+ All Categories
Home > Documents > METAL SEMI- CONDUCTOR CONTACTusers.polytech.unice.fr/~lorenz/Schottky_eng.pdf · 2019. 9. 13. ·...

METAL SEMI- CONDUCTOR CONTACTusers.polytech.unice.fr/~lorenz/Schottky_eng.pdf · 2019. 9. 13. ·...

Date post: 25-Jan-2021
Category:
Upload: others
View: 4 times
Download: 0 times
Share this document with a friend
26
METAL SEMI- CONDUCTOR CONTACT Schottky diodes Ohmic contacts 1 Philippe LORENZINI Polytech-Nice Sophia
Transcript
  • METAL SEMI-CONDUCTOR CONTACT

    Schottky diodes Ohmic contacts

    1

    Philippe LORENZINIPolytech-Nice Sophia

  • Plan:

    • Two types of contact:• Contact between Metal and heavily doped semiconductors:

    • Interconnections• Ohmic Contacts

    • Contact between Metal and ligthly doped semiconductors:• Schottky diode

    • Comparison between Schottky and PN junction

    2

  • interconnections

    • Nowadays , in ULSI IC, 6 to 8 metal levels (=> 10)

    • Problems / Issues :• delays• heating• Compatibility/ diffusion

    with devices

    • Copper technology used for interconnections

    3

  • Interconnections / Insulating layers

    • Low dielectric materials« low k »

    • Low resistivity materials: « Copper » solution

    4

    dSC

    SlR

    RC

  • 5

  • Stack of metal layers

    6

    inte

    l

  • Schottky Diode• Two definitions (only 2!)

    • Work Function (Travail de sortie) : this is the energy we have to give to an electron to extract it of metal without kinetic energy. It reaches the "vacuum level". Work function is the energy difference between the vacuum level and the highest occupied energy level, ie the Fermi level.

    • Electron Affinity (Affinité électronique ) : it’s the difference between the vacuum level and the bottom of the conduction band. It’s only defined for SC and not for Metal.

    • Unity : eV (electron volt)

    7

    Me

    SCe

  • Schottky Diode

    • Contact Formation :• We assume• Onset of an energy barrier for

    electrons in the metal :

    • Onset of an energy barrier for electrons in the SC :

    8

    SCM ee

    SCMb eee

    bi bi d M SC MSeV e eV e e e

    No bias !!Fermi level is flat, aligned !!

  • Ohmic contact or diode ?

    9

    N type Semi‐conductor

    sm ee sm ee

    « ohmic » « rectifier »

  • 10sm ee sm ee

    Ohmic contact or diode ?

    « ohmic » « rectifier »P type Semi‐conductor

  • • At the real metal - SC interface, large numberof interface states in the bandgap region the previous simplist model has to beimproved

    11

    Ohmic contact or diode ?

  • Non ideal Schottky Diode: interface states

    12

    SCMb eee

    MSSCMdbi eeeeVeV

    cteeEe gb 0

  • Ohmic Contacts

    • The end of interconnections on the devices.• Ohmic contact:

    • No drop voltage (short circuit?)• No resistance to current flow

    • how ?• 1st method : chose the metal with appropriate work function

    (see above), but not always possible ( and problem withinterface states)

    • 2nd method : use heavily doped semiconductors

    13

  • • Ohmic contact • Very high doping to the

    interface region• Depletion layer will be

    extremely narrow, thin• Electrons tunneling

    allowed

    14

    Ohmic Contacts

    *4   exp ( ) / ( )c b sc eR m eNdh

  • Voltage - Capacitance characteristic C(V).

    • We get the same results as with the PN Junction:

    15

    SC

    xdx

    xVd )()(

    2

    2

    )()( WxeN

    xESC

    d

    )2

    ()(2

    WxxeNxVSC

    d

    d

    biSC

    eNVV

    W)(2

    WA

    VVNe

    AdVdQAC SC

    bi

    dSC

    21

    )(2

  • Current in the Schottky diode :I(V)

    • Several mechanisms are responsible of current:• Thermionic emission• Tunnel flowing

    • The main difference withPN junction:• Current only due to majoritary

    carriers !!

    16

  • 17

    Thermionic current: the electrons which can overcome the barrier e(Vbi‐V) will contribute to the current:

    kTVVe

    nn bib)(

    exp0 avec

    kTEENn FCC exp0

    or:

    kTVe

    NkT

    VVEENn bC

    biFCCb

    )(expexp

    Current in the Schottky diode :I(V)

  • • We can show (Singh) that the average flux of electronsimpinging the Metal/SC barrier is where isthe average speed of the electrons.

    18

    4bnv v

    The corresponding current is then given by (A is thedevice area) :

    kTVe

    NAveVI bCSM)(

    exp4

    )(

    kTeNAveII bCSMMS

    )(exp4

    )0(

    When the applied voltage is zero, the current is null. Infact the current IMS flowing from metal to SC is balancedby the current ISM from SC to Metal.

    Current in the Schottky diode :I(V)

  • • When a potential V is applied, IMS = cte = IS and the current is given by:

    19

    1expkTeVIIII SMSSM

    The above expression can be rewritten (MB statistics):

    1expexp

    22

    32

    2*

    kTeV

    kTe

    TekmAI b

    constant  of Richardson

    Current in the Schottky diode :I(V)

  • Small signal equivalent circuit

    • Equivalent circuit components:• Differential resistance

    • Differential capacitance of depletion layer

    • Serie resistance

    • Parasitic Inductance

    • Device geometric capacitance (L: device length)

    20

    dIdVRd

    21

    )(2

    VV

    eNAC

    bi

    SCdd

    RNcontactsS RRR

    SL

    LA

    C SCgéom

    Cs

  • C - V Data

    21

    12

    2( )sc d SC

    ddep bi

    A eNC AW V V

    2

    1 2( )²

    bi

    d D SC

    V VC eN A

    Vbi-V

    By determining Vbi and Nd (slope), we can get b (if SC is unknown)

    Wdep

  • Comparison PN vs Schottky (from Singh)22

    PN Diode Schottky Diode

    Reverse current due to minoritycarriers diffusion => strongtemperature dependance

    Forward current due to Minoritary carriers from n andp regions

    Forward bias ( the « on voltage ») needed to make the device on isquite large

    Switching controlled by eliminationof minority injected carriers

    Forward current due to majoritary carriers from the SC

    The « on voltage » is small

    Switching speed controlled by thermalisationof electrons across the barrier : few ps

    Reverse current due to minority carriers diffusion => strong temperaturedependance

    Ideality factor between 1 and 2 due to recombination process in depletion layer

    Essentially no recombination in depletionregion => Ideality factor ~ 1

  • heterojunction• Contact between two different semiconductor materials

    different gaps energy bands discontinuity at interface.

    23

    )( pnC eE

    gVC EEE

  • Junction formation SC(n)/SC(P)24

  • Mise à l’équilibre SC(n)/Sc(N)

    25

    Junction formation SC(n)/SC(N)

  • Occurrence of a two-dimensional electron gas

    26


Recommended