM-Workshop Trends in Computational Science and Engineering:

Overview

What are metabolic networks and how do they work ?

How can we use models to understand their dynamics ?

How can we predict fluxes in large networks ?

How do metabolic systems respond to perturbations ?

What standards, resources, and software are available ?

Page 7: Metabolic networks · Humboldt-Universität zu Berlin – Theoretische Biophysik Metabolic networks Wolfram Liebermeister ASIM-Workshop Trends in Computational Science and Engineering:

Metabolic networks

Page 8: Metabolic networks · Humboldt-Universität zu Berlin – Theoretische Biophysik Metabolic networks Wolfram Liebermeister ASIM-Workshop Trends in Computational Science and Engineering:

Genome-scale network models of E. coli metabolism

http://www.genome.jp/kegg/pathway/map/map01100.html

Page 9: Metabolic networks · Humboldt-Universität zu Berlin – Theoretische Biophysik Metabolic networks Wolfram Liebermeister ASIM-Workshop Trends in Computational Science and Engineering:

Biochemical pathways wall chart

Threonine synthesis pathway

Page 10: Metabolic networks · Humboldt-Universität zu Berlin – Theoretische Biophysik Metabolic networks Wolfram Liebermeister ASIM-Workshop Trends in Computational Science and Engineering:

Aspartate

Aspartyl-P

Asp semiald

Homoserine

P-Homoserine

Threonine

Metabolites Reactions

ATPADP

NADPH

NADP+,P

P

ATPADP

NADPH

NADP+

Metabolic networks have several levels of regulation

Page 11: Metabolic networks · Humboldt-Universität zu Berlin – Theoretische Biophysik Metabolic networks Wolfram Liebermeister ASIM-Workshop Trends in Computational Science and Engineering:

Aspartate

Aspartyl-P

Asp semiald

Homoserine

P-Homoserine

Threonine

1.2.1.11

2.7.2.4

1.1.1.3

2.7.1.39

4.2.3.1

Metabolites Reactions

ATP

ADP

NADPH

NADP+,P

P

ATP

ADP

NADPH

NADP+

Enzymes

Metabolic networks have several levels of regulation

Page 12: Metabolic networks · Humboldt-Universität zu Berlin – Theoretische Biophysik Metabolic networks Wolfram Liebermeister ASIM-Workshop Trends in Computational Science and Engineering:

Aspartate

Aspartyl-P

Asp semiald

Homoserine

P-Homoserine

Threonine

1.2.1.11

2.7.2.4

1.1.1.3

2.7.1.39

4.2.3.1

Lysine

Metabolites Reactions Metabolicregulation

ATP

ADP

NADPH

NADP+,P

P

ATP

ADP

NADPH

NADP+

Enzymes

Metabolic networks have several levels of regulation

Page 13: Metabolic networks · Humboldt-Universität zu Berlin – Theoretische Biophysik Metabolic networks Wolfram Liebermeister ASIM-Workshop Trends in Computational Science and Engineering:

Aspartate

Aspartyl-P

Asp semiald

Homoserine

P-Homoserine

Threonine

1.2.1.11

2.7.2.4

1.1.1.3

2.7.1.39

4.2.3.1

thrA

thrB

thrC

asd

Lysine

Metabolites Reactions Metabolicregulation

Transcriptional regulation

ATP

ADP

NADPH

NADP+,P

P

ATP

ADP

NADPH

NADP+

Enzymes

Metabolic networks have several levels of regulation

Page 14: Metabolic networks · Humboldt-Universität zu Berlin – Theoretische Biophysik Metabolic networks Wolfram Liebermeister ASIM-Workshop Trends in Computational Science and Engineering:

Aspartate

Aspartyl-P

Asp semiald

Homoserine

P-Homoserine

Threonine

1.2.1.11

2.7.2.4

1.1.1.3

2.7.1.39

4.2.3.1

thrA

thrB

thrC

asd

Transcriptionfactors

Lysine

Metabolites Reactions Metabolicregulation

Transcriptional regulation

ATP

ADP

NADPH

NADP+,P

P

ATP

ADP

NADPH

NADP+

Enzymes

Metabolic networks have several levels of regulation

Page 15: Metabolic networks · Humboldt-Universität zu Berlin – Theoretische Biophysik Metabolic networks Wolfram Liebermeister ASIM-Workshop Trends in Computational Science and Engineering:

Multi-omics data show metabolism as a dynamic system

Measured uptake rates and concentrationsin B. subtilis central metabolismafter adding malate to a glucose medium.

Page 16: Metabolic networks · Humboldt-Universität zu Berlin – Theoretische Biophysik Metabolic networks Wolfram Liebermeister ASIM-Workshop Trends in Computational Science and Engineering:

Kinetic models

Page 17: Metabolic networks · Humboldt-Universität zu Berlin – Theoretische Biophysik Metabolic networks Wolfram Liebermeister ASIM-Workshop Trends in Computational Science and Engineering:

How do metabolic networks work?

● What compounds can the cell produce?

● On which nutrient media can the cell survive?

● What do the metabolic fluxes look like ?

● How do they respond to varying conditions?

● How is all this regulated?

● What conclusions can we draw from limited data?

Page 18: Metabolic networks · Humboldt-Universität zu Berlin – Theoretische Biophysik Metabolic networks Wolfram Liebermeister ASIM-Workshop Trends in Computational Science and Engineering:

0vNS =⋅=

dt

d

321 vvv =+

Mod

el S

ize

Dyn

am

ics

Topological Analysis Flux Balance Analysis Kinetic modeling

Sv1

v3

v2

( )pS,vNS ⋅=

dt

d

S0 S2S1

S

t

Modelling approaches for different complexity

Page 19: Metabolic networks · Humboldt-Universität zu Berlin – Theoretische Biophysik Metabolic networks Wolfram Liebermeister ASIM-Workshop Trends in Computational Science and Engineering:

A CHomoserine ThreoninePhospho-

homoserine

B

Kinetic models describe the dynamics of biochemical reactions

Page 20: Metabolic networks · Humboldt-Universität zu Berlin – Theoretische Biophysik Metabolic networks Wolfram Liebermeister ASIM-Workshop Trends in Computational Science and Engineering:

A C

Reaction rate (“kinetic equations”)How often does the reaction occur per time ?

Homoserine ThreoninePhospho-homoserine

B

Kinetic models describe the dynamics of biochemical reactions

kinetic constant

concentrationreaction rate

Page 21: Metabolic networks · Humboldt-Universität zu Berlin – Theoretische Biophysik Metabolic networks Wolfram Liebermeister ASIM-Workshop Trends in Computational Science and Engineering:

A C

Reaction rate (“kinetic equations”)How often does the reaction occur per time ?

System equationsHow do the concentrations change over time?

Homoserine ThreoninePhospho-homoserine

B

Kinetic models describe the dynamics of biochemical reactions

kinetic constant

concentrationreaction rate

Page 22: Metabolic networks · Humboldt-Universität zu Berlin – Theoretische Biophysik Metabolic networks Wolfram Liebermeister ASIM-Workshop Trends in Computational Science and Engineering:

stoichiometric coefficient

A C

concentration change

kinetic parameters and enzyme concentrations

concentrations

kinetic law forreaction velocity

Reaction rate (“kinetic equations”)How often does the reaction occur per time ?

System equationsHow do the concentrations change over time?

Homoserine ThreoninePhospho-homoserine

B

Kinetic models describe the dynamics of biochemical reactions

kinetic constant

concentrationreaction rate

Page 23: Metabolic networks · Humboldt-Universität zu Berlin – Theoretische Biophysik Metabolic networks Wolfram Liebermeister ASIM-Workshop Trends in Computational Science and Engineering:

S1

S2

S3

S4

S =

v1

v2

v3

v4

v5

v = N =

S1

S2

S3

S4

1 −1 0 0 0

0 0 1 −1 0

0 0 0 0 1

0 0 −1 1 0

Stoichiometric Matrix

v1 v2 v3 v4 v5S1

S2S4

S3

v1 v2

v3

v4

v5

MetaboliteConcentrations

Reaction rates

System equations – an example

Page 24: Metabolic networks · Humboldt-Universität zu Berlin – Theoretische Biophysik Metabolic networks Wolfram Liebermeister ASIM-Workshop Trends in Computational Science and Engineering:

ODEs

d[S1]/dt = v1 − v2

d[S2]/dt = v3 − v4

d[S3]/dt = v5

d[S4]/dt = − v3 + v4

S1

S2

S3

S4

S =

v1

v2

v3

v4

v5

v = N =

S1

S2

S3

S4

1 −1 0 0 0

0 0 1 −1 0

0 0 0 0 1

0 0 −1 1 0

Stoichiometric Matrix

v1 v2 v3 v4 v5

1 −1 0 0 0

0 0 1 −1 0

0 0 0 0 1

0 0 −1 1 0

X

v1

v2

v3

v4

v5

=

v1 −v2 +0 +0 +0

0 +0 +v3 −v4 +0

0 +0 +0 +0 v5

0 +0 −v3 +v4 +0

N v d[S]/dt X =

S1

S2S4

S3

v1 v2

v3

v4

v5

MetaboliteConcentrations

Reaction rates

System equations – an example

Page 25: Metabolic networks · Humboldt-Universität zu Berlin – Theoretische Biophysik Metabolic networks Wolfram Liebermeister ASIM-Workshop Trends in Computational Science and Engineering:

Michaelis-Menten kinetics (simple enzymatic law)

Mass-action kinetics (non-enzymatic reactions)

The big problem in kinetic modelling: each enzyme is different !!

Page 26: Metabolic networks · Humboldt-Universität zu Berlin – Theoretische Biophysik Metabolic networks Wolfram Liebermeister ASIM-Workshop Trends in Computational Science and Engineering:

Haldane relation

Michaelis-Menten kinetics (simple enzymatic law)

Chemical equilibrium

Mass-action kinetics (non-enzymatic reactions)

The big problem in kinetic modelling: each enzyme is different !!

Thermodynamics helps to reduce unknown parameters

Page 27: Metabolic networks · Humboldt-Universität zu Berlin – Theoretische Biophysik Metabolic networks Wolfram Liebermeister ASIM-Workshop Trends in Computational Science and Engineering:

Constraint-based models predict metabolic fluxes in large networks

Stationary (=steady) stateA state in which all variables remain constant in time

Stationarity condition in kinetic models

Condition on the flux vectorKinetic rate laws do not play a role!

Intracellular metabolites (dynamic)Concentration changes due to chemical reactions

External metabolites (e.g. extracellular or buffered)Treated as fixed parameters

Page 28: Metabolic networks · Humboldt-Universität zu Berlin – Theoretische Biophysik Metabolic networks Wolfram Liebermeister ASIM-Workshop Trends in Computational Science and Engineering:

Constraint-based models predict metabolic fluxes in large networks

Stationary (=steady) stateA state in which all variables remain constant in time

Stationarity condition in kinetic models

Condition on the flux vectorKinetic rate laws do not play a role!

Intracellular metabolites (dynamic)Concentration changes due to chemical reactions

External metabolites (e.g. extracellular or buffered)Treated as fixed parameters

Flux balance analysis predicts flux distributions for large networks

Stationarity + Upper and lower bounds on fluxes→ Convex set in flux space

Linear optimisation (e.g. maximal product yield)→ Linear programming problem

Page 29: Metabolic networks · Humboldt-Universität zu Berlin – Theoretische Biophysik Metabolic networks Wolfram Liebermeister ASIM-Workshop Trends in Computational Science and Engineering:

1. Wegscheider conditions

Equilibrium constants

Mass-action ratios

Reaction affinities

Fluxes have to satisfy thermodynamic constraints

Page 30: Metabolic networks · Humboldt-Universität zu Berlin – Theoretische Biophysik Metabolic networks Wolfram Liebermeister ASIM-Workshop Trends in Computational Science and Engineering:

1. Wegscheider conditions

2. Flux directions and affinities (positive entropy production !)

Equilibrium constants

Mass-action ratios

Reaction affinities

Fluxes have to satisfy thermodynamic constraints

Page 31: Metabolic networks · Humboldt-Universität zu Berlin – Theoretische Biophysik Metabolic networks Wolfram Liebermeister ASIM-Workshop Trends in Computational Science and Engineering:

Parameter changehigher substrate supply?

Metabolic change altered concentrations?redirected fluxes?

Metabolic control analysis traces the global effects of local changes

Response coefficients

Page 32: Metabolic networks · Humboldt-Universität zu Berlin – Theoretische Biophysik Metabolic networks Wolfram Liebermeister ASIM-Workshop Trends in Computational Science and Engineering:

Parameter changehigher substrate supply?

Metabolic change altered concentrations?redirected fluxes?

1. Stationary concentrations s(p)

2. Response coefficients

Metabolic control analysis traces the global effects of local changes

Local cause:e.g., single enzyme level

Systemic effect: flux or concentration

Slope at standard state = “response coefficient”

Response curve

Response coefficients

Solution of

Page 33: Metabolic networks · Humboldt-Universität zu Berlin – Theoretische Biophysik Metabolic networks Wolfram Liebermeister ASIM-Workshop Trends in Computational Science and Engineering:

Summary: Modelling formalisms for biochemical systems

stoichiometryconcentration

parameters

reaction rate

A B CKinetic models

enzyme enzyme

Page 34: Metabolic networks · Humboldt-Universität zu Berlin – Theoretische Biophysik Metabolic networks Wolfram Liebermeister ASIM-Workshop Trends in Computational Science and Engineering:

Summary: Modelling formalisms for biochemical systems

stoichiometryconcentration

parameters

reaction rate

A B CKinetic models

enzyme enzyme

Constraint-based models(e.g., flux balance analysis)

Page 35: Metabolic networks · Humboldt-Universität zu Berlin – Theoretische Biophysik Metabolic networks Wolfram Liebermeister ASIM-Workshop Trends in Computational Science and Engineering:

Summary: Modelling formalisms for biochemical systems

stoichiometryconcentration

parameters

reaction rate

A B CKinetic models

enzyme enzyme

Metabolic control theory

Local cause:e.g., single enzyme level

Systemic effect: flux or concentration

Slope at standard state = “control coefficient”

Response curve

Constraint-based models(e.g., flux balance analysis)

Page 36: Metabolic networks · Humboldt-Universität zu Berlin – Theoretische Biophysik Metabolic networks Wolfram Liebermeister ASIM-Workshop Trends in Computational Science and Engineering:

Summary: Modelling formalisms for biochemical systems

Thermodynamic analysis

stoichiometryconcentration

parameters

reaction rate

A B CKinetic models

enzyme enzyme

Metabolic control theory

Local cause:e.g., single enzyme level

Systemic effect: flux or concentration

Slope at standard state = “control coefficient”

Response curve

Constraint-based models(e.g., flux balance analysis)

Page 37: Metabolic networks · Humboldt-Universität zu Berlin – Theoretische Biophysik Metabolic networks Wolfram Liebermeister ASIM-Workshop Trends in Computational Science and Engineering:

Technical resources for modelling

Page 38: Metabolic networks · Humboldt-Universität zu Berlin – Theoretische Biophysik Metabolic networks Wolfram Liebermeister ASIM-Workshop Trends in Computational Science and Engineering:

Model 1

Model 3

Model 2

Model composition

Playing with biochemical models ?

Page 39: Metabolic networks · Humboldt-Universität zu Berlin – Theoretische Biophysik Metabolic networks Wolfram Liebermeister ASIM-Workshop Trends in Computational Science and Engineering:

Model composition

Model merging

Playing with biochemical models ?

Model 1

Model 3

Model 2

Page 40: Metabolic networks · Humboldt-Universität zu Berlin – Theoretische Biophysik Metabolic networks Wolfram Liebermeister ASIM-Workshop Trends in Computational Science and Engineering:

“Most of the published quantitative models in biology are lost for the community because they are either not made available or they are insufficiently characterized to allow them to be reused.”

Le Novere et al, (2005)

Models should be reusable

Page 41: Metabolic networks · Humboldt-Universität zu Berlin – Theoretische Biophysik Metabolic networks Wolfram Liebermeister ASIM-Workshop Trends in Computational Science and Engineering:

Systems Biology Markup Language (SBML)

Page 42: Metabolic networks · Humboldt-Universität zu Berlin – Theoretische Biophysik Metabolic networks Wolfram Liebermeister ASIM-Workshop Trends in Computational Science and Engineering:

SBML main site http://sbml.org/

<?xml version="1.0" encoding="UTF-8"?><sbml xmlns="http://www.sbml.org/sbml/level2/version3" level="2" version="3"> <model id="model" name="model"> <listOfCompartments> <compartment id="c" name="c" size="1"/> <compartment id="ext" name="ext" size="1"/> </listOfCompartments> <listOfSpecies> <species id="C00022_c" name="Pyruvate" compartment="c"> </species> … … ... <reaction id="reaction_8"> <listOfReactants> <speciesReference species="C00022_c" stoichiometry="0.03"/> .... <speciesReference species="O2_c" stoichiometry="0.01"/> </listOfReactants> <listOfProducts> <speciesReference species="C00008_c" stoichiometry="0.81"/> ... </listOfProducts> <listOfModifiers> <modifierSpeciesReference species="enzyme_reaction_8_c"/> </listOfModifiers> </reaction> </listOfReactions> </model></sbml>

Systems Biology Markup Language (SBML)

One exchange format - about 170 tools that understand each other

Page 43: Metabolic networks · Humboldt-Universität zu Berlin – Theoretische Biophysik Metabolic networks Wolfram Liebermeister ASIM-Workshop Trends in Computational Science and Engineering:

Systems Biology Graphical Notation (SBGN)

http://sbgn.org/

Process description diagram

Page 44: Metabolic networks · Humboldt-Universität zu Berlin – Theoretische Biophysik Metabolic networks Wolfram Liebermeister ASIM-Workshop Trends in Computational Science and Engineering:

Data, modelling software, and models are available on the web

www.sbos.eu

SB.OS – Live DVD with free modelling software

Network reconstructions Databases for biological numbers

Modelling software

Database of curated annotated modelshttp://biomodels.org/

JWS online: database of curated modelshttp://jjj.biochem.sun.ac.za/

Model repositories

http://sbml.org/

Page 45: Metabolic networks · Humboldt-Universität zu Berlin – Theoretische Biophysik Metabolic networks Wolfram Liebermeister ASIM-Workshop Trends in Computational Science and Engineering:

Advertisement

Page 46: Metabolic networks · Humboldt-Universität zu Berlin – Theoretische Biophysik Metabolic networks Wolfram Liebermeister ASIM-Workshop Trends in Computational Science and Engineering:

Thank you !


Recommended