+ All Categories
Home > Documents > Methods & Techniques 2.pdf · CTD. Video capillary microscopy is a further development which allows...

Methods & Techniques 2.pdf · CTD. Video capillary microscopy is a further development which allows...

Date post: 06-Aug-2020
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
12
Methods & Techniques 2
Transcript
Page 1: Methods & Techniques 2.pdf · CTD. Video capillary microscopy is a further development which allows quantification of the nailfold abnormalities: using high magnification (figure

Methods & Techniques

2

Page 2: Methods & Techniques 2.pdf · CTD. Video capillary microscopy is a further development which allows quantification of the nailfold abnormalities: using high magnification (figure

18

MeTH

oD

S & TeCH

NIq

ueS

NON-­‐INVASIVE  TOOLS  TO  INVESTIGATE  MICROVASCULAR  STRUCTURE  AND  

FUNCTION  

Because  of   their  accessibility,   skin  and  nailfold  capillaries  are  often  used  to   investigate  the  

microcirculation.   We   choose   two   non-­‐invasive   techniques   to   study   microcirculatory  

structure   and   function   respectively:   nailfold   video   capillary  microscopy,   and   iontophoresis  

combined  with  laser  Doppler  flowmetry.  

 

SKIN  MICROCIRCULATION  

Nailfold  capillaroscopy  and  iontopheresis  should  be  considered  against  the  background  of  

the  anatomy  and  physiology  of  the  skin  microcirculation.  The  microvascular  bed  of  the  skin  

consists  of  nutritive  capillaries,  a  subpapillary  plexus  and  deeper  arteriovenous  anastomoses  

(figure  1).  

 

 

Epidermis

Capillary

Plexus

Anastomoses

Figure  1.  Skin  anatomy  

 

The  nutritive  capillaries  are   the  most   superficial  ones   (10-­‐50  μm  from  the  skin  surface).   In  

most  areas  of  the  fingers,  the  nutritional  capillary  loops  run  perpendicular  to  the  skin  surface  

and  only  the  apex  of  the  capillary  loops  can  be  visualised  (figure  2).  

 

 

 

In  the  nailfold  area  however,  the  capillary  loops  run  more  parallel  with  the  skin  surface,  and  

the  distal  row  capillaries  can  be  visualised  in  their  full  length  (figure  3).  

 

 

 

Figure  2.  In  most  areas  of  the  finger,  only  the  apex  of  capillaries  can  be  visualised  as  dots  

Figure  3.  In  the  nailfold,  capillaries  can  be  visualised  as  loops  

Page 3: Methods & Techniques 2.pdf · CTD. Video capillary microscopy is a further development which allows quantification of the nailfold abnormalities: using high magnification (figure

19

MeTH

oD

S & TeCH

NIq

ueS

2

NON-­‐INVASIVE  TOOLS  TO  INVESTIGATE  MICROVASCULAR  STRUCTURE  AND  

FUNCTION  

Because  of   their  accessibility,   skin  and  nailfold  capillaries  are  often  used  to   investigate  the  

microcirculation.   We   choose   two   non-­‐invasive   techniques   to   study   microcirculatory  

structure   and   function   respectively:   nailfold   video   capillary  microscopy,   and   iontophoresis  

combined  with  laser  Doppler  flowmetry.  

 

SKIN  MICROCIRCULATION  

Nailfold  capillaroscopy  and  iontopheresis  should  be  considered  against  the  background  of  

the  anatomy  and  physiology  of  the  skin  microcirculation.  The  microvascular  bed  of  the  skin  

consists  of  nutritive  capillaries,  a  subpapillary  plexus  and  deeper  arteriovenous  anastomoses  

(figure  1).  

 

 

Epidermis

Capillary

Plexus

Anastomoses

Figure  1.  Skin  anatomy  

 

The  nutritive  capillaries  are   the  most   superficial  ones   (10-­‐50  μm  from  the  skin  surface).   In  

most  areas  of  the  fingers,  the  nutritional  capillary  loops  run  perpendicular  to  the  skin  surface  

and  only  the  apex  of  the  capillary  loops  can  be  visualised  (figure  2).  

 

 

 

In  the  nailfold  area  however,  the  capillary  loops  run  more  parallel  with  the  skin  surface,  and  

the  distal  row  capillaries  can  be  visualised  in  their  full  length  (figure  3).  

 

 

 

Figure  2.  In  most  areas  of  the  finger,  only  the  apex  of  capillaries  can  be  visualised  as  dots  

Figure  3.  In  the  nailfold,  capillaries  can  be  visualised  as  loops  

Page 4: Methods & Techniques 2.pdf · CTD. Video capillary microscopy is a further development which allows quantification of the nailfold abnormalities: using high magnification (figure

20

MeTH

oD

S & TeCH

NIq

ueS

In   the   subpapillary   vascular   bed   (approximately   0.05-­‐2.0   mm   from   the   skin   surface)   the  

dominating   vessels   are   venules   and,   to   a   smaller   extent,   arterioles.   The   deeper  

arteriovenous  anastomoses  have  a  thermoregulatory  function.  They  are  especially  numerous  

in   the   fingertips,   ears   and   nose,   whereas   the   skin   of   the   dorsal   finger   and   forearm   are  

thought   to   lack   arteriovenous   anastomoses.1   Under   conditions   of   normal   environmental  

temperature   (20-­‐25   ºC),   the   majority   (>90%)   of   total   skin   blood   flow   passes   through   the  

arteriovenous  anastomoses.  Skin  microcirculatory  blood  flow  and  pressure  are  determined  

by   a   balance   of   central   and   local   mechanisms.   In   addition,   microvascular   perfusion   is  

influenced  by  the  rheological  properties  of  blood.  Central  control  is  achieved  by  sympathetic  

adrenergic  vasoconstrictor  nerves,  through  the  action  of  norepinephrin  on  alpha-­‐receptors,  

which   control   blood   flow   through   the   arteriovenous   anastomoses.   Capillaries   themselves  

have   no   nerve   supply.   Local   autoregulatory   mechanisms   are   usually   direct   responses   of  

vascular  smooth  muscle  to  local  metabolites,  changes  in  transmural  pressure  or  shear  stress.  

These  local  autoregulatory  mechanisms  may  in  part  be  endothelium-­‐dependent.1,2  

 

NAILFOLD  CAPILLAROSCOPY  

The   technique   of   nailfold   capillaroscopy   as   a   tool   to   study   structural   microcirculatory  

changes   in  the  nailfold  has  been  widely  used  in  the  assessment  of  patients  with  Raynaud's  

Phenomenon   (RP)   and   SSc.   The   nomenclature   of   structural   capillary   abnormalities   in   the  

literature  has  not  been  consistent.3  Hildegard  Maricq  has  worked  extensively   to   refine   the  

assessment   of   the   skin   capillaries   using   microscopic   and   photographic   equipment.4,5   She  

distinguished   the   following   characteristics   of   the   nailfold   capillary   bed,   although   exact  

quantification  of  the  capillary  dimensions  could  not  be  made:  

1. Scleroderma   capillary   pattern.   Based   on   overall   estimation   of   the  

microvascular   abnormalities.   Presence   of   enlarged   capillaries   of   the  

scleroderma  (SD)-­‐  type:  increased  diameter  (>  25  µm)  of  all  three  portions  of  

the   capillary   loop   (arterial,   apical,   and   venular),   often   associated   with  

avascular  areas:  none,  slight   (0.4-­‐2  mm2),  moderate   (2-­‐4  mm2)  extensive   (>4  

mm2),   and   a   combination   of   other   morphological   features   such   as   capillary  

haemorrhages,  disorganisation  of  the  capillary  bed,  edema  and  discoloration  

of  the  cuticle.  

2. ‘active’  or   ‘slow’  capillary  pattern,  based  on   the  size  of   the  nailfold   terminal  

row   capillary   loops:   normal,   definitely   enlarged   (total  width   91-­‐150   µm),   or  

extremely   enlarged   (>150   µm),   and   on   the   extent   of   the   avascular   areas.  

‘Active’  is  defined  as  moderate  to  extensive  avascular  areas  without  capillary  

telangiectases   (clusters   of   dilated   capillaries)   or   extremely   enlarged   loops.  

‘Slow’   is   defined   by   extremely   enlarged   capillaries   with   no   or   minimal  

avascularity  with  or  without  capillary  telangiectases.  

The   ‘active’   and   ‘slow’   patterns   were   defined   on   the   basis   of   an   observed   correlation  

between  the  activity  of  the  microvascular  lesions  and  the  clinical  progression  of  the  disease  

in  small  series  of  cases.5  

In   2000,   Cutolo   et   al,   classified   microvascular   changes   in   SSc   patients   into   3   distinct  

patterns6:  

1. early   pattern:   few   enlarged/giant   capillaries,   few   capillary   hemorrhages,   no  

evident  loss  of  capillaries.  

2. active  pattern:  frequent  giant  capillaries,  frequent  capillary  hemorrhages,  mild    

disorganisation    of  the  capillary  network.  

CHAP

TER  

2  M

etho

ds  &

 Tec

hniq

ues  

Page 5: Methods & Techniques 2.pdf · CTD. Video capillary microscopy is a further development which allows quantification of the nailfold abnormalities: using high magnification (figure

21

MeTH

oD

S & TeCH

NIq

ueS

2

In   the   subpapillary   vascular   bed   (approximately   0.05-­‐2.0   mm   from   the   skin   surface)   the  

dominating   vessels   are   venules   and,   to   a   smaller   extent,   arterioles.   The   deeper  

arteriovenous  anastomoses  have  a  thermoregulatory  function.  They  are  especially  numerous  

in   the   fingertips,   ears   and   nose,   whereas   the   skin   of   the   dorsal   finger   and   forearm   are  

thought   to   lack   arteriovenous   anastomoses.1   Under   conditions   of   normal   environmental  

temperature   (20-­‐25   ºC),   the   majority   (>90%)   of   total   skin   blood   flow   passes   through   the  

arteriovenous  anastomoses.  Skin  microcirculatory  blood  flow  and  pressure  are  determined  

by   a   balance   of   central   and   local   mechanisms.   In   addition,   microvascular   perfusion   is  

influenced  by  the  rheological  properties  of  blood.  Central  control  is  achieved  by  sympathetic  

adrenergic  vasoconstrictor  nerves,  through  the  action  of  norepinephrin  on  alpha-­‐receptors,  

which   control   blood   flow   through   the   arteriovenous   anastomoses.   Capillaries   themselves  

have   no   nerve   supply.   Local   autoregulatory   mechanisms   are   usually   direct   responses   of  

vascular  smooth  muscle  to  local  metabolites,  changes  in  transmural  pressure  or  shear  stress.  

These  local  autoregulatory  mechanisms  may  in  part  be  endothelium-­‐dependent.1,2  

 

NAILFOLD  CAPILLAROSCOPY  

The   technique   of   nailfold   capillaroscopy   as   a   tool   to   study   structural   microcirculatory  

changes   in  the  nailfold  has  been  widely  used  in  the  assessment  of  patients  with  Raynaud's  

Phenomenon   (RP)   and   SSc.   The   nomenclature   of   structural   capillary   abnormalities   in   the  

literature  has  not  been  consistent.3  Hildegard  Maricq  has  worked  extensively   to   refine   the  

assessment   of   the   skin   capillaries   using   microscopic   and   photographic   equipment.4,5   She  

distinguished   the   following   characteristics   of   the   nailfold   capillary   bed,   although   exact  

quantification  of  the  capillary  dimensions  could  not  be  made:  

1. Scleroderma   capillary   pattern.   Based   on   overall   estimation   of   the  

microvascular   abnormalities.   Presence   of   enlarged   capillaries   of   the  

scleroderma  (SD)-­‐  type:  increased  diameter  (>  25  µm)  of  all  three  portions  of  

the   capillary   loop   (arterial,   apical,   and   venular),   often   associated   with  

avascular  areas:  none,  slight   (0.4-­‐2  mm2),  moderate   (2-­‐4  mm2)  extensive   (>4  

mm2),   and   a   combination   of   other   morphological   features   such   as   capillary  

haemorrhages,  disorganisation  of  the  capillary  bed,  edema  and  discoloration  

of  the  cuticle.  

2. ‘active’  or   ‘slow’  capillary  pattern,  based  on   the  size  of   the  nailfold   terminal  

row   capillary   loops:   normal,   definitely   enlarged   (total  width   91-­‐150   µm),   or  

extremely   enlarged   (>150   µm),   and   on   the   extent   of   the   avascular   areas.  

‘Active’  is  defined  as  moderate  to  extensive  avascular  areas  without  capillary  

telangiectases   (clusters   of   dilated   capillaries)   or   extremely   enlarged   loops.  

‘Slow’   is   defined   by   extremely   enlarged   capillaries   with   no   or   minimal  

avascularity  with  or  without  capillary  telangiectases.  

The   ‘active’   and   ‘slow’   patterns   were   defined   on   the   basis   of   an   observed   correlation  

between  the  activity  of  the  microvascular  lesions  and  the  clinical  progression  of  the  disease  

in  small  series  of  cases.5  

In   2000,   Cutolo   et   al,   classified   microvascular   changes   in   SSc   patients   into   3   distinct  

patterns6:  

1. early   pattern:   few   enlarged/giant   capillaries,   few   capillary   hemorrhages,   no  

evident  loss  of  capillaries.  

2. active  pattern:  frequent  giant  capillaries,  frequent  capillary  hemorrhages,  mild    

disorganisation    of  the  capillary  network.  

CHAP

TER  

2  M

etho

ds  &

 Tec

hniq

ues  

Page 6: Methods & Techniques 2.pdf · CTD. Video capillary microscopy is a further development which allows quantification of the nailfold abnormalities: using high magnification (figure

22

MeTH

oD

S & TeCH

NIq

ueS

3. late   pattern:   irregular   enlargement   of   the   capillaries,   few   or   absent   giant  

capillaries,  hemorrhages,  and  extensive  avascular  areas.  

These   patterns   were   found   to   correlate   significantly   with   disease   duration,   and   it   was  

hypothesised   that   these   patterns   characterise   the   evolution   of   SSc   associated  

microangiopathy,   and   even   predict   future   organ   complications.6,7   It   should   be   noted  

however,   that   the   scleroderma   capillary   pattern   is   not   enitrely   specific   for   SSc:   the   same  

pattern  can  be  observed  in  other  CTD.  

 

Video   capillary   microscopy   is   a   further   development   which   allows   quantification   of   the  

nailfold  abnormalities:  using  high  magnification  (figure  4)  combined  with  a  video  camera  and  

digitising  system,  dimensions  of  individual  capillaries  can  be  measured.  

 

 

 

Recently,  newly  developed  software  to  analyze  digitised  images  makes  it  possible  to  create  a  

panoramic  mosaic  of  the  nailfold  (figure  5).8  

 

Figure  4.  Nailfold  capillaroscopy  

CHAP

TER  

2  M

etho

ds  &

 Tec

hniq

ues  

 

 

Applying  this  technique  to  a  control  group  and  a  group    of  patients  with  Primary  RP  and  SSc,  

a  clear  distinction  between  the  SSc  group  versus  the  control  and  PRP  group,  became  clear.  

The  most  powerful  discriminator  between  groups  was  the  number  of   loops  per  mm  in  the  

terminal  row  of  the  nailfold,  and  the  mean  total  width  of  the  capillaries.8  The  technique  of  

digitised  panoramic  mosaic  images  was  used  in  this  thesis.  

 

THE  ROLE  OF  NAILFOLD  CAPILLAROSCOPY  IN  CLINICAL  PRACTICE  

Nowadays,   nailfold   capillaroscopy   is   used   for   the   differentiation   between   primary   and  

secondary  (CTD  associated)  RP  and  the  early  diagnosis  of  SSc.  In  patients  with  RP,  a  normal  

nailfold  capillary  pattern  combined  with  negative  or  low  antinuclear  antibodies  (ANA  <160,  

or  <++)  has  a  negative  predictive  value  of  CTD  development  of  98%  (prior  likelihood  of  CTD  :  

13%).9  For  patients  with  RP,  the  positive  predictive  value  of  scleroderma  specific  antibodies  

or  abnormal  capillaroscopy  for  a  scleroderma  spectrum  disorder  within  5  years  (SSc,  MCTD,  

poly/dermatomyositis)   is  47%   in  a  group  with  an  prior   likelihood  of  13%.10   If  both   specific  

antibodies  and  nailfold  abnormalities  are  present,  the  positive  predictive  value  increases  to  

Figure  5.  With  the  use  of  software  to  create  digitised  panoramic  mosaic  images,  it  is  possible  to  combine  the  high  magnification  of  nailfold  videocapillaroscopy  with  the  ability  to  view  the  whole  nailfold  (as  a  mosaic)  and  make  quantitative  measurements  (courtesy  of  A.L.  Herrick)  

Page 7: Methods & Techniques 2.pdf · CTD. Video capillary microscopy is a further development which allows quantification of the nailfold abnormalities: using high magnification (figure

23

MeTH

oD

S & TeCH

NIq

ueS

2

3. late   pattern:   irregular   enlargement   of   the   capillaries,   few   or   absent   giant  

capillaries,  hemorrhages,  and  extensive  avascular  areas.  

These   patterns   were   found   to   correlate   significantly   with   disease   duration,   and   it   was  

hypothesised   that   these   patterns   characterise   the   evolution   of   SSc   associated  

microangiopathy,   and   even   predict   future   organ   complications.6,7   It   should   be   noted  

however,   that   the   scleroderma   capillary   pattern   is   not   enitrely   specific   for   SSc:   the   same  

pattern  can  be  observed  in  other  CTD.  

 

Video   capillary   microscopy   is   a   further   development   which   allows   quantification   of   the  

nailfold  abnormalities:  using  high  magnification  (figure  4)  combined  with  a  video  camera  and  

digitising  system,  dimensions  of  individual  capillaries  can  be  measured.  

 

 

 

Recently,  newly  developed  software  to  analyze  digitised  images  makes  it  possible  to  create  a  

panoramic  mosaic  of  the  nailfold  (figure  5).8  

 

Figure  4.  Nailfold  capillaroscopy  

CHAP

TER  

2  M

etho

ds  &

 Tec

hniq

ues  

 

 

Applying  this  technique  to  a  control  group  and  a  group    of  patients  with  Primary  RP  and  SSc,  

a  clear  distinction  between  the  SSc  group  versus  the  control  and  PRP  group,  became  clear.  

The  most  powerful  discriminator  between  groups  was  the  number  of   loops  per  mm  in  the  

terminal  row  of  the  nailfold,  and  the  mean  total  width  of  the  capillaries.8  The  technique  of  

digitised  panoramic  mosaic  images  was  used  in  this  thesis.  

 

THE  ROLE  OF  NAILFOLD  CAPILLAROSCOPY  IN  CLINICAL  PRACTICE  

Nowadays,   nailfold   capillaroscopy   is   used   for   the   differentiation   between   primary   and  

secondary  (CTD  associated)  RP  and  the  early  diagnosis  of  SSc.  In  patients  with  RP,  a  normal  

nailfold  capillary  pattern  combined  with  negative  or  low  antinuclear  antibodies  (ANA  <160,  

or  <++)  has  a  negative  predictive  value  of  CTD  development  of  98%  (prior  likelihood  of  CTD  :  

13%).9  For  patients  with  RP,  the  positive  predictive  value  of  scleroderma  specific  antibodies  

or  abnormal  capillaroscopy  for  a  scleroderma  spectrum  disorder  within  5  years  (SSc,  MCTD,  

poly/dermatomyositis)   is  47%   in  a  group  with  an  prior   likelihood  of  13%.10   If  both   specific  

antibodies  and  nailfold  abnormalities  are  present,  the  positive  predictive  value  increases  to  

Figure  5.  With  the  use  of  software  to  create  digitised  panoramic  mosaic  images,  it  is  possible  to  combine  the  high  magnification  of  nailfold  videocapillaroscopy  with  the  ability  to  view  the  whole  nailfold  (as  a  mosaic)  and  make  quantitative  measurements  (courtesy  of  A.L.  Herrick)  

Page 8: Methods & Techniques 2.pdf · CTD. Video capillary microscopy is a further development which allows quantification of the nailfold abnormalities: using high magnification (figure

24

MeTH

oD

S & TeCH

NIq

ueS

78%.10   SSc   is   a   CTD   characterised   by   auto-­‐immunity,   fibrosis   and   vasculopathy   with  

substantial   morbidity   and   mortality.   The   diagnosis   of     SSc   is   based   on   the   criteria   of   the  

American   College   of   Rheumatology   (ACR).   However,   by   the   time   SSc   is   diagnosed,   many  

(organ)  complications  may  already  be  present.11,12  New  criteria  have  been  proposed  for  the  

early   identification  of   SSc,  based  on  a   combination  of  RP,   specific   scleroderma  antibodies,  

and  nailfold  capillaroscopic  abnormalities.13  SSc  is  diagnosed  according  American  College  of  

Rheumatology   (ACR)   preliminary   classification   for   defenite   SSc.14   However,   the   ACR  

classification  criteria  for  SSc  were  not  developed  for  diagnostic  purposes,  but  rather  with  the  

intent  to  “establish  a  standard  for  definite  disease  in  order  to  permit  comparison  of  groups  

of   patients   from   different   centres”.14   One   study   evaluated   a   group   of   259   ‘definite’   SSc  

patients,  who  were  diagnosed  by  expert  clinicians.  The  investigators  wanted  to  evaluate  the  

sensitivity  of  the  ACR  criteria  and  to  determine  whether  addition  of  nailfold  capillaroscopy  

could  increase  their  sensitivity  in  this  group.  The  study  showed  an  increase  in  the  sensitivity  

of   the  ACR  criteria   for  SSc   from  34%   to  89%  when  nailfold   capillaroscopy  was  added.12  As  

expected,  most  patients  with  limited  SSc  (scleroderma  skin  changes  below  the  elbows)  were  

excluded  by   the  ACR   criteria   and   identified  by  detection  of   characteristic   nailfold   capillary  

changes  by  nailfold  capillaroscopy.  The  same  procedure  was  followed   in  another  cohort  of  

101  patients,  showing  an  increase  from  67%  to  99%  in  the  sensitivity  of  SSc  diagnosis  when  

nailfold   capillaroscopy   was   added   to   the   ACR   criteria.11   Whether   the   early   diagnosis   of  

patients   with   SSc   improves   prognosis   in   terms   of   morbidity   (development   of   organ  

complications)  and  mortality  remains  to  be  seen.    

 

 

 

IONTOPHORESIS  AND  LASER  DOPPLER  FLOWMETRY  

Iontophoresis   is  a  non-­‐invasive  method  of  drug  application  that  allows  the  local  transfer  of  

charged  substances  across  the  skin  by  use  of  a  small  electric  current.  The  principle  is  based  

on  the  fact  that,  when  an  electrical  voltage  difference  is  applied  to  a  solution,  solute  ions  will  

migrate  towards  an  electrode  of  opposite  charge.  Thus,  positively  charged  drug  ions  can  be  

introduced  through  the  skin  under  a  positively  charged  electrode  (anodal  iontophoresis)  and  

vice  versa  (cathodal  iontophoresis)(figure  6).  

 

To   investigate   endothelial   function,   skin   micovascular   responses   to   iontophoresis   of  

acethylcholine,   an   endothelium-­‐dependent   vasodilator   and   sodium   nitroprusside,   an  

endothelium   independent   vasodilatator   can   be   studied   using   a   laser   Doppler   flowmetry.  

Laser  Doppler  flowmetry   is  a  noninvasive  method  to  measure  skin  perfusion.  A   laser  beam  

penetrates   the   skin   and  a   fraction  of   the   light   is   backscattered  by  moving  blood  particles,  

undergoing  a   frequency  shift  according  to   the  Doppler  principle.  From  the   frequency  shift,  

tissue  perfusion  can  be  derived  in  arbitrary  units.  After  refraining  from  eating,  smoking  and  

beverages   for   at   least   4   h   and   acclimatisation   for   20   minutes   at   23   oC,   iontophoresis  

combined  with   laser  Doppler   flowmetry  was   performed.   Acetylcholine   (1%)  was   delivered  

using   anodal   current,   and   sodium   nitroprusside   (0.01%)   was   delivered   with   a   cathodal  

current.  Laser  Doppler  flux  was  measured  on  the  middle  phalanx  of  the  left  and  right  third  

finger  with   the  Periflux  4000   system   (Perimed)  and  expressed  as  arbitrary  perfusion  units.  

Figure  6.  Iontopheresis  of  the  skin  

Page 9: Methods & Techniques 2.pdf · CTD. Video capillary microscopy is a further development which allows quantification of the nailfold abnormalities: using high magnification (figure

25

MeTH

oD

S & TeCH

NIq

ueS

2

78%.10   SSc   is   a   CTD   characterised   by   auto-­‐immunity,   fibrosis   and   vasculopathy   with  

substantial   morbidity   and   mortality.   The   diagnosis   of     SSc   is   based   on   the   criteria   of   the  

American   College   of   Rheumatology   (ACR).   However,   by   the   time   SSc   is   diagnosed,   many  

(organ)  complications  may  already  be  present.11,12  New  criteria  have  been  proposed  for  the  

early   identification  of   SSc,  based  on  a   combination  of  RP,   specific   scleroderma  antibodies,  

and  nailfold  capillaroscopic  abnormalities.13  SSc  is  diagnosed  according  American  College  of  

Rheumatology   (ACR)   preliminary   classification   for   defenite   SSc.14   However,   the   ACR  

classification  criteria  for  SSc  were  not  developed  for  diagnostic  purposes,  but  rather  with  the  

intent  to  “establish  a  standard  for  definite  disease  in  order  to  permit  comparison  of  groups  

of   patients   from   different   centres”.14   One   study   evaluated   a   group   of   259   ‘definite’   SSc  

patients,  who  were  diagnosed  by  expert  clinicians.  The  investigators  wanted  to  evaluate  the  

sensitivity  of  the  ACR  criteria  and  to  determine  whether  addition  of  nailfold  capillaroscopy  

could  increase  their  sensitivity  in  this  group.  The  study  showed  an  increase  in  the  sensitivity  

of   the  ACR  criteria   for  SSc   from  34%   to  89%  when  nailfold   capillaroscopy  was  added.12  As  

expected,  most  patients  with  limited  SSc  (scleroderma  skin  changes  below  the  elbows)  were  

excluded  by   the  ACR   criteria   and   identified  by  detection  of   characteristic   nailfold   capillary  

changes  by  nailfold  capillaroscopy.  The  same  procedure  was  followed   in  another  cohort  of  

101  patients,  showing  an  increase  from  67%  to  99%  in  the  sensitivity  of  SSc  diagnosis  when  

nailfold   capillaroscopy   was   added   to   the   ACR   criteria.11   Whether   the   early   diagnosis   of  

patients   with   SSc   improves   prognosis   in   terms   of   morbidity   (development   of   organ  

complications)  and  mortality  remains  to  be  seen.    

 

 

 

IONTOPHORESIS  AND  LASER  DOPPLER  FLOWMETRY  

Iontophoresis   is  a  non-­‐invasive  method  of  drug  application  that  allows  the  local  transfer  of  

charged  substances  across  the  skin  by  use  of  a  small  electric  current.  The  principle  is  based  

on  the  fact  that,  when  an  electrical  voltage  difference  is  applied  to  a  solution,  solute  ions  will  

migrate  towards  an  electrode  of  opposite  charge.  Thus,  positively  charged  drug  ions  can  be  

introduced  through  the  skin  under  a  positively  charged  electrode  (anodal  iontophoresis)  and  

vice  versa  (cathodal  iontophoresis)(figure  6).  

 

To   investigate   endothelial   function,   skin   micovascular   responses   to   iontophoresis   of  

acethylcholine,   an   endothelium-­‐dependent   vasodilator   and   sodium   nitroprusside,   an  

endothelium   independent   vasodilatator   can   be   studied   using   a   laser   Doppler   flowmetry.  

Laser  Doppler  flowmetry   is  a  noninvasive  method  to  measure  skin  perfusion.  A   laser  beam  

penetrates   the   skin   and  a   fraction  of   the   light   is   backscattered  by  moving  blood  particles,  

undergoing  a   frequency  shift  according  to   the  Doppler  principle.  From  the   frequency  shift,  

tissue  perfusion  can  be  derived  in  arbitrary  units.  After  refraining  from  eating,  smoking  and  

beverages   for   at   least   4   h   and   acclimatisation   for   20   minutes   at   23   oC,   iontophoresis  

combined  with   laser  Doppler   flowmetry  was   performed.   Acetylcholine   (1%)  was   delivered  

using   anodal   current,   and   sodium   nitroprusside   (0.01%)   was   delivered   with   a   cathodal  

current.  Laser  Doppler  flux  was  measured  on  the  middle  phalanx  of  the  left  and  right  third  

finger  with   the  Periflux  4000   system   (Perimed)  and  expressed  as  arbitrary  perfusion  units.  

Figure  6.  Iontopheresis  of  the  skin  

Page 10: Methods & Techniques 2.pdf · CTD. Video capillary microscopy is a further development which allows quantification of the nailfold abnormalities: using high magnification (figure

26

MeTH

oD

S & TeCH

NIq

ueS

Day-­‐to-­‐day  reproducibility  was  assessed  previously  in  our  institute  and  was  15.9%±8.4%  for  

acetylcholine   and   13.9%±9.0%   for   nitroprusside,   as   determined   in   5   subjects   on   2  

occasions.15  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAP

TER  

2  M

etho

ds  &

 Tec

hniq

ues  

REFERENCE  LIST       1.     Coffman  JD.  Effects  of  endothelium-­‐derived  nitric  oxide  on  skin  and  digital  blood  flow  

in  humans.  Am.  J.  Physiol  1994;  267:  H2087-­‐H2090.  

  2.     Morris  SJ,  Shore  AC,  Tooke  JE.  Responses  of  the  skin  microcirculation  to  acetylcholine  and  sodium  nitroprusside  in  patients  with  NIDDM.  Diabetologia  1995;  38:  1337-­‐1344.  

  3.     Jones   BF,   Oral   M,   Morris   CW,   Ring   EF.   A   proposed   taxonomy   for   nailfold   capillaries  based  on  their  morphology.  IEEE  Trans.  Med.  Imaging  2001;  20:  333-­‐341.  

  4.     Maricq   HR,   LeRoy   EC.   Patterns   of   finger   capillary   abnormalities   in   connective   tissue  disease  by  "wide-­‐field"  microscopy.  Arthritis  Rheum.  1973;  16:  619-­‐628.  

  5.     Maricq   HR,   Valter   I.   A   working   classification   of   scleroderma   spectrum   disorders:   a  proposal  and  the  results  of  testing  on  a  sample  of  patients.  Clin.  Exp.  Rheumatol.  2004;  22:  S5-­‐13.  

  6.     Cutolo   M,   Sulli   A,   Pizzorni   C,   Accardo   S.   Nailfold   videocapillaroscopy   assessment   of  microvascular  damage  in  systemic  sclerosis.  J.  Rheumatol.  2000;  27:  155-­‐160.  

  7.     Cutolo   M,   Pizzorni   C,   Tuccio   M,   Burroni   A,   Craviotto   C,   Basso   M   et   al.   Nailfold  videocapillaroscopic   patterns   and   serum   autoantibodies   in   systemic   sclerosis.  Rheumatology.  (Oxford)  2004;  43:  719-­‐726.  

  8.     Anderson  ME,  Allen  PD,  Moore  T,  Hillier  V,  Taylor  CJ,  Herrick  AL.  Computerized  nailfold  video   capillaroscopy-­‐-­‐a   new   tool   for   assessment   of   Raynaud's   phenomenon.   J.  Rheumatol.  2005;  32:  841-­‐848.  

  9.     Spencer-­‐Green  G.  Outcomes  in  primary  Raynaud  phenomenon:  a  meta-­‐analysis  of  the  frequency,  rates,  and  predictors  of  transition  to  secondary  diseases.  Arch.  Intern.  Med.  1998;  158:  595-­‐600.  

 10.     Koenig   M,   Joyal   F,   Fritzler   MJ,   Roussin   A,   Abrahamowicz   M,   Boire   G   et   al.  Autoantibodies  and  microvascular  damage  are   independent  predictive   factors   for   the  progression   of   Raynaud's   phenomenon   to   systemic   sclerosis:   A   twenty-­‐year  prospective   study   of   586   patients,   with   validation   of   proposed   criteria   for   early  systemic  sclerosis.  Arthritis  Rheum.  2008;  58:  3902-­‐3912.  

Page 11: Methods & Techniques 2.pdf · CTD. Video capillary microscopy is a further development which allows quantification of the nailfold abnormalities: using high magnification (figure

27

MeTH

oD

S & TeCH

NIq

ueS

2

Day-­‐to-­‐day  reproducibility  was  assessed  previously  in  our  institute  and  was  15.9%±8.4%  for  

acetylcholine   and   13.9%±9.0%   for   nitroprusside,   as   determined   in   5   subjects   on   2  

occasions.15  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAP

TER  

2  M

etho

ds  &

 Tec

hniq

ues  

REFERENCE  LIST       1.     Coffman  JD.  Effects  of  endothelium-­‐derived  nitric  oxide  on  skin  and  digital  blood  flow  

in  humans.  Am.  J.  Physiol  1994;  267:  H2087-­‐H2090.  

  2.     Morris  SJ,  Shore  AC,  Tooke  JE.  Responses  of  the  skin  microcirculation  to  acetylcholine  and  sodium  nitroprusside  in  patients  with  NIDDM.  Diabetologia  1995;  38:  1337-­‐1344.  

  3.     Jones   BF,   Oral   M,   Morris   CW,   Ring   EF.   A   proposed   taxonomy   for   nailfold   capillaries  based  on  their  morphology.  IEEE  Trans.  Med.  Imaging  2001;  20:  333-­‐341.  

  4.     Maricq   HR,   LeRoy   EC.   Patterns   of   finger   capillary   abnormalities   in   connective   tissue  disease  by  "wide-­‐field"  microscopy.  Arthritis  Rheum.  1973;  16:  619-­‐628.  

  5.     Maricq   HR,   Valter   I.   A   working   classification   of   scleroderma   spectrum   disorders:   a  proposal  and  the  results  of  testing  on  a  sample  of  patients.  Clin.  Exp.  Rheumatol.  2004;  22:  S5-­‐13.  

  6.     Cutolo   M,   Sulli   A,   Pizzorni   C,   Accardo   S.   Nailfold   videocapillaroscopy   assessment   of  microvascular  damage  in  systemic  sclerosis.  J.  Rheumatol.  2000;  27:  155-­‐160.  

  7.     Cutolo   M,   Pizzorni   C,   Tuccio   M,   Burroni   A,   Craviotto   C,   Basso   M   et   al.   Nailfold  videocapillaroscopic   patterns   and   serum   autoantibodies   in   systemic   sclerosis.  Rheumatology.  (Oxford)  2004;  43:  719-­‐726.  

  8.     Anderson  ME,  Allen  PD,  Moore  T,  Hillier  V,  Taylor  CJ,  Herrick  AL.  Computerized  nailfold  video   capillaroscopy-­‐-­‐a   new   tool   for   assessment   of   Raynaud's   phenomenon.   J.  Rheumatol.  2005;  32:  841-­‐848.  

  9.     Spencer-­‐Green  G.  Outcomes  in  primary  Raynaud  phenomenon:  a  meta-­‐analysis  of  the  frequency,  rates,  and  predictors  of  transition  to  secondary  diseases.  Arch.  Intern.  Med.  1998;  158:  595-­‐600.  

 10.     Koenig   M,   Joyal   F,   Fritzler   MJ,   Roussin   A,   Abrahamowicz   M,   Boire   G   et   al.  Autoantibodies  and  microvascular  damage  are   independent  predictive   factors   for   the  progression   of   Raynaud's   phenomenon   to   systemic   sclerosis:   A   twenty-­‐year  prospective   study   of   586   patients,   with   validation   of   proposed   criteria   for   early  systemic  sclerosis.  Arthritis  Rheum.  2008;  58:  3902-­‐3912.  

Page 12: Methods & Techniques 2.pdf · CTD. Video capillary microscopy is a further development which allows quantification of the nailfold abnormalities: using high magnification (figure

28

MeTH

oD

S & TeCH

NIq

ueS

 11.     Hudson   M,   Taillefer   S,   Steele   R,   Dunne   J,   Johnson   SR,   Jones   N   et   al.   Improving   the  sensitivity  of  the  American  College  of  Rheumatology  classification  criteria  for  systemic  sclerosis.  Clin.  Exp.  Rheumatol.  2007;  25:  754-­‐757.  

 12.     Lonzetti   LS,   Joyal   F,   Raynauld   JP,   Roussin   A,   Goulet   JR,   Rich   E   et   al.   Updating   the  American   College   of   Rheumatology   preliminary   classification   criteria   for   systemic  sclerosis:   addition   of   severe   nailfold   capillaroscopy   abnormalities  markedly   increases  the  sensitivity  for  limited  scleroderma.  Arthritis  Rheum.  2001;  44:  735-­‐736.  

 13.     LeRoy   EC,  Medsger   TA,   Jr.   Criteria   for   the   classification   of   early   systemic   sclerosis.   J.  Rheumatol.  2001;  28:  1573-­‐1576.  

 14.     Preliminary   criteria   for   the   classification   of   systemic   sclerosis   (scleroderma).  Subcommittee   for   scleroderma   criteria   of   the   American   Rheumatism   Association  Diagnostic  and  Therapeutic  Criteria  Committee.  Arthritis  Rheum.  1980;  23:  581-­‐590.  

 15.     Serne  EH,  Gans  RO,  ter  Maaten  JC,  Tangelder  GJ,  Donker  AJ,  Stehouwer  CD.   Impaired  skin   capillary   recruitment   in   essential   hypertension   is   caused   by   both   functional   and  structural  capillary  rarefaction.  Hypertension  2001;  38:  238-­‐242.  

   


Recommended