+ All Categories
Home > Documents > Michael Jentschel Institut Laue-Langevin ELI-NP, March 2011, Bucharest.

Michael Jentschel Institut Laue-Langevin ELI-NP, March 2011, Bucharest.

Date post: 01-Jan-2016
Category:
Upload: nora-kristina-floyd
View: 216 times
Download: 0 times
Share this document with a friend
Popular Tags:
12
Monochromatisation of g-rays with ppm resolution via Crystal Diffraction Michael Jentschel Institut Laue-Langevin ELI-NP, March 2011, Bucharest
Transcript
Page 1: Michael Jentschel Institut Laue-Langevin ELI-NP, March 2011, Bucharest.

Monochromatisation of g-rays with ppm resolution via Crystal

DiffractionMichael Jentschel

Institut Laue-Langevin

ELI-NP, March 2011, Bucharest

Page 2: Michael Jentschel Institut Laue-Langevin ELI-NP, March 2011, Bucharest.

Monochromatisation via Laue - Diffraction

sin2dE

hcn

22

d

d

E

E Good Resolution:• Perfect crystals• Angle measurement

Perfect crystals Gradientcrystals

Good for highresolution

Good as high efficiencyband pass filter

Page 3: Michael Jentschel Institut Laue-Langevin ELI-NP, March 2011, Bucharest.

Laue-Diffraction at a perfect crystal

Dynamical Diffraction theory:

Each el. cell is scattering center

Scattering from indiv. Atoms is summarized via structure factor

interference of forward/backward reflected partial waves from periodically arranged scattering centers

E

hcFWHM

hcEAy

y

yAI

B

2

,,

1

1sin)(

2

22

E

hcn

E

hcnd

B

B

)sin(2

Line profile

Diffraction Angle

Resolution is independent of Gamma Ray Energy

Zachariasen, 1967

Page 4: Michael Jentschel Institut Laue-Langevin ELI-NP, March 2011, Bucharest.

Estimate of possible resolution

qB~10-2 rad

DqB ~ 10-8 rad

Diffraction process allows to have ppm resolution!

Page 5: Michael Jentschel Institut Laue-Langevin ELI-NP, March 2011, Bucharest.

Double crystal Geometry

L

lRIR

LhaL

lhI BB

4)/sin(42

02

20

ILL geometry: 4 source

ELI case:

10-6

DIVERGENCE

BRI

20 ~10-7 I0

1016 10-5 10-2 103

Page 6: Michael Jentschel Institut Laue-Langevin ELI-NP, March 2011, Bucharest.

Diffraction efficiency of perfect crystals

22%3rd order

How does a crystal reflect, if the beam divergence fits its acceptance width ?

Page 7: Michael Jentschel Institut Laue-Langevin ELI-NP, March 2011, Bucharest.

Adapting divergence via refractive optics

M. Wegener Karlsruhe Institute of Technology

A. Sinigrev, ESRF, Grenoble

www.X-ray-optics.com

To be tested for gamma rays in 2011

Page 8: Michael Jentschel Institut Laue-Langevin ELI-NP, March 2011, Bucharest.

Layout and Functioning of the ILL Double Crystal Spectrometer GAMS

Source

Spectrometer Table with angle interferometers

Detector

1.Crystal

2.Crystal

Beam Collimation Movable Collimation

These beams need to be separated

Large distances needed

21 m 0.7 m 3 m

0.002 m

Page 9: Michael Jentschel Institut Laue-Langevin ELI-NP, March 2011, Bucharest.

Interferometer of GAMS6: realisation

All fixations free of epoxy:• optical bonding• silica bonding• mechanical clemping

Page 10: Michael Jentschel Institut Laue-Langevin ELI-NP, March 2011, Bucharest.

Crystal Spectrometers GAMS

GAMS 5

GAMS 6 (comissioning)

200 prad resolution

20 prad resolution

Page 11: Michael Jentschel Institut Laue-Langevin ELI-NP, March 2011, Bucharest.

What can you get from high resolution

(n,g) of 188Re

Complete spectrat=220+180

-30

Dynamic range of 106

Broadening due to:• Atomic motion• Lifetime• Zero Point Fluctuation

1.1MeV

Page 12: Michael Jentschel Institut Laue-Langevin ELI-NP, March 2011, Bucharest.

Physics with ppm resolution

Nuclear Structure Physics:Complete SpectroscopyLevel Density/Chaos,n), (,f), (,) reactions

Fundamental PhysicsFine structure constantDiffraction process

Solid state PhysicsAtomic interaction Phase transitions

Many others


Recommended