+ All Categories
Home > Documents > Methods of Math. Physics Dr. E.J. Zita, The Evergreen State College Lab II Rm 2272,...

Methods of Math. Physics Dr. E.J. Zita, The Evergreen State College Lab II Rm 2272,...

Date post: 21-Jan-2016
Category:
Upload: duane-greene
View: 220 times
Download: 0 times
Share this document with a friend
Popular Tags:
26
Methods of Math. Physics Dr. E.J. Zita, The Evergreen State College Lab II Rm 2272, [email protected] Winter wk 3, Thursday 20 Jan. 2011 • Electrostatics & overview • Div, Grad, and Curl • Dirac Delta • Modern Physics Logistics: PIQs, e/m lab writeup
Transcript
Page 1: Methods of Math. Physics Dr. E.J. Zita, The Evergreen State College Lab II Rm 2272, zita@evergreen.edu Winter wk 3, Thursday 20 Jan. 2011 Electrostatics.

Methods of Math. PhysicsDr. E.J. Zita, The Evergreen State College

Lab II Rm 2272, [email protected]

Winter wk 3, Thursday 20 Jan. 2011

• Electrostatics & overview• Div, Grad, and Curl

• Dirac Delta

• Modern Physics

• Logistics: PIQs, e/m lab writeup

Page 2: Methods of Math. Physics Dr. E.J. Zita, The Evergreen State College Lab II Rm 2272, zita@evergreen.edu Winter wk 3, Thursday 20 Jan. 2011 Electrostatics.

Electrostatics

• Charges → E fields and forces

• charges → scalar potential differences dV

• E can be found from V• Electric forces move

charges• Electric fields store

energy (capacitance)

Page 3: Methods of Math. Physics Dr. E.J. Zita, The Evergreen State College Lab II Rm 2272, zita@evergreen.edu Winter wk 3, Thursday 20 Jan. 2011 Electrostatics.

Magnetostatics

• Currents → B fields• currents make magnetic

vector potential A• B can be found from A

• Magnetic forces move charges and currents

• Magnetic fields store energy (inductance)

Page 4: Methods of Math. Physics Dr. E.J. Zita, The Evergreen State College Lab II Rm 2272, zita@evergreen.edu Winter wk 3, Thursday 20 Jan. 2011 Electrostatics.

Electrodynamics

• Changing E(t) → B(x)• Changing B(t) → E(x)• Wave equations for E and B

• Electromagnetic waves• Motors and generators• Dynamic Sun

Page 5: Methods of Math. Physics Dr. E.J. Zita, The Evergreen State College Lab II Rm 2272, zita@evergreen.edu Winter wk 3, Thursday 20 Jan. 2011 Electrostatics.

Some advanced topics

• Conservation laws

• Radiation

• waves in plasmas, magnetohydrodynamics

• Potentials and Fields

• Special relativity

Page 6: Methods of Math. Physics Dr. E.J. Zita, The Evergreen State College Lab II Rm 2272, zita@evergreen.edu Winter wk 3, Thursday 20 Jan. 2011 Electrostatics.

Differential operator “del”

Del differentiates each component of a vector.

Gradient of a scalar function = slope in each direction

Divergence of vector = dot product = outflow

Curl of vector = cross product = circulation =

ˆ ˆx y zx y z

ˆ ˆf f f

f x y zx y z

ˆ ˆyx zVV V

x y zx y z

V

V

Page 7: Methods of Math. Physics Dr. E.J. Zita, The Evergreen State College Lab II Rm 2272, zita@evergreen.edu Winter wk 3, Thursday 20 Jan. 2011 Electrostatics.

Practice: 1.15: Calculate the divergence and

curl of v = x2 x + 3xz2 y - 2xz z2 2(3 ) ( 2 )

ˆ ˆ ...x xz xz

x y zx y z

V

zyx

xzxzxzyx

zyx

ˆˆ

222

V

Ex: If v = E, then div E ≈ charge. If v = B, then curl B ≈ current.

Prob.1.16 p.18

Page 8: Methods of Math. Physics Dr. E.J. Zita, The Evergreen State College Lab II Rm 2272, zita@evergreen.edu Winter wk 3, Thursday 20 Jan. 2011 Electrostatics.

1.22 Gradient

Page 9: Methods of Math. Physics Dr. E.J. Zita, The Evergreen State College Lab II Rm 2272, zita@evergreen.edu Winter wk 3, Thursday 20 Jan. 2011 Electrostatics.

1.23 The operator

Page 10: Methods of Math. Physics Dr. E.J. Zita, The Evergreen State College Lab II Rm 2272, zita@evergreen.edu Winter wk 3, Thursday 20 Jan. 2011 Electrostatics.

1.2.4 Divergence

Page 11: Methods of Math. Physics Dr. E.J. Zita, The Evergreen State College Lab II Rm 2272, zita@evergreen.edu Winter wk 3, Thursday 20 Jan. 2011 Electrostatics.

1.2.5 Curl

Page 12: Methods of Math. Physics Dr. E.J. Zita, The Evergreen State College Lab II Rm 2272, zita@evergreen.edu Winter wk 3, Thursday 20 Jan. 2011 Electrostatics.

1.2.6 Product rules

Page 13: Methods of Math. Physics Dr. E.J. Zita, The Evergreen State College Lab II Rm 2272, zita@evergreen.edu Winter wk 3, Thursday 20 Jan. 2011 Electrostatics.

1.2.7 Second derivatives

2 V V 2 f f Laplacian of scalar Lapacian of vector

Page 14: Methods of Math. Physics Dr. E.J. Zita, The Evergreen State College Lab II Rm 2272, zita@evergreen.edu Winter wk 3, Thursday 20 Jan. 2011 Electrostatics.

Fundamental theorems

For divergence: Gauss’s Theorem (Boas 6.9 Ex.3)

For curl: Stokes’ Theorem (Boas 6.9 Ex.4)

volume surface

d d flux v v a

surface boundary

d d circulation v a v l

Page 15: Methods of Math. Physics Dr. E.J. Zita, The Evergreen State College Lab II Rm 2272, zita@evergreen.edu Winter wk 3, Thursday 20 Jan. 2011 Electrostatics.

Derive Gauss’ Theorem

volume surface

d d flux v v a

Page 16: Methods of Math. Physics Dr. E.J. Zita, The Evergreen State College Lab II Rm 2272, zita@evergreen.edu Winter wk 3, Thursday 20 Jan. 2011 Electrostatics.

Apply Gauss’ thm. to Electrostatics

0

0

0

charge density therefore

volume surface

volume

volume volume

qE d E d

dqd q

d

E d d

E

a

Page 17: Methods of Math. Physics Dr. E.J. Zita, The Evergreen State College Lab II Rm 2272, zita@evergreen.edu Winter wk 3, Thursday 20 Jan. 2011 Electrostatics.

Derive Stokes’ Theorem

surface boundary

d d circulation v a v l

Page 18: Methods of Math. Physics Dr. E.J. Zita, The Evergreen State College Lab II Rm 2272, zita@evergreen.edu Winter wk 3, Thursday 20 Jan. 2011 Electrostatics.

Apply Stokes’ Thm. to Magnetostatics

0

0

0

current density , so

surface boundary

surface

surface surface

B d B d I

dIJ I J d

da

B d J d

B J

a l

a

a a

Page 19: Methods of Math. Physics Dr. E.J. Zita, The Evergreen State College Lab II Rm 2272, zita@evergreen.edu Winter wk 3, Thursday 20 Jan. 2011 Electrostatics.

Separation vector vs. position vector:

Position vector = location of a point with respect to the origin.

Separation vector: from SOURCE (e.g. a charge at position r’) TO POINT of interest (e.g. the place where you want to find the field, at r).

222ˆˆˆ zyxrzzyyxx r

2 2 2

ˆ ˆ ˆ' ( ') ( ') ( ')

' ( ') ( ') ( ')

x x x y y y z z z

x x y y z z

r r

r r

r

r

Page 20: Methods of Math. Physics Dr. E.J. Zita, The Evergreen State College Lab II Rm 2272, zita@evergreen.edu Winter wk 3, Thursday 20 Jan. 2011 Electrostatics.

Origin

Source (e.g. a charge or current element)

Point of interest, orField point

See Griffiths Figs. 1.13, 1.14, p.9

(separation vector)rr’

r

Page 21: Methods of Math. Physics Dr. E.J. Zita, The Evergreen State College Lab II Rm 2272, zita@evergreen.edu Winter wk 3, Thursday 20 Jan. 2011 Electrostatics.
Page 22: Methods of Math. Physics Dr. E.J. Zita, The Evergreen State College Lab II Rm 2272, zita@evergreen.edu Winter wk 3, Thursday 20 Jan. 2011 Electrostatics.

Dirac Delta Function

2

ˆ

r

rf

0 0( )

0

if xx

if x

This should diverge. Calculate it using (1.71), or refer to Prob.1.16. How can div(f)=0?

Apply Stokes: different results on L ≠ R sides!

How to deal with the singularity at r = 0? Consider

and show (p.47) that

( ) ( ) ( )f x x a dx f a

Page 23: Methods of Math. Physics Dr. E.J. Zita, The Evergreen State College Lab II Rm 2272, zita@evergreen.edu Winter wk 3, Thursday 20 Jan. 2011 Electrostatics.

Ch.2: Electrostatics: charges make electric fields

• Charges → E fields and forces

• charges → scalar potential differences

• E can be found from V• Electrodynamics: forces

move charges• Electric fields store

energy (capacitance)

E.dA = q/0=, E = F/q

1 ( ')( ) '

4

rV r d E dl

r

VE

F = q E = m a

W = qV

C = q/V

Page 24: Methods of Math. Physics Dr. E.J. Zita, The Evergreen State College Lab II Rm 2272, zita@evergreen.edu Winter wk 3, Thursday 20 Jan. 2011 Electrostatics.

charges ↔ electric fields ↔ potentials

Page 25: Methods of Math. Physics Dr. E.J. Zita, The Evergreen State College Lab II Rm 2272, zita@evergreen.edu Winter wk 3, Thursday 20 Jan. 2011 Electrostatics.

Gauss’ Law practice:

2.21 (p.82) Find the potential V(r) inside and outside this sphere with total radius R and total charge q. Use infinity as your reference point. Compute the gradient of V in each region, and check that it yields the correct field. Sketch V(r).

What surface charge density does it take to make Earth’s field of 100V/m? (RE=6.4 x 106 m)

2.12 (p.75) Find (and sketch) the electric field E(r) inside a uniformly charged sphere of charge density .

Page 26: Methods of Math. Physics Dr. E.J. Zita, The Evergreen State College Lab II Rm 2272, zita@evergreen.edu Winter wk 3, Thursday 20 Jan. 2011 Electrostatics.

Curl

Curl of vector = cross product = circulation

zyx

VVVzyx

zyx

zyx

ˆˆV


Recommended