+ All Categories
Home > Documents > Metrologia del vuoto negli ambienti industriali – Torino - 27 giugno 2013 Gas Flow Through...

Metrologia del vuoto negli ambienti industriali – Torino - 27 giugno 2013 Gas Flow Through...

Date post: 01-Apr-2015
Category:
Upload: damian-raven
View: 217 times
Download: 0 times
Share this document with a friend
Popular Tags:
26
Metrologia del vuoto negli ambienti industriali – Torino - 27 giugno 2013 Gas Flow Through Microchannels: mathematical models M. Bergoglio, D. Mari, V. Ierardi, A. Frezzotti, G.P. Ghiroldi
Transcript
Page 1: Metrologia del vuoto negli ambienti industriali – Torino - 27 giugno 2013 Gas Flow Through Microchannels: mathematical models M. Bergoglio, D. Mari, V.

Metrologia del vuoto negli ambienti industriali – Torino - 27 giugno 2013

Gas Flow Through Microchannels: mathematical models

M. Bergoglio, D. Mari, V. Ierardi,

A. Frezzotti, G.P. Ghiroldi

Page 2: Metrologia del vuoto negli ambienti industriali – Torino - 27 giugno 2013 Gas Flow Through Microchannels: mathematical models M. Bergoglio, D. Mari, V.

Metrologia del vuoto negli ambienti industriali – Torino - 27 giugno 2013

For the gas flow through a tube of cross-section A, the gas flow-rate is defined as the ratio of the quantity M to the time flowing to the cross sectional area A

q = M/t

The quantity M of the fluid can be measured as an element of volume or mass or number of particles.

Volum flow rate qv = dV/dt m3/s

Mass flow rate qm = dm/dt kg/s

Molar flow rate qn = dn/dt mol/s

Number of particles qN = dN/dt 1/s

d(p V ) / dt = p dV / dt = R T dn/dt dT/dt=0

throughput Pa.m3 /s

Page 3: Metrologia del vuoto negli ambienti industriali – Torino - 27 giugno 2013 Gas Flow Through Microchannels: mathematical models M. Bergoglio, D. Mari, V.

Metrologia del vuoto negli ambienti industriali – Torino - 27 giugno 2013

Modes of flow of gas in leaks: Turbulent flow

Choked flow occurs when the flow velocity approximates the speed of sound in the gas

Laminar flow occurs with leakage rates in the range from 10-2 to 10-4 Pa m3/s

Transition flow occurs in the gradual transition from laminar to molecular flow

Molecular flow is the most probable with leakage rate below than 10-4 Pa m3/s

Page 4: Metrologia del vuoto negli ambienti industriali – Torino - 27 giugno 2013 Gas Flow Through Microchannels: mathematical models M. Bergoglio, D. Mari, V.

Metrologia del vuoto negli ambienti industriali – Torino - 27 giugno 2013

Molecular flow:At low inlet pressure, gas may be considered as individual molecules which hardly interact. As a consequence, each molecule travels through the duct/volume in which the orifice is inserted without interacting with other molecules.The total gas flow is given by the independent motion of a lot of molecules. This flow is called molecular.

Page 5: Metrologia del vuoto negli ambienti industriali – Torino - 27 giugno 2013 Gas Flow Through Microchannels: mathematical models M. Bergoglio, D. Mari, V.

Metrologia del vuoto negli ambienti industriali – Torino - 27 giugno 2013

The conductance of an infinitely thin orifice of opening area A in the molecular flow regime is

is the mean thermal velocity of the gas molecules. Molecular conductance is thus independent of inlet and outlet pressureThe conductance of the orifice may be calculated as the product between the conductance of an ideal aperture C0 and a factor K taking into account the transmission probability.

Define molecular transmission probability, K, of a duct as the ratio of the flux of gas molecules at the exit aperture to the flux at the inlet aperture

AvC_

41

v

Page 6: Metrologia del vuoto negli ambienti industriali – Torino - 27 giugno 2013 Gas Flow Through Microchannels: mathematical models M. Bergoglio, D. Mari, V.

Metrologia del vuoto negli ambienti industriali – Torino - 27 giugno 2013

b

g b

d2

f

e

d3

d4

d5

d6

2,100 KKCC

42

24

0vd

C

21111

23

24

0

lowmidup TTTd

d

K

0001.09999.0212,1 KKK

K0: main correction factor related to the transmission probability of the upper spherical segment, the cylindrical segment and the lower spherical segment

K1: transmission probability of cylindrical step

K2: transmission probability of conical segment

Tup: transmission probability of upper spherical segment

Tmid: transmission probability of cylindrical segment

Tlow: transmission probability of lower spherical segment

Page 7: Metrologia del vuoto negli ambienti industriali – Torino - 27 giugno 2013 Gas Flow Through Microchannels: mathematical models M. Bergoglio, D. Mari, V.

Metrologia del vuoto negli ambienti industriali – Torino - 27 giugno 2013

Molecular flow through a tube with circular cross section

p1

T

p2

Tl

KM

RTAKCC A

2

ld

K34

rl

Ke

83

1

1

Short tube

Long tube

rll

le

73

3

11

dl

ld

ld

K2

ln21

34 2

Page 8: Metrologia del vuoto negli ambienti industriali – Torino - 27 giugno 2013 Gas Flow Through Microchannels: mathematical models M. Bergoglio, D. Mari, V.

Metrologia del vuoto negli ambienti industriali – Torino - 27 giugno 2013

For a compressible fluid in a tube the flow rate and the linear velocity are not constant along the tube. The flow is usually expressed at outlet pressure. As fluid is compressed or expands, work is done and the fluid is heated and cooled.

For an ideal gas in the isothermal case, where the temperature of the fluid is permitted to equilibrate with its surroundings, and when the pressure difference between ends of the pipe is small, the flow rate at the duct outlet is given by

2 241 2p pd

q128 l 2

The Hagen–Poiseuille equation can be derived from the Navier-Stokes equations.

Page 9: Metrologia del vuoto negli ambienti industriali – Torino - 27 giugno 2013 Gas Flow Through Microchannels: mathematical models M. Bergoglio, D. Mari, V.

Metrologia del vuoto negli ambienti industriali – Torino - 27 giugno 2013

Transition flow occurs when the mean free path length of the gas molecules is about equal to the cross sectional dimension of the duct. Transition flow occurs under leakage conditions intermediate between those for viscous flow and those for molecular flow. For transition flow Knudsen’s law for molecular flow is modified by additional term that depends on the ratio R equal r/ that applies for the average pressure (p1+p2) / 2 existing within the leakage path. This correction term for transitional flow in leakage paths is give as factors Z

r

rr

Z095.31

507.211472.0

r

rr

ppMRT

lr

qpV

095.31

507.211472.0)21342.3

3

C = Cv + Z Cm

Page 10: Metrologia del vuoto negli ambienti industriali – Torino - 27 giugno 2013 Gas Flow Through Microchannels: mathematical models M. Bergoglio, D. Mari, V.

Metrologia del vuoto negli ambienti industriali – Torino - 27 giugno 2013

r

rr

ppM

RTl

rqpV

095.31

507.211472.0)21342.3

3

r

rr

MRT

lr

C095.31

507.211472.0342.3

3

r

rr

RTl

rMC

095.31

507.211472.0342.3

3

Page 11: Metrologia del vuoto negli ambienti industriali – Torino - 27 giugno 2013 Gas Flow Through Microchannels: mathematical models M. Bergoglio, D. Mari, V.

Metrologia del vuoto negli ambienti industriali – Torino - 27 giugno 2013

Page 12: Metrologia del vuoto negli ambienti industriali – Torino - 27 giugno 2013 Gas Flow Through Microchannels: mathematical models M. Bergoglio, D. Mari, V.

Metrologia del vuoto negli ambienti industriali – Torino - 27 giugno 2013

1.5E-09

1.6E-09

1.7E-09

1.8E-09

1.9E-09

2.0E-09

2.1E-09

2.2E-09

2.3E-09

1.E+03 1.E+04 1.E+05 1.E+06

1.5E-09

2.0E-09

2.5E-09

3.0E-09

3.5E-09

4.0E-09

1.E+05 1.E+06 1.E+07

4.0E-09

6.0E-09

8.0E-09

1.0E-08

1.2E-08

1.4E-08

1.6E-08

1.8E-08

2.0E-08

1.E+06 1.E+07 1.E+08

Page 13: Metrologia del vuoto negli ambienti industriali – Torino - 27 giugno 2013 Gas Flow Through Microchannels: mathematical models M. Bergoglio, D. Mari, V.

Metrologia del vuoto negli ambienti industriali – Torino - 27 giugno 2013

The aim of the JRP task is to assess the transfer function of a calibration using helium in vacuum at 20 °C to a different gas species such as a refrigerant, CO2, methane and the new refrigerant gas 1234yf (automotive area) with reference to atmosphere.Starting from a specific design of capillary leak detailed analysis of the flow field within the capillary and suitable mathematical model will be developed. The aim of the model is to describe: the behaviour of the capillary conductance in a way completely independent from the gas species, to extend the calibration curve to various other gases; be of general use and predict gas flows in the range from about 10-7 Pa m³/s to about 10-3 Pa m³/s with relative uncertainty of few parts in 102.

From an available and accurate design of the manufactured capillary leaks the gas flow will be modelled via DSMC and CFD tools in order to establish behaviour of the leak flow for different conditions of gas and pressures.

Page 14: Metrologia del vuoto negli ambienti industriali – Torino - 27 giugno 2013 Gas Flow Through Microchannels: mathematical models M. Bergoglio, D. Mari, V.

Metrologia del vuoto negli ambienti industriali – Torino - 27 giugno 2013

Page 15: Metrologia del vuoto negli ambienti industriali – Torino - 27 giugno 2013 Gas Flow Through Microchannels: mathematical models M. Bergoglio, D. Mari, V.

Metrologia del vuoto negli ambienti industriali – Torino - 27 giugno 2013

Direct Simulation Monte Carlo of gas flows

Monte Carlo method is a generic numerical method for a variety of mathematical problems based on computer generation of random numbers.

Direct simulation Monte Carlo (DSMC) method is the Monte Carlo method for simulation of dilute gas flows on molecular level, i.e. on the level of individual molecules. To date DSMC is the basic numerical method in the kinetic theory of gases and rarefied gas dynamics.

Kinetic theory of gases is a part of statistical physics where the flow of gases are considered on a molecular level and described in terms of probability of changes of states of gas molecules in space and in time.

Page 16: Metrologia del vuoto negli ambienti industriali – Torino - 27 giugno 2013 Gas Flow Through Microchannels: mathematical models M. Bergoglio, D. Mari, V.

Metrologia del vuoto negli ambienti industriali – Torino - 27 giugno 2013

Basic approach of the DSMC methodGas is represented by a set of N simulated molecules

X(t) = (r1(t), v1(t),…, rn(t), vn(t))Velocities vi (and coordinates ri) of gas molecules are random variables.

Gas flow is simulated as a change of X(t) in time due to– Free motion of molecules or motion under the effect of external (e.g.

gravity) forces– Collisions between gas molecules– Interaction of molecules with surfaces of bodies, channel, walls, etc.

External force field

Rebound of a molecule from the wall

r1

v1

Page 17: Metrologia del vuoto negli ambienti industriali – Torino - 27 giugno 2013 Gas Flow Through Microchannels: mathematical models M. Bergoglio, D. Mari, V.

Metrologia del vuoto negli ambienti industriali – Torino - 27 giugno 2013

Computational fluid dynamics, CFD, is a branch of fluid mechanics that uses numerical methods and algorithms to solve and analyze problems that involve fluid flows. The fundamental basis of almost all CFD problems are the Navier–Stokes equations

Navier–Stokes equations describe the motion of fluid substances. These equations arise from applying Newton’s second law to fluid motion, together with the assumption that the stress in the fluid is the sum of a diffusing viscous term (proportional to the gradient of velocity) and a pressure term - hence describing viscous flow. A solution of the Navier–Stokes equations is called flow field, which is a description of the velocity of the fluid at a given point in space and time. Once the velocity field is solved for, other quantities of interest (such as flow rate or drag force) may be found.

Page 18: Metrologia del vuoto negli ambienti industriali – Torino - 27 giugno 2013 Gas Flow Through Microchannels: mathematical models M. Bergoglio, D. Mari, V.

Metrologia del vuoto negli ambienti industriali – Torino - 27 giugno 2013

Kn>>1

Kn<<1

Kn≈1

Kn=0.001

Diameters:14 m16 m

Length:0.74 mm

Page 19: Metrologia del vuoto negli ambienti industriali – Torino - 27 giugno 2013 Gas Flow Through Microchannels: mathematical models M. Bergoglio, D. Mari, V.

Metrologia del vuoto negli ambienti industriali – Torino - 27 giugno 2013

Diameters:11 m 6 m

Length:0.38 mm

Page 20: Metrologia del vuoto negli ambienti industriali – Torino - 27 giugno 2013 Gas Flow Through Microchannels: mathematical models M. Bergoglio, D. Mari, V.

Metrologia del vuoto negli ambienti industriali – Torino - 27 giugno 2013

Solving the full non-linear Navier-Stokes equations it is possible to quantify the compressibility effects.

The Mach number, Ma = u/c, where u is the gas velocity and c is the sound velocity, can be used to determine the importance of the compressibility effects. In general, the compressibility effects can be neglected for the Mach numbers lower than 0.3.

Page 21: Metrologia del vuoto negli ambienti industriali – Torino - 27 giugno 2013 Gas Flow Through Microchannels: mathematical models M. Bergoglio, D. Mari, V.

Metrologia del vuoto negli ambienti industriali – Torino - 27 giugno 2013

Modeling activity Test of a simple phenomenological model which expresses the mass flow rate as:

MG = MNS [1+(Kn; p=p2 , )]

Development of a DSMC code (2D, axisymmetric with reservoirs).Single species polyatomic gas or mixtures with arbitrary number of monatomic species

Compressible NS+Fourier computations by a commercial code(Reservoirs + channel)

Page 22: Metrologia del vuoto negli ambienti industriali – Torino - 27 giugno 2013 Gas Flow Through Microchannels: mathematical models M. Bergoglio, D. Mari, V.

Metrologia del vuoto negli ambienti industriali – Torino - 27 giugno 2013

MG is obtained with the analytical formula by Gallis et al., in equation the diameter is set equal to the mean diameter:

Dmean = (12,28+6,94)/2 = 9,61mm.

Accomodation coefficient: = 1

Long tube

Page 23: Metrologia del vuoto negli ambienti industriali – Torino - 27 giugno 2013 Gas Flow Through Microchannels: mathematical models M. Bergoglio, D. Mari, V.

Metrologia del vuoto negli ambienti industriali – Torino - 27 giugno 2013

Page 24: Metrologia del vuoto negli ambienti industriali – Torino - 27 giugno 2013 Gas Flow Through Microchannels: mathematical models M. Bergoglio, D. Mari, V.

Metrologia del vuoto negli ambienti industriali – Torino - 27 giugno 2013

Page 25: Metrologia del vuoto negli ambienti industriali – Torino - 27 giugno 2013 Gas Flow Through Microchannels: mathematical models M. Bergoglio, D. Mari, V.

Metrologia del vuoto negli ambienti industriali – Torino - 27 giugno 2013

The full non-linear Navier-Stokes equations with no slip boundary condition are also used to quantify the effects of tubes with non constant cross sections.

Page 26: Metrologia del vuoto negli ambienti industriali – Torino - 27 giugno 2013 Gas Flow Through Microchannels: mathematical models M. Bergoglio, D. Mari, V.

Metrologia del vuoto negli ambienti industriali – Torino - 27 giugno 2013

Temperature distribution


Recommended