+ All Categories
Home > Documents > Methods for Sampling of Airborne VirusesMethods for Sampling of Airborne Viruses Daniel Verreault,1...

Methods for Sampling of Airborne VirusesMethods for Sampling of Airborne Viruses Daniel Verreault,1...

Date post: 09-May-2020
Category:
Upload: others
View: 4 times
Download: 0 times
Share this document with a friend
32
MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, Sept. 2008, p. 413–444 Vol. 72, No. 3 1092-2172/08/$08.000 doi:10.1128/MMBR.00002-08 Copyright © 2008, American Society for Microbiology. All Rights Reserved. Methods for Sampling of Airborne Viruses Daniel Verreault, 1 Sylvain Moineau, 2,3 and Caroline Duchaine 1,2 * Centre de Recherche, Ho ˆpital Laval, Institut Universitaire de Cardiologie et de Pneumologie de l’Universite ´ Laval, 2725 Chemin Ste.-Foy, Quebec City, Quebec, Canada G1V 4G5 1 ; De ´partement de Biochimie et de Microbiologie, Faculte ´ des Sciences et de Ge ´nie, Universite ´ Laval, Pavillon Alexandre-Vachon, 1045 Avenue de la Medecine, Quebec City, Quebec, Canada G1V 0A6 2 ; and Groupe de Recherche en Ecologie Buccale (GREB) and Fe ´lix d’He ´relle Reference Center for Bacterial Viruses, Faculte ´ de Me ´decine Dentaire, Universite ´ Laval, Pavillon de Medecine Dentaire, 2420 rue de la Terrasse, Quebec City, Quebec, Canada G1V 0A6 3 INTRODUCTION .......................................................................................................................................................413 CONTACT VERSUS AEROSOLS ............................................................................................................................413 EPIDEMIOLOGICAL EVIDENCE OF AIRBORNE SPREAD OF VIRUSES ..................................................413 COMMON SOURCES OF AIRBORNE VIRUSES ...............................................................................................414 SIZE DISTRIBUTION OF VIRUS-LADEN PARTICLES ....................................................................................415 FACTORS AFFECTING THE RECOVERY OF AIRBORNE VIRUSES BY SAMPLING ..............................416 AIR SAMPLING METHODOLOGIES....................................................................................................................417 AIR SAMPLING FOR VIRUS RECOVERY ...........................................................................................................417 Solid Impactors .......................................................................................................................................................417 Liquid Impactors ....................................................................................................................................................418 Filters .......................................................................................................................................................................419 Electrostatic Precipitators .....................................................................................................................................439 Other Sampling and Detection Methods .............................................................................................................440 ASSESSING THE EFFICIENCY OF AIRBORNE VIRUS SAMPLERS BY USE OF TRACERS..................440 LABORATORY STUDIES OF AIRBORNE VIRUSES .........................................................................................440 SURROGATE VIRUSES............................................................................................................................................440 CONCLUSIONS .........................................................................................................................................................441 ACKNOWLEDGMENTS ...........................................................................................................................................441 REFERENCES ............................................................................................................................................................441 INTRODUCTION Any microorganism, including viruses, can become airborne. Contaminated material can be aerosolized in many different ways, ranging from wind to human and animal activities such as sneezing, mechanical processes, etc. If the aerodynamic size of an infectious particle is appropriate, it can remain airborne, come into contact with humans or animals, and potentially cause an infection. The probability of an airborne microorgan- ism-laden particle causing an infection depends on its infec- tious potential and its ability to resist the stress of aerosoliza- tion. Airborne microorganisms can represent major health and economic risks to human and animal populations. Appropriate preventive actions can be taken if the threat posed by such microorganisms is better understood. Authorities need to be aware of the nature, concentration, and pathogenicity of air- borne microorganisms to better control them. This informa- tion can be obtained by using various air sampling methods, each of which has its particular advantages and disadvantages. Many types of samplers and analytical methods have been used over the years (Fig. 1). The purpose of this review is to present the principles underlying viral aerosol sampling methods, with their advantages and pitfalls. CONTACT VERSUS AEROSOLS The route of transmission of infections is not always easily determined in an environment with undefined parameters. In- fection by direct contact can occur when infected hosts are in close proximity with a susceptible population. On the other hand, infected hosts can transmit the disease without direct contact. Moreover, many microorganisms, including viruses (110), can remain infectious outside their hosts for pro- longed periods of time, and this can lead to infections by indirect contact. For example, a surface can become con- taminated by deposited infectious droplets and eventually cause the infection of susceptible hosts coming into contact with it. The probability of airborne transmission of an in- fectious disease can be determined by conducting epidemi- ological studies (145) and/or by analyzing the microbiolog- ical content of air samples. EPIDEMIOLOGICAL EVIDENCE OF AIRBORNE SPREAD OF VIRUSES Studies on the aerobiology of infectious diseases, including viral diseases, have been rather limited (115). This is due mainly to the difficulty in collecting and analyzing airborne biological contaminants, which is an even greater problem for viruses. This technical challenge has made epidemiological * Corresponding author. Mailing address: Centre de Recherche, Ho ˆpital Laval, Institut Universitaire de Cardiologie et de Pneumolo- gie, 2725 Chemin Ste.-Foy, Quebec City, Quebec, Canada G1V 4G5. Phone: (418) 656-8711, ext. 5837. Fax: (418) 656-4509. E-mail: caroline [email protected]. 413 on May 8, 2020 by guest http://mmbr.asm.org/ Downloaded from
Transcript

MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, Sept. 2008, p. 413–444 Vol. 72, No. 31092-2172/08/$08.00�0 doi:10.1128/MMBR.00002-08Copyright © 2008, American Society for Microbiology. All Rights Reserved.

Methods for Sampling of Airborne VirusesDaniel Verreault,1 Sylvain Moineau,2,3 and Caroline Duchaine1,2*

Centre de Recherche, Hopital Laval, Institut Universitaire de Cardiologie et de Pneumologie de l’Universite Laval,2725 Chemin Ste.-Foy, Quebec City, Quebec, Canada G1V 4G51; Departement de Biochimie et de Microbiologie,

Faculte des Sciences et de Genie, Universite Laval, Pavillon Alexandre-Vachon, 1045 Avenue de la Medecine,Quebec City, Quebec, Canada G1V 0A62; and Groupe de Recherche en Ecologie Buccale (GREB)

and Felix d’Herelle Reference Center for Bacterial Viruses, Faculte de Medecine Dentaire,Universite Laval, Pavillon de Medecine Dentaire, 2420 rue de la Terrasse,

Quebec City, Quebec, Canada G1V 0A63

INTRODUCTION .......................................................................................................................................................413CONTACT VERSUS AEROSOLS............................................................................................................................413EPIDEMIOLOGICAL EVIDENCE OF AIRBORNE SPREAD OF VIRUSES ..................................................413COMMON SOURCES OF AIRBORNE VIRUSES ...............................................................................................414SIZE DISTRIBUTION OF VIRUS-LADEN PARTICLES ....................................................................................415FACTORS AFFECTING THE RECOVERY OF AIRBORNE VIRUSES BY SAMPLING ..............................416AIR SAMPLING METHODOLOGIES....................................................................................................................417AIR SAMPLING FOR VIRUS RECOVERY...........................................................................................................417

Solid Impactors .......................................................................................................................................................417Liquid Impactors ....................................................................................................................................................418Filters .......................................................................................................................................................................419Electrostatic Precipitators .....................................................................................................................................439Other Sampling and Detection Methods.............................................................................................................440

ASSESSING THE EFFICIENCY OF AIRBORNE VIRUS SAMPLERS BY USE OF TRACERS..................440LABORATORY STUDIES OF AIRBORNE VIRUSES .........................................................................................440SURROGATE VIRUSES............................................................................................................................................440CONCLUSIONS .........................................................................................................................................................441ACKNOWLEDGMENTS ...........................................................................................................................................441REFERENCES ............................................................................................................................................................441

INTRODUCTION

Any microorganism, including viruses, can become airborne.Contaminated material can be aerosolized in many differentways, ranging from wind to human and animal activities such assneezing, mechanical processes, etc. If the aerodynamic size ofan infectious particle is appropriate, it can remain airborne,come into contact with humans or animals, and potentiallycause an infection. The probability of an airborne microorgan-ism-laden particle causing an infection depends on its infec-tious potential and its ability to resist the stress of aerosoliza-tion.

Airborne microorganisms can represent major health andeconomic risks to human and animal populations. Appropriatepreventive actions can be taken if the threat posed by suchmicroorganisms is better understood. Authorities need to beaware of the nature, concentration, and pathogenicity of air-borne microorganisms to better control them. This informa-tion can be obtained by using various air sampling methods,each of which has its particular advantages and disadvantages.Many types of samplers and analytical methods have been usedover the years (Fig. 1). The purpose of this review is to present

the principles underlying viral aerosol sampling methods, withtheir advantages and pitfalls.

CONTACT VERSUS AEROSOLS

The route of transmission of infections is not always easilydetermined in an environment with undefined parameters. In-fection by direct contact can occur when infected hosts are inclose proximity with a susceptible population. On the otherhand, infected hosts can transmit the disease without directcontact. Moreover, many microorganisms, including viruses(110), can remain infectious outside their hosts for pro-longed periods of time, and this can lead to infections byindirect contact. For example, a surface can become con-taminated by deposited infectious droplets and eventuallycause the infection of susceptible hosts coming into contactwith it. The probability of airborne transmission of an in-fectious disease can be determined by conducting epidemi-ological studies (145) and/or by analyzing the microbiolog-ical content of air samples.

EPIDEMIOLOGICAL EVIDENCE OF AIRBORNESPREAD OF VIRUSES

Studies on the aerobiology of infectious diseases, includingviral diseases, have been rather limited (115). This is duemainly to the difficulty in collecting and analyzing airbornebiological contaminants, which is an even greater problem forviruses. This technical challenge has made epidemiological

* Corresponding author. Mailing address: Centre de Recherche,Hopital Laval, Institut Universitaire de Cardiologie et de Pneumolo-gie, 2725 Chemin Ste.-Foy, Quebec City, Quebec, Canada G1V 4G5.Phone: (418) 656-8711, ext. 5837. Fax: (418) 656-4509. E-mail: [email protected].

413

on May 8, 2020 by guest

http://mm

br.asm.org/

Dow

nloaded from

studies particularly useful. While data inferred from epidemi-ological studies using computer-based analytical methods aremore equivocal than those from air sampling coupled withmicrobial analyses, epidemiological studies can provide veryvaluable information.

Many epidemiological studies have proposed that virusescan spread from one host to another by using air for transport.The capacity of the foot-and-mouth disease (FMD) virus tospread by air has been studied and reviewed (36) over the yearsand is now being investigated using computer models. One ofthese models predicted that in a “worst-case scenario” of anFMD outbreak, cattle could be infected as far as 20 to 300kilometers away from an infectious source (37). Dispersionmodels based on meteorological data and information on thespread of FMD at the beginning of the 1967–1968 epidemic inthe United Kingdom strongly suggested that the infection mayhave spread by the airborne route over a distance of 60 km(59). Airborne transmission of FMD was also reported to haveoccurred during the 1982–1983 epidemic in Denmark. In thelatter case, an analysis of epidemiological dynamics using mo-lecular methods coupled with meteorological data concludedthat the infection had spread by air over a distance of 70 km(27). Similarly, the results of a Canadian study on an FMDepidemic reported that airborne viruses may have traveled 20km downwind from the contaminated source (29). Neverthe-less, a recent study on the O/UKG/2001 strain of FMD virusindicated that it does not spread efficiently between sheep bythe airborne route. However, other strains may behave differ-ently (134).

In 2001, a Norwalk-like virus outbreak in a school in theUnited Kingdom was believed to have been caused by airbornetransmission (89). A similar occurrence has also been reported

for a hotel restaurant (88). A retrospective cohort study con-ducted after a severe acute respiratory syndrome (SARS) ep-idemic in Hong Kong in 2003 suggested that airborne spreadmay have played an important role in the transmission of thedisease (146). The same mode of transmission was also hypoth-esized in other studies of SARS (87, 104, 145). Aerosols mayalso be responsible for the transmission of other viral diseases(63, 83, 113).

COMMON SOURCES OF AIRBORNE VIRUSES

A virus can multiply only within a host cell. Infected cells canspread viruses directly into the surrounding air (primary aero-solization) or to fluids and surfaces, which can become sourcesfor airborne transmission (secondary aerosolization). Second-ary aerosolization can occur for any virus, predominantly whenair displacements or movements around contaminated surfacesor fluids disperse the viruses into the air. It can also occur byliquid splashes, which can aerosolize viruses in liquids or onsurfaces. In fact, almost any kind of disturbance of infectedorganisms or materials, even the bursting of bubbles in seawa-ter (9), can produce airborne, virus-laden particles.

The most important aerosol source representing a risk forhuman health is humans themselves. Since the interspeciesbarrier is not a factor in the transmission of infections fromhuman to human, aerosol-mediated infections from humansources can occur in everyday situations. Human infectionsthrough viral aerosol sources have been studied in variousenvironments, including office buildings (102), hospitals (3, 10,11, 13, 19, 41, 92, 95, 117, 126), restaurants (88), and schools(89). The mechanisms of dispersion of infectious aerosols orig-inating from humans are described in detail in a recent review

FIG. 1. Airborne virus sampling studies, according to date and analysis method.

414 VERREAULT ET AL. MICROBIOL. MOL. BIOL. REV.

on May 8, 2020 by guest

http://mm

br.asm.org/

Dow

nloaded from

(98). It is important to recognize that viruses can be spread byairborne particles released by humans but also by other means.Simply flushing a toilet containing infectious particles canaerosolize significant concentrations of airborne viruses (14,136). Wastewater treatment plants (24, 51) and sewage sprin-klers (97, 125) can also produce viral aerosols.

Farm animals have also been studied for their emission ofairborne viruses. The FMD virus, which is one of the mostwidely studied airborne animal viruses, has been detected in aircontaminated by infected pigs and ruminants (7, 8, 38, 39, 56,60, 121) in both laboratory settings and farm environments.This single-stranded RNA (ssRNA) virus of the Picornaviridaefamily is excreted in all body fluids of infected animals (100)and can become airborne directly from the animals or from thesecondary aerosolization of deposited viruses or virus-ladenparticles. Other suspected sources of airborne viruses, such asburning carcasses of infected animals (26), have not yet beenidentified formally as true sources because additional investi-gations are needed.

Poultry farms are also potential producers of virus-ladenairborne particles. The exotic Newcastle disease virus(Paramyxoviridae family) was probably the first virus isolatedfrom a naturally contaminated environment (35) of poultryhouses sheltering infected birds. This 150-nm-diameter ssRNAvirus was detected in air samples from two farms during anoutbreak in Southern California in 2002–2003 (74). Air sam-ples in and around broiler poultry houses have also been stud-ied for the presence of viruses such as Escherichia coli bacte-riophages, which are a fecal contamination tracer (50). Otheranimals, such as bats (rabies virus) (144), rabbits (rabbit pox-virus) (128, 141), and mice (polyomavirus) (94), have beenstudied as sources of bioaerosols. These viruses can be releasedinto the air directly from animals by their breathing, coughing,and sneezing or by secondary aerosolization. It should benoted that the means of aerosolization has a critical impact onthe aerodynamic size and, thus, on the behavior of the airborneparticles.

SIZE DISTRIBUTION OF VIRUS-LADEN PARTICLES

For humans, most particles larger than 10 �m will not passthe upper airways; while smaller particles will travel moreeasily toward the lungs, the particles will be trapped at differentproportions in the head airways and the tracheobronchial andalveolar regions (75). The particle size determines whether ornot it can be inhaled and retained in the respiratory tract.

Given that virus-laden particles are a complex mixture ofvarious components (salts, proteins, and other organic andinorganic matter, including virus particles), it is essential torealize that the size of the viral particle itself does not rule theairborne particle size. The influence of viruses alone on thegranulometric distribution of aerosols is likely negligible com-pared to that of the remainder of the aerosol. To support this,it was demonstrated that the particle size distribution of arti-ficially produced submicrometer and ultrafine aerosols of cul-ture media is not affected by the presence of bacteriophages(76).

Infectious bioaerosols spontaneously released by sick ani-mals are composed of variously sized particles. The smallersize limit of a viral aerosol is limited to the virus diameter itself,

which can be as small as 20 to 30 nm, while the larger limitdepends on the size of the particle with which it is associated.Size also dictates the capacity of a particle to remain airborne.A study investigating the natural excretion of the FMD virus(25 to 30 nm in diameter) into the air by infected pigs, using amultistage liquid impinger sampler, showed that 65% to 71%of the virus-laden particles were over 6 �m in diameter, 19% to24% ranged from 3 to 6 �m in diameter, and 10% to 11% wereunder 3 �m in diameter (121). Similar results were also ob-tained with infected sheep (56). The same type of bioaerosolsampler was also used to establish a link between the concen-tration and the size of infectious particles, using artificially andnaturally produced aerosols of FMD virus. This study reportedthat over 85% of the particles in the artificially produced aero-sols were less than 3 �m in diameter, whereas the size distri-butions of the natural aerosols were similar in all three stagesof the sampler (39). Another study investigating pigs infectedwith Aujeszky’s disease virus (Herpesviridae family; approxi-mately 150 nm in diameter; double-stranded DNA [dsDNA]virus) found that the infectivity of the aerosols collected ineach stage of the three-stage impinger varied over time. Theinvestigators reported that the size distributions of the aerosolsin the three stages were comparable on day 2 of the infectionbut that there was an increase in infectivity associated withlarger particles on days 3 and 4 (40). Nevertheless, no clearassociation has been made between aerosol infectivity and aparticular size range (60).

While single virus particles exist in the air (76), they tend toaggregate rapidly. Aggregation speed depends on the size dis-tribution of the airborne particles, the concentration of theaerosol, and the thermodynamic conditions (142). Many fac-tors influence the size distribution of both naturally and arti-ficially produced viral aerosols. Artificially produced aerosolsare normally used in controlled environments where there areno other aerosols to which the nebulized particles can bind.They are thus influenced only by the size of the original dropletcreated by the nebulizer and by the solute concentration inthe droplet. When a droplet evaporates (Fig. 2), its final size (thedroplet nucleus) depends on the relative humidity (RH) in thechamber. To some extent, this phenomenon can also be ob-served with natural aerosols. For example, infectious dropletsexhaled by animals shrink rapidly with the lower humidityoutside the respiratory airway, creating smaller aerosols. How-ever, the size distribution of such naturally generated bioaero-sols depends on the sizes of the particles to which the micro-organisms bind. This binding may occur by diffusion,impaction, interception, or electrostatic attraction (98). Ifmostly large particles are encountered in the air of a givenenvironment, then the particles making up the infectious aero-sol will also tend to be large. Interestingly, larger particles maybe relatively less hazardous than smaller ones. It has beenshown on pig farms that a visually clean environment may bemore contaminated by bioaerosols than a visually dirty one(43). This may be due to the fact that larger particles tend tosettle faster than smaller particles do; the settling velocity of0.001-�m particles is 6.75E�09 m/s, while 10-�m particlessettle at 3.06E�03 m/s and 100-�m particles settle at2.49E�01 m/s (75). Airborne particles in a “clean” environ-ment are more likely to remain small and inhalable by animals

VOL. 72, 2008 SAMPLING OF AIRBORNE VIRUSES 415

on May 8, 2020 by guest

http://mm

br.asm.org/

Dow

nloaded from

and humans than are particles in a dirty environment, whichtend to grow larger by sticking to other airborne particles.

FACTORS AFFECTING THE RECOVERY OF AIRBORNEVIRUSES BY SAMPLING

Organic and inorganic materials in viral aerosols can affectthe size of the aerosolized particles and their infectious poten-tial. Many factors, such as RH, temperature, radiation, aero-solization medium, exposure period, chemical composition ofthe air, and sampling methods, can affect the infectivity ofairborne viruses. Each virus reacts in its own particular way toeach factor or combination of factors, depending on the struc-tural composition of the virus and its interactions with otheraerosol components. However, the structural composition ofairborne viruses alone cannot be used to predict survival underdifferent environmental conditions (78).

RH is the most widely studied of the factors that affectairborne virus infectivity (Table 1). Depending on the virus,optimal preservation of infectivity may require a low RH (un-der 30%), an intermediate RH (30% to 70%), or a high RH(over 70%). Influenza virus (65, 118), Semliki Forest virus (17),Japanese B encephalitis virus (86), porcine reproductive andrespiratory syndrome virus (72), Newcastle disease virus, and

vesicular stomatitis virus (122), all of which are enveloped, aremost stable at low RH, while rhinovirus (79, 84), poliovirus (65,79, 81), T3 coliphage (45, 122), rhinotracheitis virus (122),picornavirus (5), and viruses of the Columbia SK group (4),which are nonenveloped (with the exception of the rhinotra-cheitis virus), are most stable at high RH. Human coronavirus229E (79), pseudorabies virus (119), and rotavirus (81, 82, 116)are most stable at intermediate RH. The first two are envel-oped, while mature rotaviruses are usually nonenveloped. RHhas no effect on the stability of airborne St. Louis encephalitisvirus under the conditions tested (112).

Seasonal variations in indoor RH have also been correlatedwith fluctuations in the morbidity of influenza (low RH) andpoliomyelitis (high RH) viruses, with the highest morbidityoccurring at the optimal RH for each virus (68, 69). Seasonalvariations have also been observed with measles virus (34) andrespiratory syncytial virus (147). An intriguing study comparingthe effect of RH on the stability of an airborne picornavirus tothat on its genomic RNA (5) indicated that the inactivation ofairborne picornaviruses by low RH levels is not due to theinstability of the RNA but, rather, to structural damage to thevirion (5). The findings of these studies indicate that there is noabsolute correlation between RH and the preservation of viral

FIG. 2. Evaporation of a liquid droplet (left) to a droplet nucleus (right). As the liquid evaporates, the nonevaporative content concentratesuntil a droplet nucleus is obtained.

TABLE 1. Effects of RH on infectivity of a selection of airborne viruses

Virus Optimal RH formaximum infectivity Family Genetic material Size (nm) Envelope

Influenza virus Low Orthomyxoviridae ssRNA (�) 80–120 YesNewcastle disease virus Low Paramyxoviridae ssRNA (�) 150 YesVesicular stomatitis virus Low Rhabdoviridae ssRNA (�) 60 � 200 YesJapanese encephalitis virus Low Flaviviridae ssRNA (�) 40–60 YesPorcine reproductive and respiratory

syndrome virusLow Arteriviridae ssRNA (�) 45–60 Yes

Semliki Forest virus Low Togaviridae ssRNA (�) 70 YesHuman coronavirus 229E Mid-range Coronaviridae ssRNA (�) 120–160 YesRotavirus Mid-range Reoviridae dsRNA 100 NoPseudorabies virus Mid-range Herpesviridae dsDNA 200 YesRhinovirus High Picornaviridae ssRNA (�) 25–30 NoPoliovirus High Picornaviridae ssRNA (�) 25–30 NoPicornavirus High Picornaviridae ssRNA (�) 25–30 NoColumbia SK group High Picornaviridae ssRNA (�) 25–30 NoT3 coliphage High Podoviridae dsDNA 60 (capsid) NoRhinotracheitis virus High Herpesviridae dsDNA 200 YesSt. Louis encephalitis virus All Flaviviridae ssRNA (�) 40–60 Yes

416 VERREAULT ET AL. MICROBIOL. MOL. BIOL. REV.

on May 8, 2020 by guest

http://mm

br.asm.org/

Dow

nloaded from

infectivity in aerosols and that the impact of RH should bedetermined for each virus. However, it appears that low RHtends to preserve the infectivity of enveloped viruses, while thestability of nonenveloped viruses is best preserved at high RH.

Temperature can also have an impact on the infectivity ofairborne viruses. For example, the stability of certain infectiousairborne viruses (47, 65, 72, 79, 119, 122) is improved at lowtemperatures but does not depend on RH. UV radiation isanother factor that influences survivability. UV germicidallamps, for instance, can be used to inactivate airborne micro-organisms, including viruses, in indoor settings (53). However,in certain cases, RH must be taken into consideration. Forexample, vaccinia virus is more susceptible to UV radiation atlow RH than at high RH (93).

Interestingly, aerosolization can inactivate some viruses to acertain extent, depending upon the nature of the spray fluid,the temperature, and the RH (80). This was reported for therecovery of bovine parainfluenza virus (47) and infectious bo-vine rhinotracheitis virus, where various combinations of thesefactors generated different results (48). Certain chemicals alsohave diverse effects on the stability of airborne viruses. Forexample, adding salt to a spray suspension reduces the recov-ery of airborne infectious Semliki Forest virus at high RH in acontrolled chamber (17). On the other hand, polyhydroxy com-pounds (17, 118) and peptones (69) are protective. Similarly,adding dextrose to the spray fluid significantly enhances therecovery of coliphage T3 at mid-range RH, but spermine, sper-mine-phosphate, thiourea, galacturonic acid, and glucosaminicacid have no effect on virus recovery (45). Mid-range RH andfecal matter as a spray fluid have been shown to enhance therecovery of a strain of human rotavirus (82). Organic matterand chemical compounds probably exert their protective effectby reducing desiccation and other environmental stresses.

Lastly, the gas composition of the air can also have aninfluence on viruses, as ozone has been shown to inactivateairborne viruses (96). In fact, virus susceptibility to ozone ismuch higher than those of bacterial and fungal bioaerosols(133). However, the ozone efficacy will vary from virus to virus.For example, phage �X174 is more susceptible to ozone thanare phages MS2 and T7 (133). Ions in the air can also reducethe recovery rate of certain viruses, such as aerosolized T1bacteriophage, with positive ions having the most detrimentaleffect (64).

AIR SAMPLING METHODOLOGIES

Most air sampling technologies depend on the aerodynamicdiameter of the airborne particles, the adhesion properties ofairborne particles, Brownian motion, thermal gradients, andthe inertia of the particles. Aerosolized particles attach to anysurface with which they come into contact (75). Adhesiveforces such as van der Waals forces, electrostatic forces, andsurface tension partly explain this adhesion. Most of the sam-pling methodologies presented in this review are based on thisprinciple.

Airborne particles with aerodynamic diameters on the orderof 100 nm or less are prone to a particular way of moving,mainly due to the billions of collisions they encounter with gasmolecules. This is called Brownian motion, and the smaller theparticle, the greater the movement and the more likely that the

particle will diffuse, come into contact with a surface, andadhere to it. When this happens, the other suspended particlesoccupy the space left vacant by the particle that has adhered tothe surface. This phenomenon is the basis for the efficientremoval of very small particles by filtration, particularly whenthe distance between two surfaces of the filter is sufficient forthe particles to pass through.

Larger particles with aerodynamic diameters on the order ofa micrometer or more are less influenced by Brownian motionbut have greater inertia. Gravitational attraction has a signif-icant impact on these particles and causes them to settle onsurfaces. These particles are also more easily diverted from agas streamline, leading to impaction on surfaces, especially athigh velocity and when the angle of the airflow is drasticallyaltered. Very small particles have less inertia and will morelikely follow the streamline.

AIR SAMPLING FOR VIRUS RECOVERY

Various sampling devices can be used to recover airborneviruses, and some are illustrated in Fig. 3. The most commonare liquid and solid impactors as well as filters. Electrostaticprecipitators have also been tested. Table 2 presents an exten-sive compilation of studies on the recovery of viral particles.The history of use of air samplers for viral aerosols is summa-rized in Fig. 1.

Solid Impactors

Solid impactors, such as Andersen samplers, slit samplers,and cyclone samplers, are usually more efficient at capturinglarge particles. Andersen and slit samplers accelerate the par-ticles through narrow holes or slits. The streamline movestoward a solid surface and abruptly changes direction. Theinertia of the particles deviates them from the airflow andimpacts them on the surface, which usually holds a petri dishwith a culture medium. The medium is either washed to collectthe particles or used directly for plaque assays. Andersen sam-plers contain a number of stages, each of which traps particlesof a specific aerodynamic size range, and is often used todetermine the sizes of virus-laden particles (54, 79, 132, 133).The multistage configuration is designed to accelerate the in-coming particles. The first stage induces moderate accelerationso that only the largest particles deviate from their trajectory.The second stage accelerates the smaller particles a little more,and so on. A six-stage Andersen sampler recovers particlesranging from 0.65 �m in diameter on the lowest stage to 7.5�m and over on the top stage. Single-stage Andersen samplerscan also be used to capture particles. The lower recovery limitof these samplers is a function of the diameter of the holesthrough which the particles are accelerated.

Slit samplers are used mostly to determine aerosol concen-trations of bacteria as a function of time. The acceleratedparticles are impacted onto a rotating petri dish containing aculture medium. This makes it possible to determine the timewhen each particle was sampled. Time-dependent results canbe obtained only if the samples are grown directly on the solidculture medium. Obviously, the use of a liquid medium orbuffer on top of a solid medium compromises this function.Nevertheless, slit samplers have been used with a liquid layer

VOL. 72, 2008 SAMPLING OF AIRBORNE VIRUSES 417

on May 8, 2020 by guest

http://mm

br.asm.org/

Dow

nloaded from

on the culture medium to recover viruses. The particles thatimpact the solid surface are immediately resuspended in aliquid medium to maximize the recovery of both infective vi-ruses and viral nucleic acids. This method was used successfullyin Toronto, Canada, during the 2003 SARS outbreak (19). Infact, two air sampling methods were used during this outbreak,namely, a modified high-resolution slit sampler system andpolytetrafluoroethylene (PTFE) membrane filters with 0.3-�mpores. The samples were tested for viruses by reverse tran-scriptase PCR (RT-PCR) and culture assays. The cultureswere all negative, and only 2 of the 10 slit samples were PCRpositive. These results might be explained by the absence or avery low concentration of airborne viruses.

Centrifugal forces have also been used to sample artificiallygenerated airborne influenza viruses. The samples collected bycentrifugation within an hour after aerosolization caused in-fluenza in inoculated ferrets (140). The centrifugal samplerrecovered close to 100% of 2.3-�m-diameter particles and 50%of 0.77-�m-diameter particles at 4,500 rpm, which correspondsto an airflow of 1.44 to 1.90 cubic feet/min (40 to 54 liters/min)(108). Errington and Powell developed small and large cycloneseparators. The small cyclone separator has a flow rate of 75liters/min, and the large one has a flow rate of 350 liters/min.Both cyclones accelerate the air by using a centrifugal vortex,pushing the airborne particles into contact with a solid surfaceby using the inertia of the particles. A scrubbing liquid isconstantly injected into the cyclone and collected in a bottle atits base. The concentration of the aerosol in the liquid dependson the air sampling and liquid injection rates. The smallersampler can, for example, concentrate 100 liters of air in 1 ml

of liquid (49). This first generation of cyclone separators in-spired the development of similar apparatuses, which can sam-ple the air at various rates.

A 170-liters/min flow rate (2- and 20-min samples) has beenused to sample air contaminated with FMD virus released byinfected pigs (7) as well as by sheep and heifers (8). In anotherstudy, a 300-liters/min flow rate (15-min sample) was success-fully used to sample the air of isolated units housing pigsinfected with Aujeszky’s disease virus. However, the samplerwas unable to detect low levels of airborne virus (20). Cyclonesamplers have also been used at high flow rates, ranging from700 to 1,000 liters/min (5- to 30-min samples), to recover air-borne viruses (38–40, 60, 62). A recirculating liquid cyclone-style air sampler operating at 265 liters/min (8-h sample), com-bined with culture and RT-PCR, has been used to detect exoticNewcastle disease virus in naturally contaminated commercialpoultry flocks (74). The capacity of cyclones to concentrateaerosols in large volumes of air over long, uninterrupted peri-ods is one of the major advantages of this type of sampler.However, some investigators have reported that cyclone sam-plers are much less efficient than other samplers at recoveringlow concentrations of airborne viruses (20). This may be due tothe physical stress caused by cyclone samplers, which maycause structural damage to the viruses and thus decrease theirinfectivity (20).

Liquid Impactors

All-glass impingers (AGIs) (Fig. 3), also called Porton im-pingers, and AGI-like samplers are the most often used sam-

FIG. 3. Diagrams of six different bioaerosol samplers. Red lines and arrows represent the airflow into the sampler. Blue arrows representairflow out of the sampler. These drawings are simplified representations.

418 VERREAULT ET AL. MICROBIOL. MOL. BIOL. REV.

on May 8, 2020 by guest

http://mm

br.asm.org/

Dow

nloaded from

plers for the capture of airborne viruses (Fig. 1; Table 2). Theliquid impinger, which was first described by May and Harper(91), works by accelerating airborne particles through a narroworifice placed at a fixed distance from the bottom of a flaskcontaining a liquid. A pressure drop is created in the flask andforces the air to enter through the inlet of the impinger. Theair enters horizontally through a glass tube, which curves to avertical position, forcing the air to change direction and flowdownward. The diameter of the tubing abruptly narrows andacts as a critical flow orifice, accelerating the air passingthrough it to sonic velocity. The flow remains constant as longas there is at least half an atmosphere of suction in the im-pinger. The curve in the tube is intended to trap the largerparticles by inertial impaction and mimics the airway of thehuman nose. The largest particles entering the flask throughthe critical flow orifice are impacted onto the liquid. The for-mation of small bubbles in the liquid of the impinger can alsohelp to sample very small particles by diffusion. However, thereaerosolization of particles due to the scavenging propertiesof the air bubbles can be a problem, especially for hydrophobicparticles. The liquid prevents desiccation and facilitates theextraction of genetic material for subsequent analysis. TheAGI-4 sampler (the number refers to the distance, in millime-ters, separating the tip of the critical orifice from the bottom ofthe flask) and the AGI-30 sampler, also called a raised im-pinger, are often used as standard reference samplers (71).Multistage liquid impingers are also available. Particles im-pinge into liquids in successive stages as a function of theiraerodynamic size. This type of sampler, like the Andersensampler, is used mainly to determine the size distribution ofinfectious particles (39, 40).

According to Harstad (66), who compared the samplingefficiencies of two types of liquid impingers, two types of filters,and a fritted bubbler, using submicrometer aerosols of a sus-pension of bacteriophage T1 (a tailed bacterial virus) with aradioactive tracer, liquid impingers are the least destructivesamplers, with a relative efficiency, as determined by culture,superior by 18% to that of the next best sampler, although 30%to 48% of the sample was physically lost. Harstad also reportedthat filters are very destructive for this bacterial virus but arethe most efficient at collecting submicrometer particles andthat the fritted bubbler is the least efficient sampler, with aphysical loss of over 80% of the sample (66). These differencesin the recovery rates of AGI samplers and filters were con-firmed in a later study (64). The gentler sampling processleading to better recovery of infective viruses seems to be themain reason for the wide use of AGI samplers in aerovirology.Many studies involving airborne virus sampling have been con-ducted using the AGI-30 or AGI-4 sampler as the main sam-pling device (4, 10, 17, 42, 45–48, 57, 58, 65, 67, 78, 81, 82, 84,86, 105, 116, 118, 119, 122, 129–131, 138). Most were done todetermine the effects of various factors on the recovery rates ofairborne viruses. Although some studies indicate that the AGIhas a lower recovery potential than other samplers, such as thelarge-volume sampler (LVS) (94, 144), the Andersen sampler(127), and the slit sampler (126), other studies suggest that theAGI recovers concentrations of viruses that are equivalent tothose with the LVS (121), greater than those with theAndersen sampler (15), and greater than (30) or equal to (85)those with the slit sampler.

A recently developed impinger model, the “swirling aerosolcollector” (Fig. 3) (143), commercialized as the BioSampler,has also been used to study viral aerosols in the same way asAGIs (22, 72, 124). This newer impinger works much like theAGI, with a curved inlet tube and a vacuum in the flask to forcethe air through the sampler. The major difference is the num-ber and positions of nozzles. Instead of forcing air at sonicspeed through a single nozzle directed toward the base of theflask, as with the AGI, the BioSampler has three tangentialsonic nozzles. The collection liquid in the flask moves in aswirling motion during sampling. The sampling procedure isless violent and less destructive than that with the AGI-30sampler. Hermann et al. (73) studied the BioSampler andreported that it, as well as the AGI-30 sampler, collects signif-icantly more aerosolized porcine reproductive and respiratorysyndrome viruses than the AGI-4 sampler does. They alsoreported that the collection efficiency of the BioSampler issignificantly greater than that of the AGI-30 sampler after 15and 20 min of sampling (73). However, both the AGI-30 andthe BioSampler (as well as the frit bubbler) are surprisinglyinefficient at recovering submicrometer and ultrafine virusaerosols, with collection efficiencies of �10% for all threesamplers for the 30- to 100-nm particle size range (76).

Prehumidifying aerosols by using a humidifier bulb in com-bination with an AGI-30 sampler can have both positive andnegative effects on the recovery of infectious viruses from air-borne material, depending on the virus. The AGI-30 with hu-midifier bulb has been shown to increase the recovery of air-borne coliphages T3 (67, 137), T2, and T7 (16), as well asPasteurella pestis bacteriophages (67). Recovery increases five-fold at high RH and up to 1,000-fold at low RH when apeptone solution or saliva is used as the spray medium. How-ever, adding NaCl to the spray medium has no effect on therecovery of T3 (131). Prehumidification has no effect on therecovery of mengovirus 37A (Picornaviridae family; ssRNAvirus) or vesicular stomatitis virus (Rhabdoviridae family;ssRNA virus) but increases the recovery of bacteriophage S13(Microviridae family; ssDNA virus) at mid-range RH (137).One possible explanation for the beneficial effect of prehu-midification may be that the median size of the particles isincreased at high RH by the condensation of the water vaporon the airborne particles. The condensation may also have anegative effect by dissolving the particle nuclei, exposing theviruses to high concentrations of solutes, which may structur-ally damage the virus, leading to a loss of infectivity. No de-finitive explanation has yet been proposed to explain the effectof prehumidification on viral infectivity.

Filters

Since most samplers cannot efficiently trap particles with anaerodynamic size of �500 nm, filters are frequently used tosample airborne viruses. Filter efficiency is based on the fol-lowing five basic mechanisms: (i) interception, (ii) inertial im-paction, (iii) diffusion, (iv) gravitational settling, and (v) elec-trostatic attraction (75). While each mechanism depends onthe aerodynamic diameter of the particle, interception alsodepends on particle radius. Interception occurs when a particlefollows the streamline going around an obstacle but, becauseof its size, comes into contact with and is intercepted by the

VOL. 72, 2008 SAMPLING OF AIRBORNE VIRUSES 419

on May 8, 2020 by guest

http://mm

br.asm.org/

Dow

nloaded from

TA

BL

E2.

Sum

mar

yof

viru

sae

roso

lsam

plin

gst

udie

s

Sam

pler

type

Air

sam

plin

gra

teor

capa

city

Sam

plin

gen

viro

nmen

tV

irus

and/

ortr

acer

Part

icle

size

(�m

)A

naly

tical

met

hod

Com

men

tsA

eros

olso

urce

Ref

eren

ceY

rof

publ

icat

ion

Wel

lsai

rce

ntri

fuge

s20

0-ft

3ch

ambe

rIn

fluen

zavi

rus

stra

inPu

erto

Ric

o8

Inoc

ulat

ion

offe

rret

sA

llfe

rret

sin

ocul

ated

with

mat

eria

lco

llect

edfr

omth

eai

rco

ntra

cted

influ

enza

whe

nth

esa

mpl

ing

was

done

with

inan

hour

afte

rth

em

ater

ialw

assu

spen

ded

Ato

miz

er14

019

36

Sam

plin

gat

omiz

ers

540

and

1,08

0lit

ers

Poul

try

hous

esPn

eum

oenc

epha

litis

viru

sIn

ocul

atio

nof

chic

kem

bryo

sA

irsa

mpl

esco

ntai

ned

suffi

cien

tvi

ruse

sto

infe

ctch

ick

embr

yos

Poul

try

3519

48

Impi

nger

s11

liter

s/m

info

r15

to12

0s

Mod

ified

Hen

ders

onap

para

tus

and

rota

ting

stai

nles

sst

eeld

rum

Vac

cini

avi

rus,

influ

enza

Avi

rus

stra

inPR

8,V

enez

uela

neq

uine

ence

phal

omye

litis

(VE

E)

viru

s,po

liom

yelit

isvi

rus

type

I(B

runh

ilde)

,fo

rmal

in-k

illed

Pas

teur

ella

tula

rens

isce

llsla

bele

dw

ith32P

for

VE

Evi

rus

and

viru

ssu

spen

sion

labe

led

with

32P

for

the

othe

rth

ree

viru

ses

Inoc

ulat

ion

ofeg

gsor

mic

e,cu

lture

Air

born

evi

ruse

sw

ere

reco

vere

dup

to23

haf

ter

aero

soliz

atio

nat

diffe

rent

RH

and

tem

pera

ture

s

Col

lison

atom

izer

6519

61

Slit

sam

pler

(sol

idge

latin

med

ium

)1

ft3/m

info

r1

h1,

500-

liter

Plex

igla

sch

ambe

rB

acte

riop

hage

T3

0.5–

1(9

6%of

part

icle

s)C

ultu

reSl

itsa

mpl

erw

ith12

%ge

latin

med

ium

reco

vere

d�

75%

ofph

ages

com

pare

dto

AG

I-30

sam

pler

Vap

onef

rin

nebu

lizer

3019

61

AG

I-30

12.8

liter

s/m

info

r15

min

1,50

0-lit

erPl

exig

las

cham

ber

Bac

teri

opha

geT

30.

5–1

(96%

ofpa

rtic

les)

Cul

ture

Slit

sam

pler

with

a12

%ge

latin

med

ium

reco

vere

d�

75%

ofph

ages

com

pare

dto

AG

I-30

sam

pler

Vap

onef

rin

nebu

lizer

3019

61

Slit

sam

pler

1ft

3/m

info

r4

and

15m

inM

odifi

edH

ende

rson

appa

ratu

sV

EE

viru

sIn

ocul

atio

nof

mic

e,tit

ratio

nw

ithem

bryo

nate

dhe

n’s

eggs

,and

cultu

re

Res

ults

with

the

slit

sam

pler

and

the

AG

I-30

sam

pler

wer

eco

mpa

rabl

e

Col

lison

gene

rato

r85

1961

AG

I-30

12.5

liter

s/m

info

r4

and

15m

inM

odifi

edH

ende

rson

appa

ratu

sV

EE

viru

sIn

ocul

atio

nof

mic

e,tit

ratio

nw

ithem

bryo

nate

dhe

n’s

eggs

,and

cultu

re

Res

ults

with

the

slit

sam

pler

and

the

AG

I-30

sam

pler

wer

eco

mpa

rabl

e

Col

lison

gene

rato

r85

1961

Port

onim

ping

er10

to20

liter

s/m

info

r0.

5an

d1

min

14-f

t3ae

roso

lch

ambe

rw

ithfa

nB

acte

riop

hage

T3

Cul

ture

The

elec

tros

tatic

prec

ipita

tor

was

very

effic

ient

;ozo

neca

nbe

prod

uced

athi

ghR

Hw

ithth

eel

ectr

osta

ticpr

ecip

itato

r;a

0.1%

pept

one

solu

tion

can

prot

ect

phag

eT

3fr

omoz

one

Col

lison

spra

y99

1961

420 VERREAULT ET AL. MICROBIOL. MOL. BIOL. REV.

on May 8, 2020 by guest

http://mm

br.asm.org/

Dow

nloaded from

Ele

ctro

stat

icpr

ecip

itato

r5

to40

liter

s/m

info

r5

min

14-f

t3ae

roso

lch

ambe

rw

ithfa

nB

acte

riop

hage

T3

Cul

ture

The

elec

tros

tatic

prec

ipita

tor

was

very

effic

ient

;ozo

neca

nbe

prod

uced

athi

ghR

Hw

ithth

eel

ectr

osta

ticpr

ecip

itato

r;a

0.1%

pept

one

solu

tion

can

prot

ect

phag

eT

3fr

omoz

one

Col

lison

spra

y99

1961

Gla

sssa

mpl

erco

ntai

ning

tight

lypa

cked

dry

cott

on

20to

18,0

00lit

ers

Hos

pita

lV

ario

lavi

rus

Inoc

ulat

ion

ofch

ick

embr

yos

Vir

uses

wer

ere

cove

red

in1

of38

sam

ples

Hum

ans

9519

61

Mod

ified

capi

llary

impi

nger

s11

liter

s/m

info

r10

s4-

m3

cond

ition

edro

omB

acte

riop

hage

T5,

influ

enza

viru

s,po

liom

yelit

isvi

rus

5–6

(mea

nsi

ze5

cmfr

omth

eou

tlet)

Cul

ture

Rec

over

yde

pend

edon

the

aero

soliz

atio

nm

ediu

man

dth

eR

H,

but

the

effe

ctof

RH

did

not

depe

ndon

the

com

posi

tion

ofth

em

ediu

m;t

hesu

rviv

alcu

rves

atdi

ffere

ntR

Hw

ere

not

the

sam

efo

rin

fluen

zaan

dpo

liom

yelit

isvi

ruse

s

All-

glas

sin

dire

ct-

type

spra

y69

1962

AG

I-30

12.5

liter

s/m

info

r1

min

1,60

0-lit

erPl

exig

las

cham

ber

with

fan

Bac

teri

opha

geT

30.

5–5.

0(p

eak

at2.

0�

m)

Cul

ture

The

best

reco

very

was

athi

ghR

HH

artm

anat

omiz

er45

1964

Shor

t-st

emA

GI

12.0

liter

s/m

info

r5

to20

min

Hos

pita

lroo

ms

ofin

fect

edpa

tient

sV

irus

esas

soci

ated

with

resp

irat

ory

dise

ases

Cul

ture

Vir

uses

wer

ere

cove

red

in1

of23

tria

lsH

uman

s10

1964

Liq

uid

impi

nger

sA

GI-

412

.5lit

ers/

min

for

5m

inA

eros

olch

ambe

rB

acte

riop

hage

T1,

32P

Mas

sm

edia

ndi

amet

er,

0.2

Cul

ture

Rec

over

edth

em

ost

viab

leph

ages

,but

maj

orsa

mpl

elo

ss(3

0to

40%

)

Dau

treb

and

D30

1ae

roso

lgen

erat

or66

1965

Cap

illar

yim

ping

er2.

5L

/min

for

5m

inA

eros

olch

ambe

rB

acte

riop

hage

T1,

32P

Mas

sm

edia

ndi

amet

er,

0.2

Cul

ture

Rec

over

edth

em

ost

viab

leph

ages

,but

maj

orsa

mpl

elo

ss(3

0to

40%

)

Dau

treb

and

D30

1ae

roso

lgen

erat

or66

1965

Filt

ers

Che

mic

alC

orps

type

61

liter

/min

(8cm

/s)

for

5m

inA

eros

olch

ambe

rB

acte

riop

hage

T1,

32P

Mas

sm

edia

ndi

amet

er,

0.2

Cul

ture

Ver

yde

stru

ctiv

ebu

tm

ost

effic

ient

colle

ctio

nof

subm

icro

met

erai

rbor

nepa

rtic

les

Dau

treb

and

D30

1ae

roso

lgen

erat

or66

1965

Gla

ssfil

ter

pape

r(M

SA11

06B

H)

1lit

er/m

in(8

cm/s

)fo

r5

min

Aer

osol

cham

ber

Bac

teri

opha

geT

1,32P

Mas

sm

edia

ndi

amet

er,

0.2

Cul

ture

Ver

yde

stru

ctiv

ebu

tm

ost

effic

ient

colle

ctio

nof

subm

icro

met

erai

rbor

nepa

rtic

les

Dau

treb

and

D30

1ae

roso

lgen

erat

or66

1965

Fri

tted

bubb

ler

1lit

er/m

info

r5

min

Aer

osol

cham

ber

Bac

teri

opha

geT

1,32P

Mas

sm

edia

ndi

amet

er,

0.2

Cul

ture

Impo

rtan

tsa

mpl

elo

ss(�

80%

)D

autr

eban

dD

301

aero

solg

ener

ator

6619

65

Port

onim

ping

er10

liter

s/m

info

r5

to10

min

Hos

pita

lroo

ms

Smal

lpox

viru

sIn

ocul

atio

nof

chic

kem

bryo

sL

arge

part

icle

sfr

ompa

tient

s’be

dcl

othe

sse

emed

tobe

mos

tlyre

spon

sibl

efo

rco

ntam

inat

ion

ofth

eai

rin

the

vici

nity

ofpa

tient

s

Hum

ans

4119

65

Con

tinue

don

follo

win

gpa

ge

VOL. 72, 2008 SAMPLING OF AIRBORNE VIRUSES 421

on May 8, 2020 by guest

http://mm

br.asm.org/

Dow

nloaded from

TA

BL

E2—

Con

tinue

d

Sam

pler

type

Air

sam

plin

gra

teor

capa

city

Sam

plin

gen

viro

nmen

tV

irus

and/

ortr

acer

Part

icle

size

(�m

)A

naly

tical

met

hod

Com

men

tsA

eros

olso

urce

Ref

eren

ceY

rof

publ

icat

ion

Petr

idis

h(s

ettli

ngpl

ates

)5

to10

min

Hos

pita

lroo

ms

Smal

lpox

viru

sIn

ocul

atio

nof

chic

kem

bryo

sL

arge

part

icle

sfr

ompa

tient

s’be

dcl

othe

sse

emed

tobe

mos

tlyre

spon

sibl

efo

rco

ntam

inat

ion

ofth

eai

rin

the

vici

nity

ofpa

tient

s

Hum

ans

4119

65

Top

part

ofan

And

erse

nsa

mpl

er

10lit

ers/

min

for

5to

10m

inH

ospi

talr

oom

sSm

allp

oxvi

rus

Inoc

ulat

ion

ofch

ick

embr

yos

Lar

gepa

rtic

les

from

patie

nts’

bed

clot

hes

seem

edto

bem

ostly

resp

onsi

ble

for

cont

amin

atio

nof

the

air

inth

evi

cini

tyof

patie

nts

Hum

ans

4119

65

Cap

illar

yim

ping

ers

4-m

3co

nditi

oned

room

Mea

sles

viru

s5

(ave

rage

diam

eter

)C

ultu

reR

ecov

ery

depe

nded

onR

H34

1965

LV

S1,

785

ft3

for

5m

in1,

440-

ft3

Arm

yho

spita

lroo

mA

deno

viru

sty

pe4

Cul

ture

Via

ble

viru

ses

wer

ere

cove

red

atve

rylo

wco

ncen

trat

ions

Hum

ans

1119

66

LV

S10

,000

liter

s/m

info

r3.

5m

in32

,800

-lite

rro

omw

ithat

omiz

edvi

rus

susp

ensi

on

Cox

sack

ievi

rus

Aty

pe21

,sod

ium

fluor

esce

in

1–15

Cul

ture

LV

Sco

nsis

tent

lyre

cove

red

mor

eflu

ores

cein

than

the

AG

I-30

did

Uni

vers

ityof

Chi

cago

Tox

icity

Lab

orat

orie

sat

omiz

er

5419

66

AG

I-30

12.5

liter

s/m

info

r1

min

32,8

00-li

ter

room

with

atom

ized

viru

ssu

spen

sion

Cox

sack

ievi

rus

Aty

pe21

,sod

ium

fluor

esce

in

1–15

Cul

ture

LV

Sco

nsis

tent

lyre

cove

red

mor

eflu

ores

cein

than

the

AG

I-30

did

Uni

vers

ityof

Chi

cago

Tox

icity

Lab

orat

orie

sat

omiz

er

5419

66

Ele

ctro

stat

icpr

ecip

itato

rR

oom

sco

ntai

ning

infe

cted

rabb

itsR

abbi

tpo

xvi

rus

stra

inU

trec

htan

dR

ocke

felle

rIn

stitu

test

rain

Cul

ture

Low

conc

entr

atio

nsw

ere

reco

vere

dw

ithth

eel

ectr

osta

ticpr

ecip

itato

r,an

dno

new

asre

cove

red

with

the

impi

nger

Rab

bits

141

1966

Rai

sed

glas

sim

ping

erR

oom

sco

ntai

ning

infe

cted

rabb

itsR

abbi

tpo

xvi

rus

stra

inU

trec

htan

dR

ocke

felle

rIn

stitu

test

rain

Cul

ture

Low

conc

entr

atio

nsw

ere

reco

vere

dw

ithth

eel

ectr

osta

ticpr

ecip

itato

r,an

dno

new

asre

cove

red

with

the

impi

nger

Rab

bits

141

1966

AG

I-4

12.5

liter

s/m

info

r5

min

Aer

osol

cham

ber

Bac

teri

opha

geT

1�

1C

ultu

reT

heA

GI-

4sa

mpl

erre

cove

red

mor

eai

rbor

nevi

ruse

sth

anty

pe6

filte

rpa

per

did;

ions

affe

cted

the

stab

ility

ofsu

bmic

rom

eter

T1

phag

e

Dau

treb

ande

aero

sol

gene

rato

r64

1966

Che

mic

alC

orps

type

6fil

ter

pape

r

5m

inat

1.0

liter

/m

inA

eros

olch

ambe

rB

acte

riop

hage

T1

�1

Cul

ture

The

AG

I-4

sam

pler

reco

vere

dm

ore

airb

orne

viru

ses

than

type

6fil

ter

pape

rdi

d;io

nsaf

fect

edth

est

abili

tyof

subm

icro

met

erT

1ph

age

Dau

treb

ande

aero

sol

gene

rato

r64

1966

AG

I-30

12.5

liter

s/m

info

r5

min

Rot

atin

gdr

umC

olum

bia

SKgr

oup

viru

ses

Cul

ture

Inac

tivat

ion

ofth

eai

rbor

nevi

ruse

sde

pend

edon

RH

Mod

ified

Wel

lsre

fluxi

ngat

omiz

er4

1966

AG

I12

liter

s/m

in(3

-lite

rsa

mpl

es)

140-

liter

alum

inum

drum

New

cast

ledi

seas

evi

rus,

infe

ctio

usbo

vine

rhin

otra

chei

tisvi

rus,

vesi

cula

rst

omat

itis

viru

s,T

3ph

age,

rhod

amin

eB

Cul

ture

Bes

tre

cove

ryat

low

RH

for

New

cast

ledi

seas

evi

rus

and

vesi

cula

rst

omat

itis

viru

san

dat

high

RH

for

bovi

nerh

inot

rach

eitis

viru

san

dT

3

De

Vilb

iss

no.4

0ne

buliz

er12

219

67

LV

S10

,000

liter

s/m

info

r6

or7

min

1,44

0-ft

3A

rmy

hosp

italr

oom

Ade

novi

rus

Cul

ture

Rec

over

yof

one

vira

luni

tpe

r20

4to

1,97

0ft

3of

air

in10

of14

sam

ples

Hum

ans

1319

67

422 VERREAULT ET AL. MICROBIOL. MOL. BIOL. REV.

on May 8, 2020 by guest

http://mm

br.asm.org/

Dow

nloaded from

AG

I-4

10lit

ers/

min

for

10m

inF

rio

Cav

e,T

XR

abie

svi

rus

Inoc

ulat

ion

ofan

imal

sR

abie

svi

rus

was

isol

ated

from

four

ofei

ght

sam

ples

colle

cted

with

the

LV

SL

and

from

none

ofth

efiv

eA

GI-

4sa

mpl

es

Bat

s14

419

68

LV

Sm

odel

L10

,000

liter

s/m

info

r10

to30

min

Fri

oC

ave,

TX

Rab

ies

viru

sIn

ocul

atio

nof

anim

als

Rab

ies

viru

sw

asis

olat

edfr

omfo

urof

eigh

tsa

mpl

esco

llect

edw

ithth

eL

VS

Lan

dfr

omno

neof

the

five

AG

I-4

sam

ples

Bat

s14

419

68

Impi

nger

2m

in50

0-lit

erro

tatin

gto

roid

drum

Men

govi

rus

37A

Cul

ture

Inac

tivat

ion

ofth

evi

rus

was

due

toda

mag

eto

the

viri

onst

ruct

ure

Mod

ified

Wel

lsre

fluxi

ngat

omiz

er5

1968

LV

Sw

ithad

ded

prei

mpa

ctor

357

ft3

for

1m

inor

full

room

for

3m

in

986-

ft3

room

Ade

novi

rus

type

4D

epen

ded

onin

divi

dual

subj

ects

Cul

ture

Rec

over

yof

one

vira

luni

tpe

r86

to44

8ft

3of

air

in3

of11

sam

ples

;inf

ectio

uspa

rtic

les

wer

epr

esen

tin

both

smal

l-an

dla

rge-

part

icle

aero

sols

Hum

ans

1219

68

LV

Sm

odel

M1,

000

liter

s/m

info

r1

h3.

65-

by3.

35-

by3.

05-m

loos

ebo

xes

Fou

rst

rain

sof

FM

Dvi

rus

(01

Lom

bard

y,01

Swis

s1/

66,0

1B

FS

1860

,and

02B

resc

ia)

Cul

ture

and

inoc

ulat

ion

ofun

wea

ned

mic

e

The

amt

ofvi

rus

reco

vere

dby

the

impi

nger

was

sim

ilar

toth

atre

cove

red

byth

eL

VS

Cat

tle,s

heep

,and

pigs

121

1969

Mul

tista

geliq

uid

impi

nger

55L

/min

for

45m

in3.

65�

3.35

�3.

05m

loos

ebo

xes

Fou

rst

rain

sof

FM

Dvi

rus

(01

Lom

bard

y,01

Swis

s1/

66,0

1B

FS

1860

,and

02B

resc

ia)

Cul

ture

and

inoc

ulat

ion

ofun

wea

ned

mic

e

The

amt

ofvi

rus

reco

vere

dby

the

impi

nger

was

sim

ilar

toth

atre

cove

red

byth

eL

VS

Cat

tle,s

heep

,and

pigs

121

1969

AG

I-30

Dua

l-aer

osol

tran

spor

tap

para

tus

T3

and

S13

colip

hage

s,m

engo

viru

s-37

A,

and

vesi

cula

rst

omat

itis

viru

s

Cul

ture

Whi

leth

ere

cove

ryof

som

evi

ruse

sfr

omae

roso

lsw

asin

crea

sed

bypr

ehum

idifi

catio

n,no

gene

raliz

atio

nco

uld

bedr

awn

Mod

ified

Wel

lsre

flux

atom

izer

137

1969

AG

I-30

with

ahu

mid

ifier

bulb

Dua

l-aer

osol

tran

spor

tap

para

tus

T3

and

S13

colip

hage

s,m

engo

viru

s-37

A,

and

vesi

cula

rst

omat

itis

viru

s

Cul

ture

Whi

leth

ere

cove

ryof

som

evi

ruse

sfr

omae

roso

lsw

asin

crea

sed

bypr

ehum

idifi

catio

n,no

gene

raliz

atio

nco

uld

bedr

awn

Mod

ified

Wel

lsre

flux

atom

izer

137

1969

AG

I-30

12.5

liter

s/m

inT

wo

500-

liter

rota

ting

drum

sB

acte

riop

hage

T3

Cul

ture

Vir

usre

cove

ryw

asbe

stat

high

erR

HA

tom

izer

desi

gned

byth

ela

b(s

imila

rto

the

Wel

lsat

omiz

er)

138

1969

Rai

sed

impi

nger

sSe

mlik

iFor

est

viru

s,w

ashe

dB

acill

ussu

btili

ssp

ores

Cul

ture

Bes

tre

cove

ryat

low

RH

,w

ithgo

odpr

otec

tive

effe

ctof

poly

hydr

oxy

com

poun

dsat

low

RH

Col

lison

spra

y17

1969

AG

I-30

,with

orw

ithou

ta

hum

idifi

erbu

lb

Tw

o50

0-lit

erro

tatin

gdr

ums

Bac

teri

opha

geT

3an

dP

aste

urel

lape

stis

bact

erio

phag

e

1–5

Cul

ture

Preh

umid

ifica

tion

ofth

eai

rsa

mpl

essi

gnifi

cant

lyen

hanc

edth

ere

cove

ryof

airb

orne

viru

ses

Ato

miz

erde

sign

edby

the

lab

(sim

ilar

toth

eW

ells

atom

izer

)

6719

69

AG

I-30

1m

in50

0-lit

erro

tatin

gto

roid

drum

Bac

teri

opha

ges

S13

and

MS2

Cul

ture

RH

and

aero

solc

ompo

sitio

nha

da

maj

orim

pact

onvi

ralr

ecov

ery

Mod

ified

Wel

lsre

flux

atom

izer

4219

70

AG

I-30

with

hum

idifi

erbu

lb

1m

in50

0-lit

erro

tatin

gto

roid

drum

Bac

teri

opha

ges

S13

and

MS2

Cul

ture

RH

and

aero

solc

ompo

sitio

nha

da

maj

orim

pact

onvi

ralr

ecov

ery

Mod

ified

Wel

lsre

flux

atom

izer

4219

70

Con

tinue

don

follo

win

gpa

ge

VOL. 72, 2008 SAMPLING OF AIRBORNE VIRUSES 423

on May 8, 2020 by guest

http://mm

br.asm.org/

Dow

nloaded from

TA

BL

E2—

Con

tinue

d

Sam

pler

type

Air

sam

plin

gra

teor

capa

city

Sam

plin

gen

viro

nmen

tV

irus

and/

ortr

acer

Part

icle

size

(�m

)A

naly

tical

met

hod

Com

men

tsA

eros

olso

urce

Ref

eren

ceY

rof

publ

icat

ion

Slit

sam

pler

with

adhe

sive

surf

ace

petr

idi

shes

Roo

mco

ntai

ning

infe

cted

rabb

its(4

,500

ft3)

Rab

bit

poxv

irus

stra

inU

trec

htC

ultu

reM

ore

viru

ses

wer

ere

cove

red

inth

eto

pst

ages

ofth

eA

nder

sen

sam

pler

than

inth

elo

wer

stag

es;b

oth

the

slit

sam

pler

san

dth

eA

nder

sen

sam

pler

succ

essf

ully

reco

vere

dai

rbor

nevi

ruse

s

Rab

bits

128

1970

Aut

omat

edsl

itsa

mpl

erw

ithad

hesi

vesu

rfac

epe

tri

dish

es

1h

(60

ft3)

Roo

mco

ntai

ning

infe

cted

rabb

its(4

,500

ft3)

Rab

bit

poxv

irus

stra

inU

trec

htC

ultu

reM

ore

viru

ses

wer

ere

cove

red

inth

eto

pst

ages

ofth

eA

nder

sen

sam

pler

than

inth

elo

wer

stag

es;b

oth

the

slit

sam

pler

san

dth

eA

nder

sen

sam

pler

succ

essf

ully

reco

vere

dai

rbor

nevi

ruse

s

Rab

bits

128

1970

And

erse

nsa

mpl

erw

ithad

hesi

vesu

rfac

epe

tri

dish

es

1h

(60

to12

0ft

3)

Roo

mco

ntai

ning

infe

cted

rabb

its(4

,500

ft3)

Rab

bit

poxv

irus

stra

inU

trec

htC

ultu

reM

ore

viru

ses

wer

ere

cove

red

inth

eto

pst

ages

ofth

eA

nder

sen

sam

pler

than

inth

elo

wer

stag

es;b

oth

the

slit

sam

pler

san

dth

eA

nder

sen

sam

pler

succ

essf

ully

reco

vere

dai

rbor

nevi

ruse

s

Rab

bits

128

1970

Mod

ified

And

erse

nsa

mpl

er1

ft3/m

inA

eros

olap

para

tus

(Hen

ders

on)

Vac

cini

avi

rus,

polio

viru

sC

ultu

reT

hem

odifi

edA

nder

sen

sam

pler

gave

the

best

perc

enta

gere

cove

ry,f

ollo

wed

byth

eim

ping

eran

dth

esl

itsa

mpl

er;

the

adhe

sive

surf

ace

sam

plin

gm

etho

din

dica

ted

the

num

ber

ofvi

rus-

bear

ing

part

icle

s

Spra

y12

719

70

Slit

sam

pler

with

sucr

ose,

glyc

erol

,and

bovi

nese

rum

albu

min

(SG

B)

med

ium

1ft

3/m

info

r0.

5to

10m

inA

eros

olap

para

tus

(Hen

ders

on)

Vac

cini

avi

rus,

polio

viru

sC

ultu

reT

hem

odifi

edA

nder

sen

sam

pler

gave

the

best

perc

enta

gere

cove

ry,f

ollo

wed

byth

eim

ping

eran

dth

esl

itsa

mpl

er;

the

adhe

sive

surf

ace

sam

plin

gm

etho

din

dica

ted

the

num

ber

ofvi

rus-

bear

ing

part

icle

s

Spra

y12

719

70

Port

onim

ping

er11

.5lit

ers/

min

Aer

osol

appa

ratu

s(H

ende

rson

)V

acci

nia

viru

s,po

liovi

rus

Cul

ture

The

mod

ified

And

erse

nsa

mpl

erga

veth

ebe

stpe

rcen

tage

reco

very

,fol

low

edby

the

impi

nger

and

the

slit

sam

pler

;th

ead

hesi

vesu

rfac

esa

mpl

ing

met

hod

indi

cate

dth

enu

mbe

rof

viru

s-be

arin

gpa

rtic

les

Spra

y12

719

70

AG

I6

liter

s/m

in65

0-lit

erae

roso

lch

ambe

rV

EE

viru

s1.

5(m

edia

ndi

amet

er)

Cul

ture

Sodi

umflu

ores

cein

affe

cted

the

reco

very

ofV

EE

viru

sin

the

pres

ence

(or

not)

ofsi

mul

ated

sola

rra

diat

ion,

depe

ndin

gon

RH

FK

-8gu

n18

1971

Port

onra

ised

impi

nger

s12

0-lit

erro

tatin

gdr

umSe

mlik

iFor

est

viru

s,L

anga

tvi

rus,

polio

viru

sSa

bin

type

Ist

rain

,T7

colip

hage

,32P-

labe

led

T7

colip

hage

orra

dioa

ctiv

eso

dium

phos

phat

e

Cul

ture

Salts

inth

eae

roso

lizat

ion

med

ium

influ

ence

dth

ere

cove

ryof

som

evi

ruse

sat

diffe

rent

RH

;pr

ehum

idifi

catio

nen

hanc

edth

ere

cove

ryof

T7

colip

hage

and

polio

viru

s

Thr

ee-je

tC

ollis

onsp

ray

1619

71

424 VERREAULT ET AL. MICROBIOL. MOL. BIOL. REV.

on May 8, 2020 by guest

http://mm

br.asm.org/

Dow

nloaded from

May

’ssu

bson

icim

ping

er12

0-lit

erro

tatin

gdr

umSe

mlik

iFor

est

viru

s,L

anga

tvi

rus,

polio

viru

sSa

bin

type

Ist

rain

,T7

colip

hage

,32P-

labe

led

T7

colip

hage

orra

dioa

ctiv

eso

dium

phos

phat

e

Cul

ture

Salts

inth

eae

roso

lizat

ion

med

ium

influ

ence

dth

ere

cove

ryof

som

evi

ruse

sat

diffe

rent

RH

;pr

ehum

idifi

catio

nen

hanc

edth

ere

cove

ryof

T7

colip

hage

and

polio

viru

s

Thr

ee-je

tC

ollis

onsp

ray

1619

71

AG

I12

.9lit

ers/

min

Cha

mbe

r(a

eros

olin

ocul

ator

)T

ype

Ain

fluen

zavi

rus

stra

inPR

8,so

dium

fluor

esce

in

50%

Egg

infe

ctiv

edo

seN

osi

gnifi

cant

diffe

renc

ew

asno

ted

inth

eph

ysic

altr

acer

orvi

ralr

ecov

ery

ofth

etw

osa

mpl

ers

Col

lison

atom

izer

5519

71

Ship

eim

ping

er10

liter

s/m

inC

ham

ber

(aer

osol

inoc

ulat

or)

Typ

eA

influ

enza

viru

sst

rain

PR8,

sodi

umflu

ores

cein

50%

Egg

infe

ctiv

edo

seN

osi

gnifi

cant

diffe

renc

ew

asno

ted

inth

eph

ysic

altr

acer

orvi

ralr

ecov

ery

ofth

etw

osa

mpl

ers

Col

lison

atom

izer

5519

71

Rai

sed

impi

nger

s11

liter

s/m

in10

-ft

by10

-ft

by10

-ft

room

s,po

ultr

yho

uses

with

infe

cted

chic

kens

,an

da

mod

ified

Hen

ders

onap

para

tus

with

a50

0-lit

erro

tatin

gst

ainl

ess

drum

Thr

eest

rain

sof

New

cast

ledi

seas

evi

rus

(Her

ts’3

3/56

,E

astw

ood

’67,

and

Ess

ex’7

0),B

acill

usgl

obig

iisp

ores

Inoc

ulat

ion

ofeg

gsV

irus

esw

ere

reco

vere

dw

ithal

lth

esa

mpl

ers,

but

unde

rdi

ffere

ntsa

mpl

ing

cond

ition

s

Poul

try

orC

ollis

onat

omiz

er77

1973

LV

AS

1,00

0lit

ers/

min

10-f

tby

10-f

tby

10-f

tro

oms,

poul

try

hous

esw

ithin

fect

edch

icke

ns,

and

am

odifi

edH

ende

rson

appa

ratu

sw

itha

500-

liter

rota

ting

stai

nles

sdr

um

Thr

eest

rain

sof

New

cast

ledi

seas

evi

rus

(Her

ts’3

3/56

,E

astw

ood

’67,

and

Ess

ex’7

0),B

acill

usgl

obig

iisp

ores

Inoc

ulat

ion

ofeg

gsV

irus

esw

ere

reco

vere

dw

ithal

lth

esa

mpl

ers,

but

unde

rdi

ffere

ntsa

mpl

ing

cond

ition

s

Poul

try

orC

ollis

onat

omiz

er77

1973

Cas

cade

impa

ctor

17lit

ers/

min

10-f

tby

10-f

tby

10-f

tro

oms,

poul

try

hous

esw

ithin

fect

edch

icke

ns,

and

am

odifi

edH

ende

rson

appa

ratu

sw

itha

500-

liter

rota

ting

stai

nles

sdr

um

Thr

eest

rain

sof

New

cast

ledi

seas

evi

rus

(Her

ts’3

3/56

,E

astw

ood

’67,

and

Ess

ex’7

0),B

acill

usgl

obig

iisp

ores

Inoc

ulat

ion

ofeg

gsV

irus

esw

ere

reco

vere

dw

ithal

lth

esa

mpl

ers,

but

unde

rdi

ffere

ntsa

mpl

ing

cond

ition

s

Poul

try

orC

ollis

onat

omiz

er77

1973

Mul

tista

geliq

uid

impi

nger

55lit

ers/

min

10-f

tby

10-f

tby

10-f

tro

oms,

poul

try

hous

esw

ithin

fect

edch

icke

ns,

and

am

odifi

edH

ende

rson

appa

ratu

sw

itha

500-

liter

rota

ting

stai

nles

sdr

um

Thr

eest

rain

sof

New

cast

ledi

seas

evi

rus

(Her

ts’3

3/56

,E

astw

ood

’67,

and

Ess

ex’7

0),B

acill

usgl

obig

iisp

ores

Inoc

ulat

ion

ofeg

gsV

irus

esw

ere

reco

vere

dw

ithal

lth

esa

mpl

ers,

but

unde

rdi

ffere

ntsa

mpl

ing

cond

ition

s

Poul

try

orC

ollis

onat

omiz

er77

1973

AG

I-30

1m

in50

0-lit

erro

tatin

gdr

umSi

mia

nvi

rus

402

(mea

ndi

amet

er)

Cul

ture

The

viru

ses

wer

est

able

atal

lR

Hte

sted

at21

°Cbu

tw

ere

inac

tivat

edat

mid

-ran

geR

Hat

32°C

Col

lison

thre

e-je

tat

omiz

er6

1973

Rai

sed

Port

onim

ping

er11

.5lit

ers/

min

for

1m

in2,

000-

liter

doub

le-

wal

led

stat

icsy

stem

with

fan

Bac

teri

opha

geM

S22

(bef

ore

evap

orat

ion)

Cul

ture

The

com

posi

tion

ofth

eae

roso

lizat

ion

med

ium

can

affe

ctvi

rus

reco

very

Dir

ect

spra

yap

para

tus

(FK

8)13

019

73

Con

tinue

don

follo

win

gpa

ge

VOL. 72, 2008 SAMPLING OF AIRBORNE VIRUSES 425

on May 8, 2020 by guest

http://mm

br.asm.org/

Dow

nloaded from

TA

BL

E2—

Con

tinue

d

Sam

pler

type

Air

sam

plin

gra

teor

capa

city

Sam

plin

gen

viro

nmen

tV

irus

and/

ortr

acer

Part

icle

size

(�m

)A

naly

tical

met

hod

Com

men

tsA

eros

olso

urce

Ref

eren

ceY

rof

publ

icat

ion

Low

erst

age

ofa

mul

tista

geliq

uid

impi

nger

275

liter

sin

5m

in2,

000-

liter

stat

icai

rca

bine

tw

ithfa

nPo

liovi

rus

type

Ist

rain

LSc

2ab,

fluor

esce

inC

ultu

reT

hein

fect

ivity

ofth

evi

rus

depe

nded

onth

eR

H,b

utth

ein

fect

ivity

ofth

eR

NA

rem

aine

dun

chan

ged

FK

8di

rect

-typ

ene

buliz

er32

1973

Mul

tista

geim

ping

er30

min

Loo

sebo

xes

Swin

eve

sicu

lar

dise

ase

viru

sC

ultu

reV

irus

esw

ere

reco

vere

din

the

top,

mid

dle,

and

bott

omst

ages

ofth

em

ultis

tage

impi

nger

Pigs

120

1974

May

’sm

ultis

tage

liqui

dim

ping

er27

5lit

ers

in5

min

2,00

0-lit

erdo

uble

-w

alle

dst

ainl

ess

stee

lta

nk

Enc

epha

lom

yoca

rditi

svi

rus

Cul

ture

with

inta

ctvi

ruse

sor

infe

ctio

usR

NA

,he

mag

glut

inat

ion

activ

ity,a

ndan

tibod

y-bl

ocki

ngac

tivity

Vir

uses

wer

ere

cove

red

from

the

air;

the

infe

ctiv

ityof

the

viru

sde

crea

sed,

but

the

vira

lRN

Aw

asun

affe

cted

FK

-8di

rect

-typ

esp

ray

gun

3319

74

Port

onim

ping

er2,

000-

liter

stat

icsy

stem

Bac

teri

opha

geT

3C

ultu

reV

irus

esw

ere

reco

vere

dw

ithan

dw

ithou

tpr

ehum

idifi

catio

nof

the

aero

sols

FK

-8sp

ray

gun

131

1974

Slit

sam

pler

with

SGB

med

ium

1ft

3/m

info

r30

to60

min

War

dsof

smal

lpox

isol

atio

nho

spita

lV

ario

lavi

rus

Inoc

ulat

ion

ofhe

n’s

eggs

,cu

lture

The

slit

sam

pler

and

sedi

men

tatio

npl

ates

gave

posi

tive

resu

lts;

the

impi

nger

sam

ples

wer

eal

lneg

ativ

e

Hum

ans

126

1974

Port

onim

ping

er11

.5lit

ers/

min

for

15m

inW

ards

ofsm

allp

oxis

olat

ion

hosp

ital

Var

iola

viru

sIn

ocul

atio

nof

hen’

seg

gs,

cultu

re

The

slit

sam

pler

and

sedi

men

tatio

npl

ates

gave

posi

tive

resu

lts;

the

impi

nger

sam

ples

wer

eal

lneg

ativ

e

Hum

ans

126

1974

Sedi

men

tatio

npl

ates

with

SGB

med

ium

Man

yho

urs

ata

time

War

dsof

smal

lpox

isol

atio

nho

spita

lV

ario

lavi

rus

Inoc

ulat

ion

ofhe

n’s

eggs

,cu

lture

The

slit

sam

pler

and

sedi

men

tatio

npl

ates

gave

posi

tive

resu

lts;

the

impi

nger

sam

ples

wer

eal

lneg

ativ

e

Hum

ans

126

1974

LV

S1,

000

liter

s/m

info

r30

to12

0m

in

Fie

ldin

prox

imity

tow

aste

wat

ertr

eatm

ent

plan

ts

Bac

teri

opha

ges

ofE

.co

list

rain

sC

3000

and

K-1

2H

frD

Cul

ture

(mos

t-pr

obab

le-n

umbe

ran

dpl

aque

coun

ts)

Bot

hth

em

ultis

litim

ping

eran

dth

eL

VS

succ

essf

ully

reco

vere

dai

rbor

neba

cter

ioph

ages

Was

tew

ater

trea

tmen

tfa

cilit

ies

5119

76

Mul

tislit

impi

nger

1,00

0lit

ers/

min

for

35m

inF

ield

inpr

oxim

ityto

was

tew

ater

trea

tmen

tpl

ants

Bac

teri

opha

ges

ofE

.co

list

rain

sC

3000

and

K-1

2H

frD

Cul

ture

(mos

t-pr

obab

le-n

umbe

ran

dpl

aque

coun

ts)

Bot

hth

em

ultis

litim

ping

eran

dth

eL

VS

succ

essf

ully

reco

vere

dai

rbor

neba

cter

ioph

ages

Was

tew

ater

trea

tmen

tfa

cilit

ies

5119

76

Mem

bran

efil

ter

(0.4

5-�

mpo

resi

ze)

14lit

ers/

min

for

3to

30m

inin

the

cham

ber

and

23to

25lit

ers/

min

for

30to

45m

inin

the

hem

odia

lysi

sce

nter

Aer

osol

cham

ber

and

a20

-bed

hem

odia

lysi

sce

nter

Hep

atiti

sB

viru

ssu

rfac

ean

tigen

(HB

sAg)

,Bac

illus

subt

ilis

var.

nige

r(i

nch

ambe

r)

Rad

ioim

mun

oass

ayH

BsA

gw

asde

tect

edin

cham

ber

aero

sols

but

not

inth

esa

mpl

esfr

omth

ehe

mod

ialy

sis

cent

er

Air

flow

dire

cted

ondu

stre

serv

oir,

nebu

lizer

,or

hum

ans

107

1976

426 VERREAULT ET AL. MICROBIOL. MOL. BIOL. REV.

on May 8, 2020 by guest

http://mm

br.asm.org/

Dow

nloaded from

AG

I-30

12.5

liter

sin

1m

inT

wo

208-

liter

cham

bers

Influ

enza

Avi

rus

stra

inW

SNH

Inoc

ulat

ion

ofem

bryo

nate

deg

gs,c

ultu

re

Diff

eren

ces

wer

eno

ted

inpe

rcen

tage

sof

vira

lrec

over

yde

pend

ing

onR

H

Wel

lsre

fluxi

ngat

omiz

er11

819

76

Rai

sed

Port

onim

ping

er1

or5

min

Cha

mbe

r(5

0or

2,00

0lit

ers)

Bac

teri

opha

ge�

X17

4,B

acill

usgl

obig

iisp

ores

,or

notr

acer

Cul

ture

Bac

teri

opha

gein

fect

ivity

decr

ease

din

the

pres

ence

ofoz

one

Thr

ee-je

tC

ollis

onne

buliz

eror

spra

ygu

n(F

K-8

type

)

9619

77

LV

S1,

100

liter

s/m

in18

-m3

anim

alla

bora

tory

hous

ing

infe

cted

mic

e

Poly

omav

irus

Mou

sean

tibod

ypr

oduc

tion

test

san

dcu

lture

Air

born

evi

ruse

sw

ere

dete

cted

with

the

LV

Sin

four

ofsi

xsa

mpl

es;n

oai

rbor

nevi

ruse

sw

ere

reco

vere

dw

ithth

eA

GI-

4sa

mpl

er

Infe

cted

mic

e94

1978

AG

I-4

12.3

liter

s/m

in18

-m3

anim

alla

bora

tory

hous

ing

infe

cted

mic

e

Poly

omav

irus

Mou

sean

tibod

ypr

oduc

tion

test

san

dcu

lture

Air

born

evi

ruse

sw

ere

dete

cted

with

the

LV

Sin

four

ofsi

xsa

mpl

es;n

oai

rbor

nevi

ruse

sw

ere

reco

vere

dw

ithth

eA

GI-

4sa

mpl

er

Infe

cted

mic

e94

1978

Lar

ge-v

olum

eae

roje

t-ge

nera

lliq

uid

scru

bber

15to

20m

inat

600

liter

s/m

inIn

the

vici

nity

ofan

efflu

ent-

irri

gate

dfie

ld

Ent

eric

viru

ses

Cul

ture

Fou

rof

12sa

mpl

esta

ken

40m

dow

nwin

dfr

omth

eae

roso

lsou

rce

wer

epo

sitiv

efo

rec

hovi

rus

7

Sew

age

spri

nkle

rs12

519

78

AG

I-30

18s

200-

liter

stai

nles

sst

eel

rota

ting

drum

Para

influ

enza

viru

sty

pe3,

bovi

nead

enov

irus

type

3,rh

odam

ine

Cul

ture

Vir

uses

wer

ere

cove

red

with

diffe

rent

effic

ienc

ies

that

depe

nded

onne

buliz

atio

nm

ediu

m,R

H,a

ndam

bien

tte

mpe

ratu

re

Dev

ilbis

s40

nebu

lizer

4719

79

LV

S1,

000

liter

s/m

info

r30

min

(6to

8sa

mpl

esfr

omea

chsa

mpl

erw

ere

pool

ed;

eigh

tsa

mpl

esw

ere

oper

ated

sim

ulta

neou

sly)

Fie

ldin

prox

imity

toa

sour

ceof

spra

yir

riga

tion

ofw

aste

wat

er

Ent

eric

viru

ses

Cul

ture

Low

conc

entr

atio

nsof

colip

hage

s,po

liovi

rus,

and

Cox

sack

ievi

rus

wer

ere

cove

red

Sew

age

spri

nkle

rs97

1979

AG

I-30

18s

200-

liter

stai

nles

sst

eel

rota

ting

drum

Infe

ctio

usbo

vine

rhin

otra

chei

tisvi

rus

stra

inC

oope

r,rh

odam

ine

B

Und

er5

(dia

met

er)

(ove

r88

%of

the

part

icle

s)

Cul

ture

The

deca

yra

tede

pend

edon

RH

and

the

aero

soliz

atio

nm

ediu

m

Dev

ilbis

s40

nebu

lizer

4819

79

Mem

bran

efil

ter

(0.4

5-�

mpo

resi

ze)

15lit

ers/

min

for

the

dura

tion

ofth

etr

eatm

ent

(3to

13m

in)

Den

talu

nit,

whi

letr

eatin

gin

fect

edpa

tient

s

HB

sAg

Rad

ioim

mun

oass

ayN

one

ofth

e40

sam

ples

was

posi

tive

for

HB

sAg

Hum

ans

106

1979

AG

I-30

12.5

liter

s/m

info

r1

min

6,20

0-lit

erst

atic

aero

solc

ham

ber

Japa

nese

Ben

ceph

aliti

svi

rus

4.0

(med

ian

diam

eter

)C

ultu

reV

iral

reco

very

was

inve

rsel

yre

late

dto

RH

FK

-8at

omiz

er86

1980

AG

I2

to5

min

1,00

0-lit

erst

ainl

ess

stee

ldyn

amic

aero

solt

oroi

dw

ithm

ixin

gch

ambe

r

Reo

viru

s,B

acill

ussu

btili

sva

r.ni

ger

spor

es

Mea

ndi

amet

ers

of2

for

Col

lison

nebu

lizer

and

5fo

rC

hica

goat

omiz

er

Cul

ture

Reo

viru

spa

rtic

les

wer

ere

lativ

ely

stab

lew

hen

airb

orne

;the

yw

ere

leas

tst

able

atm

id-r

ange

RH

Col

lison

thre

e-je

tne

buliz

eran

dC

hica

goat

omiz

er

119

82

Con

tinue

don

follo

win

gpa

ge

VOL. 72, 2008 SAMPLING OF AIRBORNE VIRUSES 427

on May 8, 2020 by guest

http://mm

br.asm.org/

Dow

nloaded from

TA

BL

E2—

Con

tinue

d

Sam

pler

type

Air

sam

plin

gra

teor

capa

city

Sam

plin

gen

viro

nmen

tV

irus

and/

ortr

acer

Part

icle

size

(�m

)A

naly

tical

met

hod

Com

men

tsA

eros

olso

urce

Ref

eren

ceY

rof

publ

icat

ion

And

erse

nvi

able

-ty

pest

acke

dsi

eve

28.3

liter

s/m

in93

0-lit

erPl

exig

las

cham

ber

Col

ipha

gef2

2.0

or3.

9(m

edia

nae

rody

nam

icpa

rtic

lesi

ze)

Cul

ture

The

And

erse

nsa

mpl

erha

dan

effic

ienc

yof

28.2

%co

mpa

red

toth

eA

GI

sam

pler

s

All-

glas

stw

o-flu

idne

buliz

erfo

r2.

0-�

mm

edia

nae

rody

nam

icpa

rtic

ledi

amet

er;

spin

ning

-dis

kae

roso

lgen

erat

orfo

r3.

9-�

mpa

rtic

les

1519

82

AG

I-30

12.5

liter

s/m

in93

0-lit

erPl

exig

las

cham

ber

Col

ipha

gef2

2.0

or3.

9(m

edia

nae

rody

nam

icpa

rtic

lesi

ze)

Cul

ture

The

And

erse

nsa

mpl

erha

dan

effic

ienc

yof

28.2

%co

mpa

red

toth

eA

GI

sam

pler

s

All-

glas

stw

o-flu

idne

buliz

erfo

r2.

0-�

mm

edia

nae

rody

nam

icpa

rtic

ledi

amet

er;

spin

ning

-dis

kae

roso

lgen

erat

orfo

r3.

9-�

mpa

rtic

les

1519

82

LV

Sm

odel

M(i

)1,

000

liter

s/m

info

r30

min

(i)

3.6-

mby

3.3-

mby

3.0-

mlo

ose

boxe

sw

ithco

nfine

din

fect

edpi

gs;

(ii)

610-

liter

cham

ber,

one

pig

ata

time

FM

Dvi

rus

type

Cst

rain

Nov

ille

Cul

ture

The

LV

Sha

da

high

ervi

ralr

ecov

ery

rate

,but

the

cycl

one

sam

pler

was

muc

hea

sier

tous

e

Pigs

3819

82

All-

glas

scy

clon

ese

para

tor

700

liter

s/m

info

r(i

)30

min

or(i

i)15

min

(i)

3.6-

mby

3.3-

mby

3.0-

mlo

ose

boxe

sw

ithco

nfine

din

fect

edpi

gs;

(ii)

610-

liter

cham

ber,

one

pig

ata

time

FM

Dvi

rus

type

Cst

rain

Nov

ille

Cul

ture

The

LV

Sha

da

high

ervi

ralr

ecov

ery

rate

,but

the

cycl

one

sam

pler

was

muc

hea

sier

tous

e

Pigs

3819

82

LV

S1,

000

liter

s/m

info

r30

min

3.65

-by

3.35

-by

3.05

-mlo

ose

boxe

sfo

rgr

oups

ofpi

gsan

d61

0-lit

erch

ambe

rfo

rin

divi

dual

pigs

Fou

rst

rain

sof

Auj

eszk

y’s

dise

ase

viru

s(U

KA

D74

/33,

Nor

ther

nIr

elan

dN

IA-2

,U29

8/81

,and

UK

AD

82/1

96)

Cul

ture

The

cycl

one

sam

pler

had

asl

ight

lylo

wer

reco

very

rate

than

the

LV

S;th

ese

ttlin

gpl

ates

wer

esu

cces

sful

inre

cove

ring

viru

ses;

the

thre

e-st

age

impi

nger

show

edda

ilyva

riat

ions

inth

esi

zedi

stri

buti

ons

ofvi

rus-

cont

aini

ngpa

rtic

les

Pigs

4019

83

All-

glas

scy

clon

esa

mpl

er1,

000

liter

s/m

info

r10

and

30m

in3.

65-

by3.

35-

by3.

05-m

loos

ebo

xes

for

grou

psof

pigs

and

610-

liter

cham

ber

for

indi

vidu

alpi

gs

Fou

rst

rain

sof

Auj

eszk

y’s

dise

ase

viru

s(U

KA

D74

/33,

Nor

ther

nIr

elan

dN

IA-2

,U29

8/81

,and

UK

AD

82/1

96)

Cul

ture

The

cycl

one

sam

pler

had

asl

ight

lylo

wer

reco

very

rate

than

the

LV

S;th

ese

ttlin

gpl

ates

wer

esu

cces

sful

inre

cove

ring

viru

ses;

the

thre

e-st

age

impi

nger

show

edda

ilyva

riat

ions

inth

esi

zedi

stri

butio

nsof

viru

s-co

ntai

ning

part

icle

s

Pigs

4019

83

Squa

rese

ttlin

gpl

ates

with

20m

lof

colle

ctio

nflu

id

30m

in3.

65-

by3.

35-

by3.

05-m

loos

ebo

xes

for

grou

psof

pigs

and

610-

liter

cham

ber

for

indi

vidu

alpi

gs

Fou

rst

rain

sof

Auj

eszk

y’s

dise

ase

viru

s(U

KA

D74

/33,

Nor

ther

nIr

elan

dN

IA-2

,U29

8/81

,and

UK

AD

82/1

96)

Cul

ture

The

cycl

one

sam

pler

had

asl

ight

lylo

wer

reco

very

rate

than

the

LV

S;th

ese

ttlin

gpl

ates

wer

esu

cces

sful

inre

cove

ring

viru

ses;

the

thre

e-st

age

impi

nger

show

edda

ilyva

riat

ions

inth

esi

zedi

stri

butio

nsof

viru

s-co

ntai

ning

part

icle

s

Pigs

4019

83

428 VERREAULT ET AL. MICROBIOL. MOL. BIOL. REV.

on May 8, 2020 by guest

http://mm

br.asm.org/

Dow

nloaded from

Thr

ee-s

tage

liqui

dim

ping

er55

liter

s/m

info

r15

min

3.65

-by

3.35

-by

3.05

-mlo

ose

boxe

sfo

rgr

oups

ofpi

gsan

d61

0-lit

erch

ambe

rfo

rin

divi

dual

pigs

Fou

rst

rain

sof

Auj

eszk

y’s

dise

ase

viru

s(U

KA

D74

/33,

Nor

ther

nIr

elan

dN

IA-2

,U29

8/81

,and

UK

AD

82/1

96)

Cul

ture

The

cycl

one

sam

pler

had

asl

ight

lylo

wer

reco

very

rate

than

the

LV

S;th

ese

ttlin

gpl

ates

wer

esu

cces

sful

inre

cove

ring

viru

ses;

the

thre

e-st

age

impi

nger

show

edda

ilyva

riat

ions

inth

esi

zedi

stri

butio

nsof

viru

s-co

ntai

ning

part

icle

s

Pigs

4019

83

AG

I5.

6lit

ers

in1

min

300-

liter

stai

nles

sst

eel

rota

ting

drum

Rot

avir

usSA

11,

rhod

amin

eC

ultu

reB

est

surv

ival

ofth

evi

rus

atm

ediu

m(5

0%

5%)

RH

;hig

h(8

0%

5%)

hum

idity

was

the

leas

tfa

vora

ble

Six-

jet

Col

lison

nebu

lizer

116

1984

AG

I5.

6lit

ers/

min

for

2m

in30

0-lit

erst

ainl

ess

stee

lro

tatin

gdr

umH

uman

rota

viru

sst

rain

Wa,

uran

ine

Cul

ture

Bes

tre

cove

ryat

50%

5%

RH

and

6

1°C

;re

cove

ryw

asen

hanc

edw

hen

fece

sw

ere

used

inth

eae

roso

lizat

ion

med

ium

Six-

jet

Col

lison

nebu

lizer

8219

85

AG

I5.

6lit

ers/

min

for

2m

in30

0-lit

erst

ainl

ess

stee

lro

tatin

gdr

umC

alf

rota

viru

sst

rain

C-

486,

polio

viru

sty

pe1

(Sab

in),

uran

ine

Cul

ture

The

best

surv

ival

rate

sw

ere

at50

%

5%R

Hfo

rth

ero

tavi

rus

and

80%

5%

RH

for

the

polio

viru

s

Six-

jet

Col

lison

nebu

lizer

8119

85

Impi

nger

5.6

liter

s/m

info

r2

min

300-

liter

stai

nles

sst

eel

rota

ting

drum

Hum

anco

rona

viru

s22

9E,

polio

viru

sty

pe1,

uran

ine

Cul

ture

The

half-

life

ofae

roso

lized

coro

navi

rus

was

dete

rmin

edun

der

diffe

rent

tem

pera

ture

and

RH

cond

ition

s

Six-

jet

Col

lison

nebu

lizer

7819

85

AG

I30

0-lit

erro

tatin

gdr

umR

hino

viru

sty

pe14

,ur

anin

e�

5in

diam

eter

(the

oret

ical

ly;

�90

%of

part

icle

s)

Cul

ture

Bes

tvi

ralr

ecov

ery

athi

gh(8

0%

5%)

RH

Six-

jet

Col

lison

nebu

lizer

8419

85

Aer

osol

colle

ctio

nde

vice

with

Filt

erite

filte

rs(p

ore

size

,0.4

�m

)m

oist

ened

with

glyc

ine

buffe

r

100

liter

s/m

info

r10

to15

sbe

fore

and

2m

inaf

ter

flush

ing

Sam

plin

gde

vice

plac

edov

era

toile

tbo

wls

eede

dw

ithpo

liovi

rus

Polio

viru

sC

ultu

reR

ecov

ery

ofvi

ruse

sfr

omth

eai

rw

aspo

ssib

le,

but

viru

sad

sorp

tion

toth

efil

ter

was

ham

pere

dif

the

filte

rbe

cam

edr

y;la

rge

volu

mes

ofdr

yai

rw

ould

bepr

oble

mat

ic

Toi

let

flush

136

1985

Thr

ee-s

tage

liqui

dim

ping

er55

liter

s/m

info

r10

min

610-

liter

cham

ber

FM

Dvi

rus

type

O1

stra

inB

FS

1860

Cul

ture

The

thre

e-st

age

liqui

dim

ping

erre

cove

red

smal

ler

amou

nts

ofvi

rus

than

the

Port

onim

ping

ers

did

Pigs

5619

86

Port

onra

ised

AG

I11

to13

liter

s/m

info

r10

min

610-

liter

cham

ber

FM

Dvi

rus

type

O1

stra

inB

FS

1860

Cul

ture

The

thre

e-st

age

liqui

dim

ping

erre

cove

red

smal

ler

amou

nts

ofvi

rus

than

the

Port

onim

ping

ers

did

Pigs

5619

86

Con

tinue

don

follo

win

gpa

ge

VOL. 72, 2008 SAMPLING OF AIRBORNE VIRUSES 429

on May 8, 2020 by guest

http://mm

br.asm.org/

Dow

nloaded from

TA

BL

E2—

Con

tinue

d

Sam

pler

type

Air

sam

plin

gra

teor

capa

city

Sam

plin

gen

viro

nmen

tV

irus

and/

ortr

acer

Part

icle

size

(�m

)A

naly

tical

met

hod

Com

men

tsA

eros

olso

urce

Ref

eren

ceY

rof

publ

icat

ion

Thr

ee-s

tage

liqui

dim

ping

er55

liter

s/m

info

r2

to5

min

610-

liter

cham

ber

FM

Dvi

rus

stra

ins

O1

and

SAT

2�

3w

ithsp

inni

ng-

top

aero

sol

gene

rato

r

Cul

ture

Art

ifici

alae

roso

lsw

ere

foun

dm

ostly

inth

elo

wer

stag

eof

the

thre

e-st

age

impi

nger

;nat

ural

aero

sols

wer

efo

und

ineq

ual

amou

nts

inal

lthr

eest

ages

;th

em

inim

alin

fect

ious

dose

ofth

eai

rbor

nevi

rus

was

dete

rmin

edw

ithth

ePo

rton

impi

nger

;no

viru

ses

wer

ere

cove

red

from

the

cycl

one

sam

pler

Mod

ified

May

spin

ning

-to

pae

roso

lgen

erat

oror

pigs

3919

87

Port

onra

ised

AG

I11

to13

liter

s/m

info

r1

min

47s

to2

min

40s

610-

liter

cham

ber

FM

Dvi

rus

stra

ins

O1

and

SAT

2�

3w

ithsp

inni

ng-

top

aero

sol

gene

rato

r

Cul

ture

Art

ifici

alae

roso

lsw

ere

foun

dm

ostly

inth

elo

wer

stag

eof

the

thre

e-st

age

impi

nger

;nat

ural

aero

sols

wer

efo

und

ineq

ual

amou

nts

inal

lthr

eest

ages

;th

em

inim

alin

fect

ious

dose

ofth

eai

rbor

nevi

rus

was

dete

rmin

edw

ithth

ePo

rton

impi

nger

;no

viru

ses

wer

ere

cove

red

from

the

cycl

one

sam

pler

Mod

ified

May

spin

ning

-to

pae

roso

lgen

erat

oror

pigs

3919

87

Gla

sscy

clon

esa

mpl

er70

0lit

ers/

min

Cor

rido

rF

MD

viru

sst

rain

sO

1an

dSA

T2

�3

with

spin

ning

-to

pae

roso

lge

nera

tor

Cul

ture

Art

ifici

alae

roso

lsw

ere

foun

dm

ostly

inth

elo

wer

stag

eof

the

thre

e-st

age

impi

nger

;nat

ural

aero

sols

wer

efo

und

ineq

ual

amou

nts

inal

lthr

eest

ages

;th

em

inim

alin

fect

ious

dose

ofth

eai

rbor

nevi

rus

was

dete

rmin

edw

ithth

ePo

rton

impi

nger

;no

viru

ses

wer

ere

cove

red

from

the

cycl

one

sam

pler

Mod

ified

May

spin

ning

-to

pae

roso

lgen

erat

oror

pigs

3919

87

AG

I5.

6lit

ers/

min

for

1m

in30

0-lit

erst

ainl

ess

stee

lrot

atin

gdr

um

Sim

ian

rota

viru

sSA

-11

stra

inH

-96,

hum

anro

tavi

rus

subg

roup

2st

rain

Wa,

bovi

nero

tavi

rus

C-4

86,m

ouse

rota

viru

s,bo

vine

rota

viru

sC

ampt

onU

Kiso

late

,po

liovi

rus

type

ISa

bin

stra

in,

hum

anco

rona

viru

sst

rain

229E

,rhi

novi

rus

type

14/7

5Se

(for

radi

olab

elin

g),

rhod

amin

eB

,or

uran

ine

1.0–

3.3

(ove

r87

%of

the

infe

ctio

usvi

ruse

sw

ere

colle

cted

inth

ela

stth

ree

stag

esof

the

And

erse

nsa

mpl

er)

Cul

ture

The

And

erse

nsa

mpl

erw

asus

edto

dete

rmin

eth

esi

zedi

stri

butio

nof

the

aero

soliz

edpa

rtic

les;

both

sam

pler

ssu

cces

sful

lyre

cove

red

viru

ses;

uran

ine

issa

fer

asa

trac

erth

anra

diol

abel

ing

and,

unlik

erh

odam

ine

B,d

oes

not

affe

ctvi

rali

nfec

tivity

Six-

jet

Col

lison

nebu

lizer

7919

87

And

erse

nsa

mpl

erw

ith3%

gela

tinm

ediu

m

28lit

ers/

min

for

1m

in30

0-lit

erst

ainl

ess

stee

lrot

atin

gdr

um

Sim

ian

rota

viru

sSA

-11

stra

inH

-96,

hum

anro

tavi

rus

subg

roup

2st

rain

Wa,

bovi

nero

tavi

rus

C-4

86,m

ouse

rota

viru

s,bo

vine

rota

viru

sC

ampt

onU

Kiso

late

,po

liovi

rus

type

ISa

bin

stra

in,

hum

anco

rona

viru

sst

rain

229E

,rhi

novi

rus

type

14/7

5Se

(for

radi

olab

elin

g),

rhod

amin

eB

,or

uran

ine

1.0–

3.3

(ove

r87

%of

the

infe

ctio

usvi

ruse

sw

ere

colle

cted

inth

ela

stth

ree

stag

esof

the

And

erse

nsa

mpl

er)

Cul

ture

The

And

erse

nsa

mpl

erw

asus

edto

dete

rmin

eth

esi

zedi

stri

butio

nof

the

aero

soliz

edpa

rtic

les;

both

sam

pler

ssu

cces

sful

lyre

cove

red

viru

ses;

uran

ine

issa

fer

asa

trac

erth

anra

diol

abel

ing

and,

unlik

erh

odam

ine

B,d

oes

not

affe

ctvi

rali

nfec

tivity

Six-

jet

Col

lison

nebu

lizer

7919

87

430 VERREAULT ET AL. MICROBIOL. MOL. BIOL. REV.

on May 8, 2020 by guest

http://mm

br.asm.org/

Dow

nloaded from

AG

I24

liter

sin

2m

in50

0-lit

erst

ainl

ess

stee

lrot

atin

gdr

um

Pseu

dora

bies

viru

s,B

acill

ussu

btili

ssp

ores

Cul

ture

Rec

over

yw

asbe

stat

55%

RH

and

4°C

Neb

uliz

er11

919

90

Stai

nles

sst

eel

cycl

one

sam

pler

300

liter

s/m

info

r15

min

60-m

3is

olat

edun

its(s

ixun

itsw

ithei

ght

pigs

each

)

Auj

eszk

y’s

dise

ase

viru

sst

rain

75V

19C

ultu

reA

irsa

mpl

ing

was

less

sens

itive

than

nasa

lsw

absa

mpl

ing;

how

ever

,vir

usco

ncen

trat

ions

inth

eai

rw

ere

clos

ely

rela

ted

toth

ose

inth

ena

salc

avity

Pigs

2019

92

AG

I30

0-lit

erro

tatin

gdr

umB

ovin

ero

tavi

rus

UK

isol

ate,

mur

ine

rota

viru

s,ur

anin

eC

ultu

reB

oth

viru

ses

wer

ere

cove

red

from

the

air

Col

lison

nebu

lizer

8019

94

Cel

lulo

sefil

ter

(0.4

5-�

mpo

resi

ze)

2.5

to9.

4lit

ers/

min

for

15m

into

24h

Hos

pita

lroo

ms

ofpa

tient

sw

ithac

tive

vari

cella

-zo

ster

viru

s(V

ZV

)in

fect

ions

VZ

VPC

RV

ZV

DN

Aw

asde

tect

edin

64of

78ai

rsa

mpl

esH

uman

s11

719

94

Surf

ace

air

syst

em0.

9m

3of

air

Nea

rae

ratio

nta

nkof

anac

tivat

edsl

udge

trea

tmen

tpl

ant

Col

ipha

ges

and

ente

rovi

ruse

sC

ultu

reC

olip

hage

san

den

tero

viru

ses

wer

ere

cove

red

from

air

sam

ples

,but

nore

latio

nshi

pw

asfo

und

betw

een

the

two

Aer

atio

nta

nkof

anac

tivat

edsl

udge

trea

tmen

tpl

ant

2419

95

Poly

carb

onat

em

embr

ane

filte

r(0

.1-�

mpo

resi

ze)

1.9

liter

s/m

info

r6

hR

oom

sof

patie

nts

with

activ

ean

dla

tent

cyto

meg

alov

irus

(CM

V)

infe

ctio

n

Hum

anC

MV

PCR

CM

VD

NA

was

dete

cted

inth

ero

oms

ofal

lthr

eepa

tient

s

Hum

ans

9219

96

AG

I-30

15m

inat

12.5

liter

s/m

inE

xpos

ure

room

Auj

eszk

y’s

dise

ase

viru

sC

ultu

reA

viru

s-co

ntai

ning

aero

sol

was

reco

vere

dfr

omth

ebr

eath

ofon

lyon

epi

g;vi

ruse

sw

ere

reco

vere

dm

ore

easi

lyfr

omth

ene

buliz

edae

roso

l;th

esa

mpl

erin

activ

ated

the

viru

s,m

akin

gth

em

etho

dle

ssse

nsiti

ve

Pigs

ora

DeV

ilbis

sul

tras

onic

nebu

lizer

(mod

el99

)

5719

96

AG

I-30

1or

2lit

ers/

min

80-li

ter

alum

inum

cham

ber

St.L

ouis

ence

phal

itis

viru

sst

rain

MS1

–7,B

acill

ussu

btili

sva

r.ni

ger

Cul

ture

Col

lison

spra

y10

919

97

Cel

lulo

sefil

ters

(0.4

5-�

mpo

resi

ze)

2.0

liter

s/m

info

r�

6h,

�18

h,or

24h

Hos

pita

lroo

ms

Res

pira

tory

sync

ytia

lvir

us(R

SV)

PCR

-bas

edde

tect

ion

met

hods

RSV

DN

Aw

asde

tect

edin

17of

the

27ro

oms

hous

ing

infe

cted

patie

nts

and

in32

ofth

e14

3sa

mpl

es

Hum

ans

319

98

Surf

ace

air

syst

emag

ariz

edte

rrai

nim

pact

or

1,80

0lit

ers

indo

ors

and

3,00

0lit

ers

outd

oors

Urb

anse

wag

epl

ants

Reo

viru

san

den

tero

viru

sC

ultu

reB

oth

viru

ses

wer

ede

tect

edin

som

esa

mpl

esU

rban

sew

age

trea

tmen

tpl

ants

2520

00

AG

I-30

28-m

3is

olat

ion

room

sA

ujes

zky’

sdi

seas

evi

rus

Cul

ture

No

viru

sw

asde

tect

edPi

gs58

2000

AG

I-30

12.5

liter

s/m

info

r10

min

Exh

aust

air

from

anin

fect

edba

rnPo

rcin

ere

prod

uctiv

ean

dre

spir

ator

ysy

ndro

me

viru

s(P

RR

SV)

PCR

and

cultu

reN

ovi

rus

was

dete

cted

inth

eai

rsa

mpl

esby

PCR

orby

cultu

re

Pigs

105

2002

All-

glas

scy

clon

esa

mpl

er17

0lit

ers/

min

for

20m

inA

nim

alro

oms

FM

Dvi

rus

OU

KG

34/2

001

Cul

ture

Vir

uses

wer

ere

cove

red

with

both

sam

pler

sSh

eep

and

heife

rs8

2002

Thr

ee-s

tage

liqui

dim

ping

er55

liter

s/m

info

r5

min

610-

liter

cabi

net

FM

Dvi

rus

OU

KG

34/2

001

Cul

ture

Vir

uses

wer

ere

cove

red

with

both

sam

pler

sSh

eep

and

heife

rs8

2002

All-

glas

scy

clon

esa

mpl

er17

0lit

ers/

min

for

2m

inC

ham

ber

FM

Dvi

rus

stra

inO

1L

ausa

nne

Sw/6

5C

ultu

reF

MD

viru

sw

asre

cove

red

from

the

air

sam

ples

,but

the

effic

ienc

yof

the

sam

pler

sw

asno

tco

mpa

red

Pigs

720

02

Con

tinue

don

follo

win

gpa

ge

VOL. 72, 2008 SAMPLING OF AIRBORNE VIRUSES 431

on May 8, 2020 by guest

http://mm

br.asm.org/

Dow

nloaded from

TA

BL

E2—

Con

tinue

d

Sam

pler

type

Air

sam

plin

gra

teor

capa

city

Sam

plin

gen

viro

nmen

tV

irus

and/

ortr

acer

Part

icle

size

(�m

)A

naly

tical

met

hod

Com

men

tsA

eros

olso

urce

Ref

eren

ceY

rof

publ

icat

ion

Port

onA

GI

10to

13lit

ers/

min

for

2or

5m

inC

ham

ber

FM

Dvi

rus

stra

inO

1L

ausa

nne

Sw/6

5C

ultu

reF

MD

viru

sw

asre

cove

red

from

the

air

sam

ples

,bu

tth

eef

ficie

ncy

ofth

esa

mpl

ers

was

not

com

pare

d

Pigs

720

02

Thr

ee-s

tage

liqui

dim

ping

er55

liter

s/m

info

r5

min

Cha

mbe

rF

MD

viru

sst

rain

O1

Lau

sann

eSw

/65

Cul

ture

FM

Dvi

rus

was

reco

vere

dfr

omth

eai

rsa

mpl

es,

but

the

effic

ienc

yof

the

sam

pler

sw

asno

tco

mpa

red

Pigs

720

02

Mod

ified

SAS-

100

100

liter

s/m

info

r2.

5m

inW

ithin

and

arou

ndpo

ultr

ybr

oile

rho

uses

Mal

e-sp

ecifi

cco

lipha

ges

Cul

ture

Col

ipha

ges

wer

ere

cove

red

from

air

sam

ples

whe

na

prem

oist

ened

cellu

lose

este

rfil

ter

colle

ctio

nm

ediu

mw

asus

edfo

rsa

mpl

ing

byim

pact

ion

Poul

try

5020

02

PTF

Efil

ters

(2.0

-�m

pore

size

)10

min

Cha

mbe

rw

ithU

Vlig

htR

hino

viru

s16

stra

in11

757

from

AT

CC

,ur

anin

e

2(m

ass-

med

ian

diam

eter

ofdr

ople

ts)

Sem

ines

ted

RT

-PC

RT

hede

tect

ion

limit

was

1.3

50%

tissu

ecu

lture

infe

ctiv

edo

ses/

filte

rfo

rae

roso

lized

viru

s

Six-

jet

Col

lison

nebu

lizer

(CN

-38)

101

2003

MD

8ai

rsa

mpl

erw

ithst

erile

gela

tinm

embr

ane

filte

r(3

-�m

pore

size

)

100

liter

sin

1or

2m

inD

airy

fact

ory,

clos

epr

oxim

ityto

aru

nnin

gw

hey

sepa

rato

r

Lac

toco

ccus

lact

isba

cter

ioph

ages

Cul

ture

The

MD

8an

dA

irPo

rtM

D8

resu

ltsw

ere

very

sim

ilar;

the

phag

ere

cove

ryra

tes

for

the

MA

S-10

0(i

mpa

ctio

n)sa

mpl

erw

ere

1to

5%th

atfo

rth

eM

D8

(filtr

atio

n)sa

mpl

er

Whe

yse

para

tor

ina

dair

yfa

ctor

y10

320

03

Air

Port

MD

8sa

mpl

erw

ithst

erile

gela

tinm

embr

ane

filte

rs(3

-�m

pore

size

)

100

liter

sin

2m

inD

airy

fact

ory,

clos

epr

oxim

ityto

aru

nnin

gw

hey

sepa

rato

r

Lac

toco

ccus

lact

isba

cter

ioph

ages

Cul

ture

The

MD

8an

dA

irPo

rtM

D8

resu

ltsw

ere

very

sim

ilar;

the

phag

ere

cove

ryra

tes

for

the

MA

S-10

0(i

mpa

ctio

n)sa

mpl

erw

ere

1to

5%th

atfo

rth

eM

D8

(filtr

atio

n)sa

mpl

er

Whe

yse

para

tor

ina

dair

yfa

ctor

y10

320

03

MA

S-10

0de

vice

(with

five

diffe

rent

setu

ps)

100

liter

sin

1m

inD

airy

fact

ory,

clos

epr

oxim

ityto

aru

nnin

gw

hey

sepa

rato

r

Lac

toco

ccus

lact

isba

cter

ioph

ages

Cul

ture

The

MD

8an

dA

irPo

rtM

D8

resu

ltsw

ere

very

sim

ilar;

the

phag

ere

cove

ryra

tes

for

the

MA

S-10

0(i

mpa

ctio

n)sa

mpl

erw

ere

1to

5%th

atfo

rth

eM

D8

(filtr

atio

n)sa

mpl

er

Whe

yse

para

tor

ina

dair

yfa

ctor

y10

320

03

AG

I-30

12.5

liter

s/m

info

r10

min

Exh

aust

air

from

anin

fect

edba

rnPR

RSV

PCR

,cul

ture

,and

pig

bioa

ssay

All

168

air

sam

ples

wer

ene

gativ

eby

PCR

,cul

ture

,an

dpi

gbi

oass

ay

Pigs

129

2004

PTF

Efil

ters

(2.0

-�m

pore

size

)A

vera

geof

47h,

from

9a.

m.t

o5

p.m

.at

4lit

ers/

min

Offi

cebu

ildin

gsPi

corn

avir

uses

(rhi

novi

rus

and

ente

rovi

ruse

s)

Nes

ted

RT

-PC

Ran

dse

quen

cing

Fift

y-ei

ght

(32%

)of

181

filte

rsw

ere

posi

tive

for

pico

rnav

irus

Hum

ans

102

2004

Bub

blin

gsa

mpl

er4

liter

s/m

info

r5

min

400-

liter

aero

sol

cham

ber

Influ

enza

viru

sA

/Aic

hi/

2/68

(H3N

2),v

acci

nia

viru

sst

rain

LIV

P(C

0355

K06

02),

uran

ine

0.5–

2.2

(maj

ority

ofpa

rtic

les)

Cul

ture

and

titra

tion

onch

icke

nem

bryo

s

The

aver

age

reco

very

rate

was

20%

for

the

influ

enza

viru

san

d89

%fo

rth

eva

ccin

iavi

rus

Col

lison

nebu

lizer

220

05

432 VERREAULT ET AL. MICROBIOL. MOL. BIOL. REV.

on May 8, 2020 by guest

http://mm

br.asm.org/

Dow

nloaded from

Port

able

,sin

gle-

siev

e,M

icro

Bio

MB

1im

pact

or

100

to60

0lit

ers

Dom

estic

toile

tin

a2.

6-m

3ro

omB

acte

riop

hage

MS2

Cul

ture

Bac

teri

opha

ges

wer

ere

cove

red

with

both

sam

plin

gm

etho

ds;t

heim

pact

orsa

mpl

erre

cove

red

phag

esfr

omth

eai

r60

min

afte

rto

ilet

flush

ing

Toi

let

flush

1420

05

Sett

ling

plat

es30

min

Dom

estic

toile

tin

a2.

6-m

3ro

omB

acte

riop

hage

MS2

Cul

ture

Bac

teri

opha

ges

wer

ere

cove

red

with

both

sam

plin

gm

etho

ds;t

heim

pact

orsa

mpl

erre

cove

red

phag

esfr

omth

eai

r60

min

afte

rto

ilet

flush

ing

Toi

let

flush

1420

05

Hig

h-re

solu

tion

slit

sam

pler

syst

em30

liter

s/m

info

r18

min

(10

sam

plin

ghe

ads

for

ato

talo

f18

0m

in)

Hos

pita

lroo

ms

ofpa

tient

sw

ithSA

RS

SAR

Sco

rona

viru

sR

T-P

CR

,qu

antit

ativ

ePC

R,

cultu

re,a

ndD

NA

sequ

enci

ng

Tw

oof

10sa

mpl

esfr

omth

ero

omof

are

cove

ring

SAR

Spa

tient

colle

cted

usin

gth

esl

itsa

mpl

erw

ere

PCR

posi

tive

but

cultu

rene

gativ

e;th

ePT

FE

mem

bran

efil

ters

used

inth

eot

her

room

sw

ere

allP

CR

and

cultu

rene

gativ

e;lo

wco

ncen

trat

ions

(or

abse

nce)

ofai

rbor

nevi

ruse

sm

ayex

plai

nth

ene

gativ

ere

sults

Hum

ans

1920

05

PTF

Em

embr

ane

filte

rs(0

.3-�

mpo

resi

ze)

2lit

ers/

min

for

10.5

to13

hH

ospi

talr

oom

sof

patie

nts

with

SAR

SSA

RS

coro

navi

rus

RT

-PC

R,

quan

titat

ive

PCR

,cu

lture

,and

DN

Ase

quen

cing

Tw

oof

10sa

mpl

esfr

omth

ero

omof

are

cove

ring

SAR

Spa

tient

colle

cted

usin

gth

esl

itsa

mpl

erw

ere

PCR

posi

tive

but

cultu

rene

gativ

e;th

ePT

FE

mem

bran

efil

ters

used

inth

eot

her

room

sw

ere

allP

CR

and

cultu

rene

gativ

e;lo

wco

ncen

trat

ions

(or

abse

nce)

ofai

rbor

nevi

ruse

sm

ayex

plai

nth

ene

gativ

ere

sults

Hum

ans

1920

05

Port

able

air

sam

pler

450

liter

s/m

in10

.16-

cm-d

iam

eter

poly

viny

lchl

orid

epi

peof

3to

150

mlo

ngat

tach

edto

abl

ower

PRR

SVst

rain

MN

30-

100

Qua

ntita

tive

PCR

and

cultu

reV

irus

esw

ere

reco

vere

dfr

oma

dist

ance

ofup

to15

0m

Coo

king

oils

pritz

er31

2005

Cyc

lone

sam

pler

s70

0(

50)

liter

s/m

info

r5

min

Cha

mbe

rB

acte

riop

hage

MS2

Cul

ture

Vir

uses

wer

ere

cove

red

One

ortw

oth

ree-

jet

orsi

x-je

tC

ollis

onne

buliz

ers

6220

05

Wet

ted-

wal

lcyc

lone

-st

yle

air

sam

pler

265

liter

s/m

info

r8

hC

omm

erci

alpo

ultr

yflo

cks

Exo

ticN

ewca

stle

dise

ase

viru

sR

eal-t

ime

RT

-PC

R(R

RT

-PC

R),

inoc

ulat

ion

ofeg

gs,c

ultu

re,a

ndse

quen

cing

Low

conc

entr

atio

nsof

viru

spa

rtic

les

wer

ede

tect

edby

RR

T-P

CR

;cu

lture

was

appa

rent

lym

ore

sens

itive

than

RR

T-P

CR

for

dete

ctin

gvi

ruse

s

Poul

try

7420

05

Con

tinue

don

follo

win

gpa

ge

VOL. 72, 2008 SAMPLING OF AIRBORNE VIRUSES 433

on May 8, 2020 by guest

http://mm

br.asm.org/

Dow

nloaded from

TA

BL

E2—

Con

tinue

d

Sam

pler

type

Air

sam

plin

gra

teor

capa

city

Sam

plin

gen

viro

nmen

tV

irus

and/

ortr

acer

Part

icle

size

(�m

)A

naly

tical

met

hod

Com

men

tsA

eros

olso

urce

Ref

eren

ceY

rof

publ

icat

ion

AG

I-30

Set

2ex

peri

men

ts,

12.5

liter

s/m

inC

lose

dsy

stem

Bac

teri

opha

ges

MS2

and

T3

Part

icle

size

was

influ

ence

dm

ainl

yby

the

prop

ertie

sof

the

liqui

dm

ediu

man

dth

em

etho

dof

aero

soliz

atio

n,no

tby

the

phys

ical

size

ofth

evi

ruse

s;th

epa

rtic

les

stud

ied

wer

eun

der

300

nmin

diam

eter

Set

4ex

peri

men

ts,

cultu

reT

heca

ptur

eef

ficie

ncy

for

part

icle

sin

the

30-

to10

0-nm

size

rang

ew

as10

%or

low

er;t

heef

ficie

ncy

incr

ease

dfo

rpa

rtic

les

smal

ler

than

30nm

and

larg

erth

an10

0nm

;al

lthr

eesa

mpl

ers

exhi

bite

dlo

wca

ptur

eef

ficie

ncie

sfo

rul

trafi

nepa

rtic

les

that

vari

edov

ertim

e,as

wel

las

apo

tent

iall

oss

ofvi

rus

viab

ility

duri

ngsa

mpl

ing

Con

stan

tou

tput

atom

izer

7620

05

SKC

Bio

Sam

pler

Set

2ex

peri

men

ts,

12.5

liter

s/m

inC

lose

dsy

stem

Bac

teri

opha

ges

MS2

and

T3

Part

icle

size

was

influ

ence

dm

ainl

yby

the

prop

ertie

sof

the

liqui

dm

ediu

man

dth

em

etho

dof

aero

soliz

atio

n,no

tby

the

phys

ical

size

ofth

evi

ruse

s;th

epa

rtic

les

stud

ied

wer

eun

der

300

nmin

diam

eter

Set

4ex

peri

men

ts,

cultu

reT

heca

ptur

eef

ficie

ncy

for

part

icle

sin

the

30-

to10

0-nm

size

rang

ew

as10

%or

low

er;t

heef

ficie

ncy

incr

ease

dfo

rpa

rtic

les

smal

ler

than

30nm

and

larg

erth

an10

0nm

;al

lthr

eesa

mpl

ers

exhi

bite

dlo

wca

ptur

eef

ficie

ncie

sfo

rul

trafi

nepa

rtic

les

that

vari

edov

ertim

e,as

wel

las

apo

tent

iall

oss

ofvi

rus

viab

ility

duri

ngsa

mpl

ing

Con

stan

tou

tput

atom

izer

7620

05

Fri

tbu

bble

rSe

t2

expe

rim

ents

,12

.5lit

ers/

min

Clo

sed

syst

emB

acte

riop

hage

sM

S2an

dT

3Pa

rtic

lesi

zew

asin

fluen

ced

mai

nly

byth

epr

oper

ties

ofth

eliq

uid

med

ium

and

the

met

hod

ofae

roso

lizat

ion,

not

byth

eph

ysic

alsi

zeof

the

viru

ses;

the

part

icle

sst

udie

dw

ere

unde

r30

0nm

indi

amet

er

Set

4ex

peri

men

ts,

cultu

reT

heca

ptur

eef

ficie

ncy

for

part

icle

sin

the

30-

to10

0-nm

size

rang

ew

as10

%or

low

er;t

heef

ficie

ncy

incr

ease

dfo

rpa

rtic

les

smal

ler

than

30nm

and

larg

erth

an10

0nm

;al

lthr

eesa

mpl

ers

exhi

bite

dlo

wca

ptur

eef

ficie

ncie

sfo

rul

trafi

nepa

rtic

les

that

vari

edov

ertim

e,as

wel

las

apo

tent

iall

oss

ofvi

rus

viab

ility

duri

ngsa

mpl

ing

Con

stan

tou

tput

atom

izer

7620

05

434 VERREAULT ET AL. MICROBIOL. MOL. BIOL. REV.

on May 8, 2020 by guest

http://mm

br.asm.org/

Dow

nloaded from

SKC

Bio

Sam

pler

12.5

liter

s/m

info

r20

min

Fie

lddo

wnw

ind

from

abi

osol

idsp

ray

orse

eded

grou

ndw

ater

Bac

teri

opha

geM

S2C

ultu

reB

acte

riop

hage

sw

ere

reco

vere

ddo

wnw

ind

from

the

seed

edgr

ound

wat

ersp

ray

but

not

from

the

bios

olid

spra

y

Spra

yta

nker

124

2005

And

erse

non

e-st

age

impa

ctor

;asi

x-st

age

impa

ctor

was

also

used

for

size

dist

ribu

tion

28.3

liter

s/m

in29

-cm

-dia

met

er,3

2-cm

-hig

hch

ambe

rB

acte

riop

hage

s�

X17

4,M

S2,T

7,an

d�

61.

23–1

.25

(mea

nae

rody

nam

icdi

amet

er;

�95

%of

PFU

reco

vere

dw

ithth

esi

x-st

age

And

erse

nsa

mpl

erw

ere

�2.

1�

min

diam

eter

)

Cul

ture

The

capt

ure

effic

ienc

yfo

rin

fect

ious

viru

ses

was

high

lyde

pend

ent

onth

epr

oper

ties

ofth

evi

ruse

san

dth

eR

H;

vira

lrec

over

yw

asve

rylo

ww

ithth

eN

ucle

pore

filte

r

Thr

ee-je

tC

ollis

onne

buliz

er13

220

05

AG

I-30

12.5

liter

s/m

info

r5

min

29-c

m-d

iam

eter

,32-

cm-h

igh

cham

ber

Bac

teri

opha

ges

�X

174,

MS2

,T7,

and

�6

1.23

–1.2

5(m

ean

aero

dyna

mic

diam

eter

;�

95%

ofPF

Ure

cove

red

with

the

six-

stag

eA

nder

sen

sam

pler

wer

e�

2.1

�m

indi

amet

er)

Cul

ture

The

capt

ure

effic

ienc

yfo

rin

fect

ious

viru

ses

was

high

lyde

pend

ent

onth

epr

oper

ties

ofth

evi

ruse

san

dth

eR

H;

vira

lrec

over

yw

asve

rylo

ww

ithth

eN

ucle

pore

filte

r

Thr

ee-je

tC

ollis

onne

buliz

er13

220

05

Gel

atin

filte

r(3

.0-�

mpo

resi

ze)

30lit

ers/

min

for

5m

in29

-cm

-dia

met

er,3

2-cm

-hig

hch

ambe

rB

acte

riop

hage

s�

X17

4,M

S2,T

7,an

d�

61.

23–1

.25

(mea

nae

rody

nam

icdi

amet

er;

�95

%of

PFU

reco

vere

dw

ithth

esi

x-st

age

And

erse

nsa

mpl

erw

ere

�2.

1�

min

diam

eter

)

Cul

ture

The

capt

ure

effic

ienc

yfo

rin

fect

ious

viru

ses

was

high

lyde

pend

ent

onth

epr

oper

ties

ofth

evi

ruse

san

dth

eR

H;

vira

lrec

over

yw

asve

rylo

ww

ithth

eN

ucle

pore

filte

r

Thr

ee-je

tC

ollis

onne

buliz

er13

220

05

Nuc

lepo

refil

ter

(pol

ycar

bona

tem

embr

ane;

0.4-

�m

pore

size

)

2lit

ers/

min

for

20m

in29

-cm

-dia

met

er,3

2-cm

-hig

hch

ambe

rB

acte

riop

hage

s�

X17

4,M

S2,T

7,an

d�

61.

23–1

.25

(mea

nae

rody

nam

icdi

amet

er;

�95

%of

PFU

reco

vere

dw

ithth

esi

x-st

age

And

erse

nsa

mpl

erw

ere

�2.

1�

min

diam

eter

)

Cul

ture

The

capt

ure

effic

ienc

yfo

rin

fect

ious

viru

ses

was

high

lyde

pend

ent

onth

epr

oper

ties

ofth

evi

ruse

san

dth

eR

H;

vira

lrec

over

yw

asve

rylo

ww

ithth

eN

ucle

pore

filte

r

Thr

ee-je

tC

ollis

onne

buliz

er13

220

05

Con

tinue

don

follo

win

gpa

ge

VOL. 72, 2008 SAMPLING OF AIRBORNE VIRUSES 435

on May 8, 2020 by guest

http://mm

br.asm.org/

Dow

nloaded from

TA

BL

E2—

Con

tinue

d

Sam

pler

type

Air

sam

plin

gra

teor

capa

city

Sam

plin

gen

viro

nmen

tV

irus

and/

ortr

acer

Part

icle

size

(�m

)A

naly

tical

met

hod

Com

men

tsA

eros

olso

urce

Ref

eren

ceY

rof

publ

icat

ion

AG

I-30

12.5

liter

s/m

inG

lass

cham

ber

PRR

SV(N

orth

Am

eric

anpr

otot

ype)

and

swin

ein

fluen

zavi

rus

stra

inA

/Sw

ine/

Iow

a/73

(H1N

1)

Cul

ture

and

quan

titat

ive

RT

-PC

R

The

Bio

Sam

pler

and

the

AG

I-30

sam

pler

colle

cted

mor

evi

ruse

sth

anth

eA

GI-

4sa

mpl

erat

10,1

5,an

d20

min

;the

Bio

Sam

pler

colle

cted

mor

evi

ruse

sth

anth

eA

GI-

30an

dA

GI-

4sa

mpl

ers

at15

and

20m

in

24-J

etC

ollis

onne

buliz

er73

2006

AG

I-4

12.5

liter

s/m

inG

lass

cham

ber

PRR

SV(N

orth

Am

eric

anpr

otot

ype)

and

swin

ein

fluen

zavi

rus

stra

inA

/Sw

ine/

Iow

a/73

(H1N

1)

Cul

ture

and

quan

titat

ive

RT

-PC

R

The

Bio

Sam

pler

and

the

AG

I-30

sam

pler

colle

cted

mor

evi

ruse

sth

anth

eA

GI-

4sa

mpl

erat

10,1

5,an

d20

min

;the

Bio

Sam

pler

colle

cted

mor

evi

ruse

sth

anth

eA

GI-

30an

dA

GI-

4sa

mpl

ers

at15

and

20m

in

24-J

etC

ollis

onne

buliz

er73

2006

SKC

Bio

Sam

pler

6lit

ers/

min

Gla

ssch

ambe

rPR

RSV

(Nor

thA

mer

ican

prot

otyp

e)an

dsw

ine

influ

enza

viru

sst

rain

A/S

win

e/Io

wa/

73(H

1N1)

Cul

ture

and

quan

titat

ive

RT

-PC

R

The

Bio

Sam

pler

and

the

AG

I-30

sam

pler

colle

cted

mor

evi

ruse

sth

anth

eA

GI-

4sa

mpl

erat

10,1

5,an

d20

min

;the

Bio

Sam

pler

colle

cted

mor

evi

ruse

sth

anth

eA

GI-

30an

dA

GI-

4sa

mpl

ers

at15

and

20m

in

24-J

etC

ollis

onne

buliz

er73

2006

And

erse

nsi

x-st

age

sam

pler

(for

size

dist

ribu

tion)

23-li

ter

expo

sure

cham

ber

Bac

teri

opha

ges

MS2

,�

X17

4,�

6,an

dT

70.

5–3.

0(�

95%

ofvi

rus-

cont

aini

ngpa

rtic

les

wer

e�

2.1

�m

)

Cul

ture

The

surv

ivin

gfr

actio

nof

airb

orne

viru

ses

decr

ease

dex

pone

ntia

llyas

the

ozon

eco

ncen

trat

ion

incr

ease

d;vi

ruse

sw

ithm

ore

com

plex

caps

idar

chite

ctur

esw

ere

less

susc

eptib

leto

ozon

ein

activ

atio

n

Thr

ee-je

tC

ollis

onne

buliz

er13

320

06

436 VERREAULT ET AL. MICROBIOL. MOL. BIOL. REV.

on May 8, 2020 by guest

http://mm

br.asm.org/

Dow

nloaded from

And

erse

non

e-st

age

sam

pler

28.3

liter

s/m

info

r0.

5to

5m

in23

-lite

rex

posu

rech

ambe

rB

acte

riop

hage

sM

S2,

�X

174,

�6,

and

T7

0.5–

3.0

(�95

%of

viru

s-co

ntai

ning

part

icle

sw

ere

�2.

1�

m)

Cul

ture

The

surv

ivin

gfr

actio

nof

airb

orne

viru

ses

decr

ease

dex

pone

ntia

llyas

the

ozon

eco

ncen

trat

ion

incr

ease

d;vi

ruse

sw

ithm

ore

com

plex

caps

idar

chite

ctur

esw

ere

less

susc

eptib

leto

ozon

ein

activ

atio

n

Thr

ee-je

tC

ollis

onne

buliz

er13

320

06

AG

I-30

12.5

liter

s/m

info

r10

min

orle

ssSt

ainl

ess

stee

lcl

osed

-loop

win

dtu

nnel

Tra

nsm

issi

ble

gast

roen

teri

tisvi

rus,

avia

npn

eum

ovir

us,

and

fow

lpox

viru

s

Cul

ture

Vir

uses

wer

ede

tect

edup

stre

ambu

tno

tdo

wns

trea

mfr

omth

efil

ter

500

EL

SDne

buliz

er52

2006

Port

onsa

mpl

er55

liter

sin

5m

in61

0-lit

erai

rsa

mpl

ing

cabi

net

(for

each

pig)

and

alo

ose

box

(for

six

pigs

)(a

ppro

xim

atel

y4

by4

by3

m)

FM

Dvi

rus

OU

KG

FM

D34

/200

10.

015–

20(n

ocl

ear

asso

ciat

ion

ofvi

able

viru

sw

itha

part

icul

arsi

zera

nge)

Cul

ture

and

RR

T-

PCR

The

num

ber

ofin

fect

ious

FM

Dvi

rus

and

RN

Aco

pies

was

inde

pend

ent

ofth

esa

mpl

ing

met

hod

Pigs

6020

07

May

sam

pler

165

liter

sin

5m

in61

0-lit

erai

rsa

mpl

ing

cabi

net

(for

each

pig)

and

alo

ose

box

(for

six

pigs

)(a

ppro

xim

atel

y4

by4

by3

m)

FM

Dvi

rus

OU

KG

FM

D34

/200

10.

015–

20(n

ocl

ear

asso

ciat

ion

ofvi

able

viru

sw

itha

part

icul

arsi

zera

nge)

Cul

ture

and

RR

T-

PCR

The

num

ber

ofin

fect

ious

FM

Dvi

rus

and

RN

Aco

pies

was

inde

pend

ent

ofth

esa

mpl

ing

met

hod

Pigs

6020

07

Cyc

lone

sam

pler

3,90

0lit

ers

in5

min

610-

liter

air

sam

plin

gca

bine

t(f

orea

chpi

g)an

da

loos

ebo

x(f

orsi

xpi

gs)

(app

roxi

mat

ely

4by

4by

3m

)

FM

Dvi

rus

OU

KG

FM

D34

/200

10.

015–

20(n

ocl

ear

asso

ciat

ion

ofvi

able

viru

sw

itha

part

icul

arsi

zera

nge)

Cul

ture

and

RR

T-

PCR

The

num

ber

ofin

fect

ious

FM

Dvi

rus

and

RN

Aco

pies

was

inde

pend

ent

ofth

esa

mpl

ing

met

hod

Pigs

6020

07

25-m

mfil

ters

with

anSK

CB

utto

nin

hala

ble

aero

sols

ampl

erG

elat

infil

ter

(3-

�m

pore

size

)4

liter

s/m

inC

ham

ber

Bac

teri

opha

geM

S210

–80

nmPa

rtic

leco

unte

rs(a

irbo

rne

part

icle

conc

entr

atio

nsw

ere

mea

sure

ddo

wns

trea

man

dup

stre

amfr

omth

efil

ters

)

Phys

ical

effic

ienc

yw

asov

er96

%Si

x-je

tC

ollis

on-t

ype

air-

jet

nebu

lizer

2320

07

PCfil

ter

(0.4

-�m

pore

size

)4

liter

s/m

inC

ham

ber

Bac

teri

opha

geM

S210

–80

nmPa

rtic

leco

unte

rs(a

irbo

rne

part

icle

conc

entr

atio

nsw

ere

mea

sure

ddo

wns

trea

man

dup

stre

amfr

omth

efil

ters

)

Lef

tas

ide

due

toa

high

pres

sure

drop

Six-

jet

Col

lison

-typ

eai

r-je

tne

buliz

er23

2007

PCfil

ter

(1-�

mpo

resi

ze)

4lit

ers/

min

Cha

mbe

rB

acte

riop

hage

MS2

10–8

0nm

Part

icle

coun

ters

(air

born

epa

rtic

leco

ncen

trat

ions

wer

em

easu

red

dow

nstr

eam

and

upst

ream

from

the

filte

rs)

Phys

ical

colle

ctio

nef

ficie

ncy

was

68%

Six-

jet

Col

lison

-typ

eai

r-je

tne

buliz

er23

2007

Con

tinue

don

follo

win

gpa

ge

VOL. 72, 2008 SAMPLING OF AIRBORNE VIRUSES 437

on May 8, 2020 by guest

http://mm

br.asm.org/

Dow

nloaded from

TA

BL

E2—

Con

tinue

d

Sam

pler

type

Air

sam

plin

gra

teor

capa

city

Sam

plin

gen

viro

nmen

tV

irus

and/

ortr

acer

Part

icle

size

(�m

)A

naly

tical

met

hod

Com

men

tsA

eros

olso

urce

Ref

eren

ceY

rof

publ

icat

ion

PCfil

ter

(3-�

mpo

resi

ze)

4lit

ers/

min

Cha

mbe

rB

acte

riop

hage

MS2

10–8

0nm

Part

icle

coun

ters

(air

born

epa

rtic

leco

ncen

trat

ions

wer

em

easu

red

dow

nstr

eam

and

upst

ream

from

the

filte

rs)

Phys

ical

colle

ctio

nef

ficie

ncy

was

27%

Six-

jet

Col

lison

-typ

eai

r-je

tne

buliz

er23

2007

PTF

Efil

ter

(0.5

-�

mpo

resi

ze)

4lit

ers/

min

Cha

mbe

rB

acte

riop

hage

MS2

10–8

0nm

Part

icle

coun

ters

(air

born

epa

rtic

leco

ncen

trat

ions

wer

em

easu

red

dow

nstr

eam

and

upst

ream

from

the

filte

rs)

Mor

eth

an96

%ph

ysic

alco

llect

ion

effic

ienc

y

Six-

jet

Col

lison

-typ

eai

r-je

tne

buliz

er23

2007

PTF

Efil

ter

(1-�

mpo

resi

ze)

4lit

ers/

min

Cha

mbe

rB

acte

riop

hage

MS2

10–8

0nm

Part

icle

coun

ters

(air

born

epa

rtic

leco

ncen

trat

ions

wer

em

easu

red

dow

nstr

eam

and

upst

ream

from

the

filte

rs)

Mor

eth

an96

%ph

ysic

alco

llect

ion

effic

ienc

y

Six-

jet

Col

lison

-typ

eai

r-je

tne

buliz

er23

2007

PTF

Efil

ter

(3-�

mpo

resi

ze)

4lit

ers/

min

Cha

mbe

rB

acte

riop

hage

MS2

10–8

0nm

Part

icle

coun

ters

(air

born

epa

rtic

leco

ncen

trat

ions

wer

em

easu

red

dow

nstr

eam

and

upst

ream

from

the

filte

rs)

Mor

eth

an96

%ph

ysic

alco

llect

ion

effic

ienc

y

Six-

jet

Col

lison

-typ

eai

r-je

tne

buliz

er23

2007

Prel

oade

din

thre

e-pa

rt37

-mm

plas

ticca

sset

tes

PTF

Efil

ter

(0.3

-�

mpo

resi

ze)

2lit

ers/

min

Cha

mbe

rB

acte

riop

hage

MS2

10–8

0nm

Part

icle

coun

ters

(air

born

epa

rtic

leco

ncen

trat

ions

wer

em

easu

red

dow

nstr

eam

and

upst

ream

from

the

filte

rs)

Mor

eth

an96

%ph

ysic

alco

llect

ion

effic

ienc

y

Six-

jet

Col

lison

-typ

eai

r-je

tne

buliz

er23

2007

SKC

Bio

Sam

pler

impi

nger

s12

.5lit

ers/

min

for

1m

in13

3-lit

erst

ainl

ess

stee

ldyn

amic

aero

solt

oroi

d

PRR

SV,r

hoda

min

eB

Mic

roin

fect

ivity

assa

ysan

dqu

antit

ativ

eR

T-

PCR

Tem

pera

ture

had

agr

eate

ref

fect

than

RH

onth

est

abili

tyof

PRR

SV

24-J

etC

ollis

onne

buliz

er72

2007

Bio

aero

solp

erso

nal

sam

pler

4lit

ers/

min

for

5m

inA

eros

olch

ambe

rIn

fluen

zavi

rus

Ast

rain

Cul

ture

and

RR

T-

PCR

Vir

uses

wer

ede

tect

edin

aero

sols

ampl

esT

hree

-jet

Col

lison

nebu

lizer

111

2007

37-m

mge

latin

filte

r28

.3lit

ers/

min

for

5or

10m

in3.

0-m

by4.

6-m

by3.

0-m

cham

ber

with

uppe

r-ro

omU

Vge

rmic

idal

irra

diat

ion

Vac

cini

avi

rus

(WR

stra

in)

2.5

(med

ian

diam

eter

)C

ultu

reC

once

ntra

tions

ofin

fect

ive

vacc

inia

viru

sca

nbe

dim

inis

hed

byup

per-

room

UV

germ

icid

alir

radi

atio

n

Six-

jet

Col

lison

nebu

lizer

5320

07

37-m

mge

latin

filte

rin

apo

lyst

yren

eai

rsa

mpl

ing

cass

ette

Aer

osol

cham

ber

with

UV

light

Vac

cini

avi

rus

(WR

stra

in)

Cul

ture

Inac

tivat

ion

ofvi

ruse

sby

UV

Cde

crea

sed

athi

ghR

H

Six-

jet

Col

lison

nebu

lizer

9320

07

And

erse

nsa

mpl

erw

ithge

latin

filte

rs

Aer

osol

cham

ber

with

UV

light

Vac

cini

avi

rus

(WR

stra

in)

Cul

ture

Inac

tivat

ion

ofvi

ruse

sby

UV

Cde

crea

sed

athi

ghR

H

Six-

jet

Col

lison

nebu

lizer

9320

07

438 VERREAULT ET AL. MICROBIOL. MOL. BIOL. REV.

on May 8, 2020 by guest

http://mm

br.asm.org/

Dow

nloaded from

obstacle. This is the only mechanism that does not depend onparticles being diverted from the streamline. Inertial impactionoccurs when a particle impacts an obstacle when the streamlinechanges direction. The inertia of the particle forces it to divertfrom the streamline and to impact a surface. As mentionedpreviously, only very small particles are affected by the diffu-sion mechanism based on Brownian motion. Gravitational set-tling affects mostly particles of much larger aerodynamic di-ameter by pushing them downward due to gravity. Theimportance of this force depends on the other forces affectingthe particle in various directions. Lastly, electrostatic forcesalso influence the trajectory of particles. This mechanism de-pends on the size and charge of the particle and the chargedifference with the filter.

Given that small particles are highly governed by the diffu-sion phenomenon and that larger particles have a tendency toimpact and to be intercepted, it was shown that both types ofbehaviors are at their lowest at 0.3 �m (75). Thus, filters areleast efficient at removing 0.3-�m particles. Filtration efficiencyimproves with increasing and decreasing particle size. This iswhy filter efficiency is based on the 0.3-�m benchmark.

Many different types of filters have been used to sampleairborne viruses. They differ mainly in composition, pore size,and thickness. To our knowledge, the first filters used to sam-ple airborne viruses were made out of tightly packed cottonand were used to sample variola virus (Poxviridae family;dsDNA virus) in a hospital (95). Cellulose filters (0.45-�mpore size) have also been used to sample hospital air; PCRanalysis of these samples permitted the detection of naturallyproduced aerosols of varicella-zoster virus (Herpesviridae fam-ily; dsDNA virus; 200 nm) (117) and respiratory syncytial virus(Paramyxoviridae family; ssRNA virus; 150 nm) (3). PTFE fil-ters (2.0-�m pore size) have been used to collect artificialrhinovirus (Picornaviridae family; ssRNA virus; 25 to 30 nm)aerosols in a small aerosol chamber (101) and naturally pro-duced rhinovirus aerosols in office buildings (102). In bothcases, PCR was used to detect the viruses. While polycarbon-ate filters are much less efficient than gelatin or PTFE filters(23), 0.1-�m polycarbonate filters have been used in combina-tion with PCR to detect human cytomegalovirus (Herpesviridaefamily; dsDNA virus; 200 nm) in samples of naturally producedaerosols (92). The low filtration efficiency of polycarbonatefilters may be due to the structure of the filter. The contactarea of filters with uniform cylindrical pores, such as polycar-bonate filters, is much smaller than that of filters with a com-plex structure, such as PTFE filters, where the probability ofadherence is greater because airborne particles are exposed toa greater surface area.

However, filters are not commonly used to sample airborneviruses because they can cause structural damage. In addition,the desiccation of the samples that occurs during sampling caninterfere with culture analysis of the samples. While modernmolecular biology tools do not require infectious particles todetect viruses, studies investigating the effects of environmen-tal factors on viral infectivity, for example, require the collec-tion of infectious viruses. Gelatin filters can be used becausethey do not appear to significantly affect viral infectivity. Forexample, MD8 air samplers equipped with 80-mm gelatinmembrane filters with a pore size of 3 �m in combination withculture techniques have been used successfully to detect Lac-

tococcus lactis tailed bacteriophages in a cheese factory (103).Gelatin filters, as well as the Andersen sampler and theAGI-30 impinger, are 10 times more efficient than polycarbon-ate filters at collecting active bacteriophages (132). The phys-ical collection efficiencies of both gelatin and PTFE filters,calculated by placing particle counters before and after thefilters, exceed 96% (23). While gelatin filters can be very usefulfor sampling functional viruses, their use can be limited byenvironmental conditions. Low humidity can cause them to dryout and break, while high humidity or water droplets can causethem to dissolve. On the positive side, this property can beused to recover viruses or virus-laden particles by dissolvingthe filters in water. Nevertheless, 0.3-�m PTFE filters appearto be the best option for long-term sampling of 10- to 900-nm-diameter virus-laden particles (23).

Filter materials mounted on three-piece cassettes all havethe same limitation. These cassettes are hollow cylinders madeout of plastic or metal, with an inlet or outlet hole at the centerof the base of each cylinder. A filter is deposited on a poroussupport pad (cellulose, plastic, or metal) on part one, the base.The second part, the cylinder, is placed on the base to seal theedge of the filter and ensure that the air pumped from theoutlet of the cassette passes through the filter. If only the firsttwo parts are used, it is considered an open cassette. The thirdpart is placed on top to close the cassette. The pressure used toseal the cassettes can influence the outcome of an experiment.If the cassette is not properly sealed, aerosol slippage canoccur. The airflow goes around the filter and into the pump,preventing most of the airborne particles from being capturedby the filter and significantly contaminating the pump in theprocess. On the other hand, if the cassette is sealed too tightly,the filter can be damaged or weakened, especially with fragilefilters such as gelatin membranes, and aerosol slippage can alsooccur (135). If premounted cassettes are available with thedesired filters, their efficiency should be compared to that oflaboratory-prepared cassettes.

Standardized filters are still available but are often left asidebecause of the damage they can cause to viruses. In compari-son studies, filters often provide the best physical recovery ofnanoscale particles, but the filtering process can damage vi-ruses and complicate the analysis, especially if culture is usedto assess virus levels. Comparative studies using culture as ananalytical tool have shown that filters are less efficient thanother, less destructive methods, such as liquid impingers, forrecovering airborne infectious viruses (64, 66, 132).

Electrostatic Precipitators

LVS use electrostatic precipitation to sample air. One ex-ample is the LVS designed for the U.S. army in the 1960s (54).This device can draw up to 10,000 liters of air per minutethrough a high-voltage corona, where the particles are chargedbefore being precipitated onto a grounded rotating disc. Arecirculating fluid is used to wash off and concentrate theprecipitated particles. LVS have been used to recover airborneadenoviruses (Adenoviridae family; nonenveloped dsDNA vi-rus; 70 to 90 nm in diameter) in a military hospital, where50,545 liters of air were sampled in 5 minutes, with the partic-ulate content collected in 180 ml of fluid (11). LVS have alsobeen used in other circumstances to recover low concentra-

VOL. 72, 2008 SAMPLING OF AIRBORNE VIRUSES 439

on May 8, 2020 by guest

http://mm

br.asm.org/

Dow

nloaded from

tions of airborne adenoviruses and picornaviruses (12, 13, 38,40, 51, 77, 94, 97, 121, 144). These samplers are commonlyused with a preimpactor attached to the air inlet to captureparticles of over 15 �m in diameter. Smaller particles aresubsequently collected by electrostatic precipitation (12). Al-though LVS recover slightly more infective viruses than doesthe cyclone separator described by Errington and Powell (49),LVS are more complicated to operate (38). In addition, theproduction of ozone at high RH in the presence of the intenseelectric field may damage viruses (28).

Other Sampling and Detection Methods

Other methods can be used to detect airborne viruses with-out any actual air sampling. Swabbing the surfaces of air pu-rifier filters (44, 123) can be used to assess the viral composi-tion of air. Settling dishes (14, 40, 41, 126) can also be used, butthis method is more suitable for larger droplets that settle bygravity on a petri dish. While cumbersome, sentinel animalscan be used to detect the presence of viruses (21, 57, 105, 129).Susceptible host animals can be used as air samplers and cul-ture support systems (90) by exposing the animals to poten-tially contaminated air and then noting symptoms or perform-ing laboratory tests. Sufficient concentrations of airborne virusand appropriate conditions are required for this approach todetect viruses.

ASSESSING THE EFFICIENCY OF AIRBORNE VIRUSSAMPLERS BY USE OF TRACERS

In order to study the efficiency of samplers for airborne virussampling, a variety of strategies have been used. It is importantto note the difference between the capture efficiency of a sam-pler and its efficiency for viral recovery. The capture efficiency(or total physical efficiency) is based on the rate of recovery ofdifferent particle sizes and is measured with methods indepen-dent of the integrity of the viruses, while the efficiency of viralrecovery is, in most studies, an indicator of the remainingintegrity and infectivity of the sampled viruses.

Tracers can be used to measure the total capture efficiencyof samplers. P-32 (16, 65, 66), uranine (fluorescein sodium salt)(2, 32, 54, 55, 78, 81, 82, 84, 101), rhodamine B (46–48, 72, 116,122), and Bacillus spores (17, 77, 119) have all been used astracers to detect airborne viruses. Uranine remains the mostpopular tracer because it is safer than radiolabeling for aerosolstudies. In addition, unlike rhodamine B, it does not affect viralinfectivity (79). New molecular methods have led to alternativetracers for determining sampler efficiency. For example, viralgenetic material can be used to estimate the total number ofviruses sampled. Genomic tracers do not depend on viral in-fectivity or, to a certain degree, viral integrity. However, thelack of information on the degradation of viral genetic materialin aerosols makes the replacement of physical tracers by quan-titative PCR premature (72). The major weakness of the quan-titative PCR method is the detection limit. Lastly, particlecounters can be installed upstream and downstream from thesampler to determine the total number of particles trapped bythe sampler. However, this method cannot be used to deter-mine the proportion of captured particles that can be extractedfor further analysis.

LABORATORY STUDIES OF AIRBORNE VIRUSES

To our knowledge, the oldest study on the sampling of air-borne viruses was performed with a laboratory setup using achamber and an artificially produced aerosol of influenza virus(140). Since then, many chamber setups have been used tostudy artificially produced infectious aerosols (61, 70, 139) andairborne viruses. Rotating drum or dynamic aerosol toroids(61) have been used to study the biological decay rates ofairborne viruses under different temperature and/or RH con-ditions (4, 5, 16, 42, 46–48, 65, 67, 72, 78, 80–82, 84, 116, 119,122, 138). These devices make it possible to study aerosolsunder controlled atmospheric conditions for extended periods,with little loss of airborne particles to gravitational settling. Avariety of chambers and other types of closed and/or controlledsystems, some inspired by previous technologies, have beenused to study artificially and naturally produced aerosols (2, 7,8, 15, 20, 23, 30–33, 38, 39, 45, 54–58, 60, 62, 64, 66, 73, 76, 86,99, 101, 107, 109, 118, 120, 121, 130–133, 137). Most setups forviral aerosol studies are handmade for specific purposes. Theaerosol source or generator, temperature, RH, radiation, timeof exposure, aerosolization medium, sampling method, viruses,tracers, and analytical methods are rarely the same. As such,even controlled studies are difficult to compare.

Aerosol generators are most often used to study the behav-ior of airborne viruses. For the generation of submicrometeraerosols, neutralizers are placed between the generator andthe chamber to prevent uncommon aerosol behavior by remov-ing charges on particles created during the nebulization pro-cess. Desiccators are also often used to shrink particles byevaporation. The median size of aerosol particles is controlledby the intensity of the aerosolization process and by preimpac-tors to stop larger particles. Since the concentration of thenonevaporative solutes in the nebulization medium determinesthe size of the droplet nuclei, low solute concentrations can beused to produce small particles and high solute concentrationscan be used for large particles. The concentration of the aero-sol in the chamber can be modified by adding clean dilution air.The size of the droplet nuclei can be calculated using equationsthat take into account the initial droplet diameter and thevolume fraction of solid material (75).

Many types of devices can be used to determine the concen-tration of particles in the air. Spectrometers equipped withvarious technologies can count and size airborne particles inreal time or near real time. However, they are often limited tomeasuring particles of �300 nm to 500 nm in diameter. Scan-ning mobility particle sizers can be used to count and measuresmaller particles. These devices neutralize airborne particlesbefore separating them based on electrical mobility (chargeand size). The particles are then passed through a condenser toincrease their size so they can be detected by photometry.

SURROGATE VIRUSES

While aerobiological studies using hazardous viruses canprovide valuable information, they can also expose personnelto unnecessary risks. Surrogate viruses, such as bacteriophagesof E. coli and other bacteria, can be used to mimic the behaviorof pathogenic viruses. Bacteriophages of the order Caudovi-rales, such as T7-like (16, 30, 42, 45, 67, 76, 99, 122, 131–133,

440 VERREAULT ET AL. MICROBIOL. MOL. BIOL. REV.

on May 8, 2020 by guest

http://mm

br.asm.org/

Dow

nloaded from

137, 138), T1-like (64, 66), and T5-like (69) bacteriophages,were the first surrogates used. The genomic material of thesebacteriophages consists of dsDNA, the capsid is nonenveloped,and the presence of a tail for host recognition renders theviruses susceptible to physical damage. They are thus unreli-able for infectivity assays. In addition, the morphological char-acteristics of these bacteriophages do not resemble those ofany mammalian viruses. As such, they are used more rarelynowadays and have largely been replaced by other surrogateviruses. Bacteriophage MS2 (Leviviridae family) has been usedas a surrogate virus in many studies (14, 23, 42, 62, 76, 130, 132,133). It is a nonenveloped ssRNA coliphage with a very small(25 to 27 nm) icosahedral capsid. It has no tail and is morpho-logically similar to members of the Picornaviridae family, whichincludes many pathogenic viruses, such as poliovirus, rhinovi-rus, and FMD virus. Another surrogate virus is bacteriophage�X174 (Microviridae family), which possesses a ssDNA ge-nome and a morphology similar to that of MS2. Bacteriophage�X174 has been compared to the most resistant human-patho-genic viruses, such as polioviruses and parvoviruses (114), andhas been used in aerobiology (96, 132, 133) along with anothermicrovirus, S13 (42, 137). Bacteriophage �6 (Cystoviridae fam-ily; dsRNA virus; 85 nm) can be used as a surrogate for smallenveloped viruses (132, 133).

Since every virus has a unique response to environmentalfactors, no surrogate is perfect. Nonetheless, nonpathogenicmodels can greatly simplify virus studies, especially when aero-sols are used.

CONCLUSIONS

Sampling techniques have been improved greatly over theyears, and we are definitely better equipped today to tackle theimportant health issue of airborne viruses. However, the lackof standardization has to be addressed, as it limits the devel-opment of general recommendations for sampling of airborneviruses. Given the wide range of aerodynamic properties ofairborne viruses, which can be nanometer- to micrometer-sizedparticles, the issue of standardization is of the utmost impor-tance. The detection of viruses in air samples depends on thetype of aerosol and the sampling and analytical methodologies.Studies to date have rarely included quantitative analyses oftotal viral load. While culture is often used to determine virusconcentrations, most sampling methods affect viral infectivity,making culture inadequate for calculating the true concentra-tions of infectious airborne viruses. Technologies such as PCRcan be used to detect viruses in air samples even when they areno longer infectious. While filters cause more damage to vi-ruses than other methods do, they are more efficient for de-termining viral loads in aerosols. Lastly, viruses are an aston-ishingly diverse group of microorganisms, so this diversity hasto be taken into consideration to select the most appropriatesampling devices. Whatever techniques or recommendationsare proposed for sampling virus aerosols, it is important tokeep in mind that a representative sample should containnanoparticles together with larger airborne particles. Futurestudies will contribute to better predicting the potential risk ofinfection by airborne viruses.

ACKNOWLEDGMENTS

This study was funded by a concerted grant from FQRNT-NOVALAIT-MAPAQ and by Agriculture and Agri-Food Canada.S.M. and C.D. also received funding from the Natural Sciences andEngineering Research Council of Canada (NSERC). C.D. is therecipient of an FRSQ Junior 2 scholarship.

REFERENCES

1. Adams, D. J., J. C. Spendlove, R. S. Spendlove, and B. B. Barnett. 1982.Aerosol stability of infectious and potentially infectious reovirus particles.Appl. Environ. Microbiol. 44:903–908.

2. Agranovski, I. E., A. S. Safatov, A. I. Borodulin, O. V. Pyankov, V. A.Petrishchenko, A. N. Sergeev, A. A. Sergeev, V. Agranovski, and S. A.Grinshpun. 2005. New personal sampler for viable airborne viruses: feasi-bility study. J. Aerosol Sci. 36:609–617.

3. Aintablian, N., P. Walpita, and M. H. Sawyer. 1998. Detection of Bordetellapertussis and respiratory syncytial virus in air samples from hospital rooms.Infect. Control Hosp. Epidemiol. 19:918–923.

4. Akers, T. G., S. Bond, and L. J. Goldberg. 1966. Effect of temperature andrelative humidity on survival of airborne Columbia SK group viruses. Appl.Microbiol. 14:361–364.

5. Akers, T. G., and M. T. Hatch. 1968. Survival of a picornavirus and itsinfectious ribonucleic acid after aerosolization. Appl. Microbiol. 16:1811–1813.

6. Akers, T. G., C. M. Prato, and E. J. Dubovi. 1973. Airborne stability ofsimian virus 40. Appl. Microbiol. 26:146–148.

7. Alexandersen, S., I. Brotherhood, and A. I. Donaldson. 2002. Natural aero-sol transmission of foot-and-mouth disease virus to pigs: minimal infectiousdose for strain O1 Lausanne. Epidemiol. Infect. 128:301–312.

8. Alexandersen, S., Z. Zhang, S. M. Reid, G. H. Hutchings, and A. I. Donald-son. 2002. Quantities of infectious virus and viral RNA recovered fromsheep and cattle experimentally infected with foot-and-mouth disease virusO UK 2001. J. Gen. Virol. 83:1915–1923.

9. Aller, J. Y., M. R. Kuznetsova, C. J. Jahns, and P. F. Kemp. 2005. The seasurface microlayer as a source of viral and bacterial enrichment in marineaerosols. J. Aerosol Sci. 36:801–812.

10. Artenstein, M. S., and F. C. Cadigan, Jr. 1964. Air sampling in viralrespiratory disease. Arch. Environ. Health 39:58–60.

11. Artenstein, M. S., and W. S. Miller. 1966. Air sampling for respiratorydisease agents in army recruits. Bacteriol. Rev. 30:571–572.

12. Artenstein, M. S., W. S. Miller, T. H. Lamson, and B. L. Brandt. 1968.Large-volume air sampling for meningococci and adenoviruses. Am. J.Epidemiol. 87:567–577.

13. Artenstein, M. S., W. S. Miller, J. H. Rust, Jr., and T. H. Lamson. 1967.Large-volume air sampling of human respiratory disease pathogens. Am. J.Epidemiol. 85:479–485.

14. Barker, J., and M. V. Jones. 2005. The potential spread of infection causedby aerosol contamination of surfaces after flushing a domestic toilet.J. Appl. Microbiol. 99:339–347.

15. Bausum, H. T., S. A. Schaub, K. F. Kenyon, and M. J. Small. 1982. Com-parison of coliphage and bacterial aerosols at a wastewater spray irrigationsite. Appl. Environ. Microbiol. 43:28–38.

16. Benbough, J. E. 1971. Some factors affecting the survival of airborne vi-ruses. J. Gen. Virol. 10:209–220.

17. Benbough, J. E. 1969. The effect of relative humidity on the survival ofairborne Semliki Forest virus. J. Gen. Virol. 4:473–477.

18. Berendt, R. F., and E. L. Dorsey. 1971. Effect of simulated solar radiationand sodium fluorescein on the recovery of Venezuelan equine encephalo-myelitis virus from aerosols. Appl. Microbiol. 21:447–450.

19. Booth, T. F., B. Kournikakis, N. Bastien, J. Ho, D. Kobasa, L. Stadnyk, Y.Li, M. Spence, S. Paton, B. Henry, B. Mederski, D. White, D. E. Low, A.McGeer, A. Simor, M. Vearncombe, J. Downey, F. B. Jamieson, P. Tang,and F. Plummer. 2005. Detection of airborne severe acute respiratorysyndrome (SARS) coronavirus and environmental contamination in SARSoutbreak units. J. Infect. Dis. 191:1472–1477.

20. Bourgueil, E., E. Hutet, R. Cariolet, and P. Vannier. 1992. Air samplingprocedure for evaluation of viral excretion level by vaccinated pigs infectedwith Aujeszky’s disease (pseudorabies) virus. Res. Vet. Sci. 52:182–186.

21. Brielmeier, M., E. Mahabir, J. R. Needham, C. Lengger, P. Wilhelm, and J.Schmidt. 2006. Microbiological monitoring of laboratory mice and biocon-tainment in individually ventilated cages: a field study. Lab. Anim. 40:247–260.

22. Brooks, J. P., B. D. Tanner, C. P. Gerba, C. N. Haas, and I. L. Pepper. 2005.Estimation of bioaerosol risk of infection to residents adjacent to a landapplied biosolids site using an empirically derived transport model. J. Appl.Microbiol. 98:397–405.

23. Burton, N. C., S. A. Grinshpun, and T. Reponen. 2007. Physical collectionefficiency of filter materials for bacteria and viruses. Ann. Occup. Hyg.51:143–151.

24. Carducci, A., S. Arrighi, and A. Ruschi. 1995. Detection of coliphages and

VOL. 72, 2008 SAMPLING OF AIRBORNE VIRUSES 441

on May 8, 2020 by guest

http://mm

br.asm.org/

Dow

nloaded from

enteroviruses in sewage and aerosol from an activated sludge wastewatertreatment plant. Lett. Appl. Microbiol. 21:207–209.

25. Carducci, A., E. Tozzi, E. Rubulotta, B. Casini, L. Cantiani, E. Rovini, M.Muscillo, and R. Pacini. 2000. Assessing airborne biological hazard fromurban wastewater treatment. Water Res. 34:1173–1178.

26. Champion, H. J., J. Gloster, I. S. Mason, R. J. Brown, A. I. Donaldson, D. B.Ryall, and A. J. Garland. 2002. Investigation of the possible spread offoot-and-mouth disease virus by the burning of animal carcasses on openpyres. Vet. Rec. 151:593–600.

27. Christensen, L. S., P. Normann, S. Thykier-Nielsen, J. H. Sorensen, K. deStricker, and S. Rosenorn. 2005. Analysis of the epidemiological dynamicsduring the 1982–1983 epidemic of foot-and-mouth disease in Denmarkbased on molecular high-resolution strain identification. J. Gen. Virol.86:2577–2584.

28. Cox, C. S. 1987. The aerobiological pathway of microorganisms. John Wiley& Sons, Chichester, United Kingdom.

29. Daggupaty, S. M., and R. F. Sellers. 1990. Airborne spread of foot-and-mouth disease in Saskatchewan, Canada, 1951–1952. Can. J. Vet. Res.54:465–468.

30. Dahlgren, C. M., H. M. Decker, and J. B. Harstad. 1961. A slit sampler forcollecting T3 bacteriophage and Venezuelan equine encephalomyelitis vi-rus. I. Studies with T3 bacteriophage. Appl. Microbiol. 9:103–105.

31. Dee, S. A., J. Deen, L. Jacobson, K. D. Rossow, C. Mahlum, and C. Pijoan.2005. Laboratory model to evaluate the role of aerosols in the transport ofporcine reproductive and respiratory syndrome virus. Vet. Rec. 156:501–504.

32. de Jong, J. C., M. Harmsen, and T. Trouwborst. 1973. The infectivity of thenucleic acid of aerosol-inactivated poliovirus. J. Gen. Virol. 18:83–86.

33. de Jong, J. C., M. Harmsen, T. Trouwborst, and K. C. Winkler. 1974.Inactivation of encephalomyocarditis virus in aerosols: fate of virus proteinand ribonucleic acid. Appl. Microbiol. 27:59–65.

34. de Jong, J. G. 1965. The survival of measles virus in air, in relation to theepidemiology of measles. Arch. Gesamte Virusforsch. 16:97–102.

35. DeLay, P. D., K. B. DeOme, and R. A. Bankowski. 1948. Recovery ofpneumoencephalitis (Newcastle) virus from the air of poultry houses con-taining infected birds. Science 107:474–475.

36. Donaldson, A. I. 1983. Quantitative data on airborne foot-and-mouth-dis-ease virus—its production, carriage and deposition. Philos. Trans. R. Soc.Lond. B 302:529–534.

37. Donaldson, A. I., and S. Alexandersen. 2002. Predicting the spread of footand mouth disease by airborne virus. Rev. Sci. Technol. 21:569–575.

38. Donaldson, A. I., N. P. Ferris, and J. Gloster. 1982. Air sampling of pigsinfected with foot-and-mouth disease virus: comparison of Litton and cy-clone samplers. Res. Vet. Sci. 33:384–385.

39. Donaldson, A. I., C. F. Gibson, R. Oliver, C. Hamblin, and R. P. Kitching.1987. Infection of cattle by airborne foot-and-mouth disease virus: minimaldoses with O1 and SAT 2 strains. Res. Vet. Sci. 43:339–346.

40. Donaldson, A. I., R. C. Wardley, S. Martin, and N. P. Ferris. 1983. Exper-imental Aujeszky’s disease in pigs: excretion, survival and transmission ofthe virus. Vet. Rec. 113:490–494.

41. Downie, A. W., M. Meiklejohn, L. St. Vincent, A. R. Rao, B. V. SundaraBabu, and C. H. Kempe. 1965. The recovery of smallpox virus from patientsand their environment in a smallpox hospital. Bull. W. H. O. 33:615–622.

42. Dubovi, E. J., and T. G. Akers. 1970. Airborne stability of tailless bacterialviruses S13 and MS2. Appl. Microbiol. 19:624–628.

43. Duchaine, C., Y. Grimard, and Y. Cormier. 2000. Influence of buildingmaintenance, environmental factors, and seasons on airborne contaminantsof swine confinement buildings. AIHAJ 61:56–63.

44. Echavarria, M., S. A. Kolavic, S. Cersovsky, F. Mitchell, J. L. Sanchez, C.Polyak, B. L. Innis, and L. N. Binn. 2000. Detection of adenoviruses (AdV)in culture-negative environmental samples by PCR during an AdV-associ-ated respiratory disease outbreak. J. Clin. Microbiol. 38:2982–2984.

45. Ehrlich, R., S. Miller, and L. S. Idoine. 1964. Effects of environmentalfactors on the survival of airborne T3 coliphage. Appl. Microbiol. 12:479–482.

46. Elazhary, M. A., and J. B. Derbyshire. 1979. Aerosol stability of bovineadenovirus type 3. Can. J. Comp. Med. 43:305–312.

47. Elazhary, M. A., and J. B. Derbyshire. 1979. Aerosol stability of bovineparainfluenza type 3 virus. Can. J. Comp. Med. 43:295–304.

48. Elazhary, M. A., and J. B. Derbyshire. 1979. Effect of temperature, relativehumidity and medium on the aerosol stability of infectious bovine rhino-tracheitis virus. Can. J. Comp. Med. 43:158–167.

49. Errington, F. P., and E. O. Powell. 1969. A cyclone separator for aerosolsampling in the field. J. Hyg. (London) 67:387–399.

50. Espinosa, I. Y., and S. D. Pillai. 2002. Impaction-based sampler for detect-ing male-specific coliphages in bioaerosols. J. Rapid Methods Autom. Mi-crobiol. 10:117–127.

51. Fannin, K. F., J. C. Spendlove, K. W. Cochran, and J. J. Gannon. 1976.Airborne coliphages from wastewater treatment facilities. Appl. Environ.Microbiol. 31:705–710.

52. Farnsworth, J. E., S. M. Goyal, S. W. Kim, T. H. Kuehn, P. C. Raynor, M. A.Ramakrishnan, S. Anantharaman, and W. Tang. 2006. Development of a

method for bacteria and virus recovery from heating, ventilation, and airconditioning (HVAC) filters. J. Environ. Monit. 8:1006–1013.

53. First, M., S. N. Rudnick, K. F. Banahan, R. L. Vincent, and P. W. Brickner.2007. Fundamental factors affecting upper-room ultraviolet germicidal ir-radiation. I. Experimental. J. Occup. Environ. Hyg. 4:321–331.

54. Gerone, P. J., R. B. Couch, G. V. Keefer, R. G. Douglas, E. B. Derrenbacher,and V. Knight. 1966. Assessment of experimental and natural viral aerosols.Bacteriol. Rev. 30:576–588.

55. Gerone, P. J., R. B. Couch, and V. Knight. 1971. Aerosol inoculator forexposure of human volunteers. Appl. Microbiol. 22:899–903.

56. Gibson, C. F., and A. I. Donaldson. 1986. Exposure of sheep to naturalaerosols of foot-and-mouth disease virus. Res. Vet. Sci. 41:45–49.

57. Gillespie, R. R., M. A. Hill, and C. L. Kanitz. 1996. Infection of pigs byaerosols of Aujeszky’s disease virus and their shedding of the virus. Res.Vet. Sci. 60:228–233.

58. Gillespie, R. R., M. A. Hill, C. L. Kanitz, K. E. Knox, L. K. Clark, and J. P.Robinson. 2000. Infection of pigs by Aujeszky’s disease virus via the breathof intranasally inoculated pigs. Res. Vet. Sci. 68:217–222.

59. Gloster, J., A. Freshwater, R. F. Sellers, and S. Alexandersen. 2005. Re-assessing the likelihood of airborne spread of foot-and-mouth disease at thestart of the 1967–1968 UK foot-and-mouth disease epidemic. Epidemiol.Infect. 133:767–783.

60. Gloster, J., P. Williams, C. Doel, I. Esteves, H. Coe, and J. F. Valarcher.2007. Foot-and-mouth disease—quantification and size distribution of air-borne particles emitted by healthy and infected pigs. Vet. J. 174:42–53.

61. Goldberg, L. J., H. M. Watkins, E. E. Boerke, and M. A. Chatigny. 1958.The use of a rotating drum for the study of aerosols over extended periodsof time. Am. J. Hyg. 68:85–93.

62. Griffiths, W. D., A. Bennett, S. Speight, and S. Parks. 2005. Determiningthe performance of a commercial air purification system for reducing air-borne contamination using model microorganisms: a new test methodology.J. Hosp. Infect. 61:242–247.

63. Hammond, G. W., R. L. Raddatz, and D. E. Gelskey. 1989. Impact ofatmospheric dispersion and transport of viral aerosols on the epidemiologyof influenza. Rev. Infect. Dis. 11:494–497.

64. Happ, J. W., J. B. Harstad, and L. M. Buchanan. 1966. Effect of air ions onsubmicron T1 bacteriophage aerosols. Appl. Microbiol. 14:888–891.

65. Harper, G. J. 1961. Airborne microorganisms: survival tests with four vi-ruses. J. Hyg. (London) 59:479–486.

66. Harstad, J. B. 1965. Sampling submicron T1 bacteriophage aerosols. Appl.Microbiol. 13:899–908.

67. Hatch, M. T., and J. C. Warren. 1969. Enhanced recovery of airborne T3coliphage and Pasteurella pestis bacteriophage by means of a presamplinghumidification technique. Appl. Microbiol. 17:685–689.

68. Hemmes, J. H., K. C. Winkler, and S. M. Kool. 1960. Virus survival as aseasonal factor in influenza and poliomyelitis. Nature 188:430–431.

69. Hemmes, J. H., K. C. Winkler, and S. M. Kool. 1962. Virus survival as aseasonal factor in influenza and poliomyelitis. Antonie van Leeuwenhoek28:221–233.

70. Henderson, D. W. 1952. An apparatus for the study of airborne infection. J.Hyg. (London) 50:53–68.

71. Henningson, E. W., and M. S. Ahlberg. 1994. Evaluation of microbiologicalaerosol samplers—a review. J. Aerosol Sci. 25:1459–1492.

72. Hermann, J., S. Hoff, C. Munoz-Zanzi, K. J. Yoon, M. Roof, A. Burkhardt,and J. Zimmerman. 2007. Effect of temperature and relative humidity onthe stability of infectious porcine reproductive and respiratory syndromevirus in aerosols. Vet. Res. 38:81–93.

73. Hermann, J. R., S. J. Hoff, K. J. Yoon, A. C. Burkhardt, R. B. Evans, andJ. J. Zimmerman. 2006. Optimization of a sampling system for recovery anddetection of airborne porcine reproductive and respiratory syndrome virusand swine influenza virus. Appl. Environ. Microbiol. 72:4811–4818.

74. Hietala, S. K., P. J. Hullinger, B. M. Crossley, H. Kinde, and A. A. Ardans.2005. Environmental air sampling to detect exotic Newcastle disease virusin two California commercial poultry flocks. J. Vet. Diagn. Investig. 17:198–200.

75. Hinds, W. C. 1999. Aerosol technology, 2nd ed. Wiley-Interscience, NewYork, NY.

76. Hogan, C. J., Jr., E. M. Kettleson, M. H. Lee, B. Ramaswami, L. T.Angenent, and P. Biswas. 2005. Sampling methodologies and dosage as-sessment techniques for submicrometre and ultrafine virus aerosol parti-cles. J. Appl. Microbiol. 99:1422–1434.

77. Hugh-Jones, M., W. H. Allan, F. A. Dark, and G. J. Harper. 1973. Theevidence for the airborne spread of Newcastle disease. J. Hyg. (London)71:325–339.

78. Ijaz, M. K., A. H. Brunner, S. A. Sattar, R. C. Nair, and C. M. Johnson-Lussenburg. 1985. Survival characteristics of airborne human coronavirus229E. J. Gen. Virol. 66:2743–2748.

79. Ijaz, M. K., Y. G. Karim, S. A. Sattar, and C. M. Johnson-Lussenburg.1987. Development of methods to study the survival of airborne viruses.J. Virol. Methods 18:87–106.

80. Ijaz, M. K., S. A. Sattar, T. Alkarmi, F. K. Dar, A. R. Bhatti, and K. M.

442 VERREAULT ET AL. MICROBIOL. MOL. BIOL. REV.

on May 8, 2020 by guest

http://mm

br.asm.org/

Dow

nloaded from

Elhag. 1994. Studies on the survival of aerosolized bovine rotavirus (UK)and a murine rotavirus. Comp. Immunol. Microbiol. Infect. Dis. 17:91–98.

81. Ijaz, M. K., S. A. Sattar, C. M. Johnson-Lussenburg, and V. S. Springth-orpe. 1985. Comparison of the airborne survival of calf rotavirus and po-liovirus type 1 (Sabin) aerosolized as a mixture. Appl. Environ. Microbiol.49:289–293.

82. Ijaz, M. K., S. A. Sattar, C. M. Johnson-Lussenburg, V. S. Springthorpe,and R. C. Nair. 1985. Effect of relative humidity, atmospheric temperature,and suspending medium on the airborne survival of human rotavirus. Can.J. Microbiol. 31:681–685.

83. Johnson, N., R. Phillpotts, and A. R. Fooks. 2006. Airborne transmission oflyssaviruses. J. Med. Microbiol. 55:785–790.

84. Karim, Y. G., M. K. Ijaz, S. A. Sattar, and C. M. Johnson-Lussenburg.1985. Effect of relative humidity on the airborne survival of rhinovirus-14.Can. J. Microbiol. 31:1058–1061.

85. Kuehne, R. W., and W. S. Gochenour, Jr. 1961. A slit sampler for collectingT3 bacteriophage and Venezuelan equine encephalomyelitis virus. II. Stud-ies with Venezuelan equine encephalomyelitis virus. Appl. Microbiol.9:106–107.

86. Larson, E. W., J. W. Dominik, and T. W. Slone. 1980. Aerosol stability andrespiratory infectivity of Japanese B encephalitis virus. Infect. Immun.30:397–401.

87. Li, Y., X. Huang, I. T. Yu, T. W. Wong, and H. Qian. 2005. Role of airdistribution in SARS transmission during the largest nosocomial outbreakin Hong Kong. Indoor Air 15:83–95.

88. Marks, P. J., I. B. Vipond, D. Carlisle, D. Deakin, R. E. Fey, and E. O. Caul.2000. Evidence for airborne transmission of Norwalk-like virus (NLV) in ahotel restaurant. Epidemiol. Infect. 124:481–487.

89. Marks, P. J., I. B. Vipond, F. M. Regan, K. Wedgwood, R. E. Fey, and E. O.Caul. 2003. A school outbreak of Norwalk-like virus: evidence for airbornetransmission. Epidemiol. Infect. 131:727–736.

90. Mars, M. H., C. J. Bruschke, and J. T. van Oirschot. 1999. Airbornetransmission of BHV1, BRSV, and BVDV among cattle is possible underexperimental conditions. Vet. Microbiol. 66:197–207.

91. May, K. R., and G. J. Harper. 1957. The efficiency of various liquid im-pinger samplers in bacterial aerosols. Br. J. Ind. Med. 14:287–297.

92. McCluskey, R., R. Sandin, and J. Greene. 1996. Detection of airbornecytomegalovirus in hospital rooms of immunocompromised patients. J. Vi-rol. Methods 56:115–118.

93. McDevitt, J. J., K. M. Lai, S. N. Rudnick, E. A. Houseman, M. W. First, andD. K. Milton. 2007. Characterization of UVC light sensitivity of vacciniavirus. Appl. Environ. Microbiol. 73:5760–5766.

94. McGarrity, G. J., and A. S. Dion. 1978. Detection of airborne polyomavirus. J. Hyg. (London) 81:9–13.

95. Meiklejohn, G., C. H. Kempe, A. W. Downie, T. O. Berge, L. St. Vincent,and A. R. Rao. 1961. Air sampling to recover variola virus in the environ-ment of a smallpox hospital. Bull. W. H. O. 25:63–67.

96. Mik, G., I. de Groot, and J. L. Gerbrandy. 1977. Survival of aerosolizedbacteriophage phiX174 in air containing ozone-olefin mixtures. J. Hyg.(London) 78:189–198.

97. Moore, B. E., B. P. Sagik, and C. A. Sorber. 1979. Procedure for therecovery of airborne human enteric viruses during spray irrigation oftreated wastewater. Appl. Environ. Microbiol. 38:688–693.

98. Morawska, L. 2006. Droplet fate in indoor environments, or can we preventthe spread of infection? Indoor Air 16:335–347.

99. Morris, E. J., H. M. Darlow, J. F. Peel, and W. C. Wright. 1961. Thequantitative assay of mono-dispersed aerosols of bacteria and bacterio-phage by electrostatic precipitation. J. Hyg. (London) 59:487–496.

100. Musser, J. M. 2004. A practitioner’s primer on foot-and-mouth disease.J. Am. Vet. Med. Assoc. 224:1261–1268.

101. Myatt, T. A., S. L. Johnston, S. Rudnick, and D. K. Milton. 2003. Airbornerhinovirus detection and effect of ultraviolet irradiation on detection by asemi-nested RT-PCR assay. BMC Public Health 3:5.

102. Myatt, T. A., S. L. Johnston, Z. Zuo, M. Wand, T. Kebadze, S. Rudnick, andD. K. Milton. 2004. Detection of airborne rhinovirus and its relation tooutdoor air supply in office environments. Am. J. Respir. Crit. Care Med.169:1187–1190.

103. Neve, H., A. Laborius, and K. J. Heller. 2003. Testing of the applicability ofbattery-powered portable microbial air samplers for detection and enumer-ation of airborne Lactococcus lactis dairy bacteriophages. Kieler Milchw.Forsch. 55:301–315.

104. Olsen, S. J., H. L. Chang, T. Y. Cheung, A. F. Tang, T. L. Fisk, S. P. Ooi,H. W. Kuo, D. D. Jiang, K. T. Chen, J. Lando, K. H. Hsu, T. J. Chen, andS. F. Dowell. 2003. Transmission of the severe acute respiratory syndromeon aircraft. N. Engl. J. Med. 349:2416–2422.

105. Otake, S., S. A. Dee, L. Jacobson, M. Torremorell, and C. Pijoan. 2002.Evaluation of aerosol transmission of porcine reproductive and respiratorysyndrome virus under controlled field conditions. Vet. Rec. 150:804–808.

106. Petersen, N. J., W. W. Bond, and M. S. Favero. 1979. Air sampling forhepatitis B surface antigen in a dental operatory. J. Am. Dent. Assoc.99:465–467.

107. Petersen, N. J., W. W. Bond, J. H. Marshall, M. S. Favero, and L. Raij.

1976. An air sampling technique for hepatitis B surface antigen. HealthLab. Sci. 13:233–237.

108. Phelps, E. B., and L. Buchbinder. 1941. Studies on microorganisms insimulated room environments. I. A study of the performance of the Wellsair centrifuge and of the settling rates of bacteria through the air. J. Bac-teriol. 42:321–344.

109. Phillpotts, R. J., T. J. Brooks, and C. S. Cox. 1997. A simple device for theexposure of animals to infectious microorganisms by the airborne route.Epidemiol. Infect. 118:71–75.

110. Pirtle, E. C., and G. W. Beran. 1991. Virus survival in the environment. Rev.Sci. Technol. 10:733–748.

111. Pyankov, O. V., I. E. Agranovski, O. Pyankova, E. Mokhonova, V. Mok-honov, A. S. Safatov, and A. A. Khromykh. 2007. Using a bioaerosol per-sonal sampler in combination with real-time PCR analysis for rapid detec-tion of airborne viruses. Environ. Microbiol. 9:992–1000.

112. Rabey, F., R. J. Janssen, and L. M. Kelley. 1969. Stability of St. Louisencephalitis virus in the airborne state. Appl. Microbiol. 18:880–882.

113. Remington, P. L., W. N. Hall, I. H. Davis, A. Herald, and R. A. Gunn. 1985.Airborne transmission of measles in a physician’s office. JAMA 253:1574–1577.

114. Rheinbaben, F., S. Schunemann, T. Gross, and M. H. Wolff. 2000. Trans-mission of viruses via contact in a household setting: experiments usingbacteriophage straight phiX174 as a model virus. J. Hosp. Infect. 46:61–66.

115. Roy, C. J., and D. K. Milton. 2004. Airborne transmission of communicableinfection—the elusive pathway. N. Engl. J. Med. 350:1710–1712.

116. Sattar, S. A., M. K. Ijaz, C. M. Johnson-Lussenburg, and V. S. Springth-orpe. 1984. Effect of relative humidity on the airborne survival of rotavirusSA11. Appl. Environ. Microbiol. 47:879–881.

117. Sawyer, M. H., C. J. Chamberlin, Y. N. Wu, N. Aintablian, and M. R.Wallace. 1994. Detection of varicella-zoster virus DNA in air samples fromhospital rooms. J. Infect. Dis. 169:91–94.

118. Schaffer, F. L., M. E. Soergel, and D. C. Straube. 1976. Survival of airborneinfluenza virus: effects of propagating host, relative humidity, and compo-sition of spray fluids. Arch. Virol. 51:263–273.

119. Schoenbaum, M. A., J. J. Zimmerman, G. W. Beran, and D. P. Murphy.1990. Survival of pseudorabies virus in aerosol. Am. J. Vet. Res. 51:331–333.

120. Sellers, R. F., and K. A. Herniman. 1974. The airborne excretion by pigs ofswine vesicular disease virus. J. Hyg. (London) 72:61–65.

121. Sellers, R. F., and J. Parker. 1969. Airborne excretion of foot-and-mouthdisease virus. J. Hyg. (London) 67:671–677.

122. Songer, J. R. 1967. Influence of relative humidity on the survival of someairborne viruses. Appl. Microbiol. 15:35–42.

123. Suzuki, K., T. Yoshikawa, A. Tomitaka, K. Matsunaga, and Y. Asano. 2004.Detection of aerosolized varicella-zoster virus DNA in patients with local-ized herpes zoster. J. Infect. Dis. 189:1009–1012.

124. Tanner, B. D., J. P. Brooks, C. N. Haas, C. P. Gerba, and I. L. Pepper. 2005.Bioaerosol emission rate and plume characteristics during land applicationof liquid class B biosolids. Environ. Sci. Technol. 39:1584–1590.

125. Teltsch, B., and E. Katzenelson. 1978. Airborne enteric bacteria and virusesfrom spray irrigation with wastewater. Appl. Environ. Microbiol. 35:290–296.

126. Thomas, G. 1974. Air sampling of smallpox virus. J. Hyg. (London) 73:1–7.127. Thomas, G. 1970. An adhesive surface sampling technique for airborne

viruses. J. Hyg. (London) 68:273–282.128. Thomas, G. 1970. Sampling rabbit pox aerosols of natural origin. J. Hyg.

(London) 68:511–517.129. Trincado, C., S. Dee, L. Jacobson, S. Otake, K. Rossow, and C. Pijoan.

2004. Attempts to transmit porcine reproductive and respiratory syndromevirus by aerosols under controlled field conditions. Vet. Rec. 154:294–297.

130. Trouwborst, T., and J. C. de Jong. 1973. Interaction of some factors in themechanism of inactivation of bacteriophage MS2 in aerosols. Appl. Micro-biol. 26:252–257.

131. Trouwborst, T., and S. Kuyper. 1974. Inactivation of bacteriophage T3 inaerosols: effect of prehumidification on survival after spraying from solu-tions of salt, peptone, and saliva. Appl. Microbiol. 27:834–837.

132. Tseng, C. C., and C. S. Li. 2005. Collection efficiencies of aerosol samplersfor virus-containing aerosols. J. Aerosol Sci. 36:593–607.

133. Tseng, C. C., and C. S. Li. 2006. Ozone for inactivation of aerosolizedbacteriophages. Aerosol Sci. Technol. 40:683–689.

134. Valarcher, J. F., J. Gloster, C. A. Doel, B. Bankowski, and D. Gibson. 2007.Foot-and-mouth disease virus (O/UKG/2001) is poorly transmitted be-tween sheep by the airborne route. Vet. J. doi:10.1016/j.tvjl.2007.05.023.

135. Verreault, D., G. Marchand, Y. Cloutier, J. Barbeau, S. Moineau, and C.Duchaine. 2007. Experimental viral aerosol sampling: sampler comparisonand challenges of the method, abstr. A71. Abstr. CSM 57th Annu. Conf.,Quebec, Canada.

136. Wallis, C., J. L. Melnick, V. C. Rao, and T. E. Sox. 1985. Method fordetecting viruses in aerosols. Appl. Environ. Microbiol. 50:1181–1186.

137. Warren, J. C., T. G. Akers, and E. J. Dubovi. 1969. Effect of prehumidifi-cation on sampling of selected airborne viruses. Appl. Microbiol. 18:893–896.

VOL. 72, 2008 SAMPLING OF AIRBORNE VIRUSES 443

on May 8, 2020 by guest

http://mm

br.asm.org/

Dow

nloaded from

138. Warren, J. C., and M. T. Hatch. 1969. Survival of T3 coliphage in variedextracellular environments. I. Viability of the coliphage during storage andin aerosols. Appl. Microbiol. 17:256–261.

139. Wells, W. F. 1940. An apparatus for the study of experimental air-bornedisease. Science 91:172–174.

140. Wells, W. K., and H. W. Brown. 1936. Recovery of influenza virus sus-pended in air. Science 84:68–69.

141. Westwood, J. C., E. A. Boulter, E. T. Bowen, and H. B. Maber. 1966.Experimental respiratory infection with poxviruses. I. Clinical virologicaland epidemiological studies. Br. J. Exp. Pathol. 47:453–465.

142. Wichmann, H. E., C. Spix, T. Tuch, G. Wolke, A. Peters, J. Heinrich, W. G.Kreyling, and J. Heyder. 2000. Daily mortality and fine and ultrafine par-ticles in Erfurt, Germany. I. Role of particle number and particle mass. Res.Rep. Health Eff. Inst. 2000:5–86.

143. Willeke, K., X. J. Lin, and S. A. Grinshpun. 1998. Improved aerosol col-

lection by combined impaction and centrifugal motion. Aerosol Sci. Tech-nol. 28:439–456.

144. Winkler, W. G. 1968. Airborne rabies virus isolation. Wildl. Dis. 4:37–40.145. Yu, I. T., Y. Li, T. W. Wong, W. Tam, A. T. Chan, J. H. Lee, D. Y. Leung,

and T. Ho. 2004. Evidence of airborne transmission of the severe acuterespiratory syndrome virus. N. Engl. J. Med. 350:1731–1739.

146. Yu, I. T., T. W. Wong, Y. L. Chiu, N. Lee, and Y. Li. 2005. Temporal-spatialanalysis of severe acute respiratory syndrome among hospital inpatients.Clin. Infect. Dis. 40:1237–1243.

147. Yusuf, S., G. Piedimonte, A. Auais, G. Demmler, S. Krishnan, P. VanCaeseele, R. Singleton, S. Broor, S. Parveen, L. Avendano, J. Parra, S.Chavez-Bueno, T. Murguıa De Sierra, E. A. Simoes, S. Shaha, and R.Welliver. 2007. The relationship of meteorological conditions to the epi-demic activity of respiratory syncytial virus. Epidemiol. Infect. 135:1077–1090.

444 VERREAULT ET AL. MICROBIOL. MOL. BIOL. REV.

on May 8, 2020 by guest

http://mm

br.asm.org/

Dow

nloaded from


Recommended