+ All Categories
Home > Documents > Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe...

Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe...

Date post: 13-Mar-2020
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
140
The 1 -periodic part of the Adams spectral sequence at an odd prime by Michael Joseph Andrews MMath, University of Oxford (2009) Submitted to the Department of Mathematics in partial ful๏ฌllment of the requirements for the degree of Doctor of Philosophy at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY June 2015 c โ—‹ Massachusetts Institute of Technology 2015. All rights reserved. Author ................................................................ Department of Mathematics April 29, 2015 Certi๏ฌed by ............................................................ Haynes Miller Professor of Mathematics Thesis Supervisor Accepted by ........................................................... William Minicozzi Chairman, Department Committee on Graduate Students
Transcript
Page 1: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

The ๐‘ฃ1-periodic part of the Adams spectral sequenceat an odd prime

by

Michael Joseph Andrews

MMath, University of Oxford (2009)

Submitted to the Department of Mathematicsin partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2015

c Massachusetts Institute of Technology 2015. All rights reserved.

Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Department of Mathematics

April 29, 2015

Certified by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Haynes Miller

Professor of MathematicsThesis Supervisor

Accepted by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .William Minicozzi

Chairman, Department Committee on Graduate Students

Page 2: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

2

Page 3: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

The ๐‘ฃ1-periodic part of the Adams spectral sequence at an

odd prime

by

Michael Joseph Andrews

Submitted to the Department of Mathematicson April 29, 2015, in partial fulfillment of the

requirements for the degree ofDoctor of Philosophy

Abstract

We tell the story of the stable homotopy groups of spheres for odd primes at chromaticheight 1 through the lens of the Adams spectral sequence. We find the โ€œdancers to adiscordant system.โ€

We calculate a Bockstein spectral sequence which converges to the 1-line of thechromatic spectral sequence for the odd primary Adams ๐ธ2-page. Furthermore, wecalculate the associated algebraic Novikov spectral sequence converging to the 1-lineof the ๐ต๐‘ƒ chromatic spectral sequence. This result is also viewed as the calculationof a direct limit of localized modified Adams spectral sequences converging to thehomotopy of the ๐‘ฃ1-periodic sphere spectrum.

As a consequence of this work, we obtain a thorough understanding of a collectionof ๐‘ž0-towers on the Adams ๐ธ2-page and we obtain information about the differentialsbetween these towers. Moreover, above a line of slope 1/(๐‘2โˆ’๐‘โˆ’1) we can completelydescribe the ๐ธ2 and ๐ธ3-pages of the mod ๐‘ Adams spectral sequence, which accountsfor almost all the spectral sequence in this range.

Thesis Supervisor: Haynes MillerTitle: Professor of Mathematics

3

Page 4: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

4

Page 5: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

Acknowledgments

Without the support of my mother and my advisor, Haynes, I have no doubt that

this thesis would have ceased to exist.

There are many things I would like to thank my mother for. Most relevant is the

time she dragged me to Oxford. I had decided, at sixteen years of age, that I was not

interested in going to Oxbridge for undergraduate study but she knew better. Upon

visiting Oxford, I experienced for the first time the wonder of being able to speak to

others who love maths as much as I do. My time there was mathematically fulfilling

and the friends I made, I hope, will be lifelong. Secondly, it was her who encouraged

me to apply to MIT for grad school. Thereโ€™s no other way to put it, I was terrified

of moving abroad and away from the friends I had made. I would come to be the

happiest I could ever have been at MIT. Cambridge is a beautiful place to live and

the energy of the faculty and students at MIT is untouched by many institutes. Her

support during my first year away, during the struggle of qualifying exams, from over

3, 000 miles away, and throughout the rest of my life is never forgotten.

Haynes picked up the pieces many times during my first year at MIT. His emotional

support and kindness in those moments are the reasons I chose him to be my advisor.

He has always been a pleasure to talk with and I am particularly appreciative of

how he adapted to my requirements, always giving me the level of detail he knows

I need, while holding back enough so that our conversations remain exciting. His

mathematical influence is evident throughout this thesis. In particular, theorem 1.4.4

was his conjecture and the results of this thesis build on his work in [10] and [11].

It has been a pleasure to collaborate with him in subsequent work [2]. On the other

hand, it is wonderful to have an advisor that I consider a friend and who I can talk

to about things other than math. I will always remember him giving me strict orders

to go out and buy a guitar amp when he could tell I was suffering without. Thank

you, Haynes.

There are many friends to thank for their support during my time at MIT. I am

grateful to Michael, Dana, Jiayong, and Saul, particularly for their support during

5

Page 6: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

my first year at MIT. I am grateful to Rosa, Stuart, Pat and Nate for putting up with

me as a roommate. Thank you, Nisa. I have been a better person since knowing you.

Thank you, Alex, for letting me talk your ear off about permanent cycles for months

and months, and for being the best friend one could hope for.

The weeks I spent collaborating with Will as he coded up spectral sequence charts

were some of my most enjoyable as a mathematician. Before Willโ€™s work, no-one had

seen a trigraded spectral sequence plotted in 3D with rotation capability, or a 70 term

cocycle representative for ๐‘’0. His programs made for a particularly memorable thesis

defense and will be useful for topologists for a long time, I am sure. Thank you, Will.

There are three courses I feel very lucky to have been a part of during my time at

MIT. They were taught by Haynes, Mark Behrens and Emily Riehl. Haynesโ€™ course

on the Adams spectral sequence was the birthplace for this thesis.

Mark taught the best introductory algebraic topology course that you can imagine.

It was inspiring for my development as a topologist and a teacher. I wish to thank

him for the advice he gave me during the microteaching workshop, the conversations

we have had about topology and for the energy he brings to everything he is involved

in. I hope we will work together more in the future.

Emily made sure that I finally learned some categorical homotopy theory. Each

one of her classes was like watching Usain Bolt run the 100m over and over again for

an hour. They were incredible. I thank her for her rigour, her energy and for showing

me that abstract nonsense done right is beautiful. Although, the final version of this

thesis contains less categorical homotopy theory than the draft, her course gave me

the tools I needed to prove proposition 8.1.9.

Finally, I wish to thank Jessica Barton for her support, John Wilson who made it

possible for me to take my GRE exams, and Yan Zhang who helped me plot pictures

of my spectral sequences, which inspired the proof of proposition 5.4.5.

6

Page 7: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

Contents

1 Introduction 11

1.1 The stable homotopy groups of spheres . . . . . . . . . . . . . . . . . 11

1.2 Calculational tools in homotopy theory . . . . . . . . . . . . . . . . . 12

1.3 Some ๐ต๐‘ƒ*๐ต๐‘ƒ -comodules and the corresponding ๐‘ƒ -comodules . . . . 14

1.4 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.5 Outline of thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2 Spectral sequence terminology 25

2.1 A correspondence approach . . . . . . . . . . . . . . . . . . . . . . . 25

2.2 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3 Bockstein spectral sequences 33

3.1 The Hopf algebra ๐‘ƒ and some ๐‘ƒ -comodules . . . . . . . . . . . . . . 33

3.2 The ๐‘„-Bockstein spectral sequence (๐‘„-BSS) . . . . . . . . . . . . . . 35

3.3 The ๐‘žโˆž0 -Bockstein spectral sequence (๐‘žโˆž0 -BSS) . . . . . . . . . . . . . 38

3.4 The ๐‘„-BSS and the ๐‘žโˆž0 -BSS: a relationship . . . . . . . . . . . . . . . 39

3.5 The ๐‘žโˆ’11 -Bockstein spectral sequence (๐‘žโˆ’1

1 -BSS) . . . . . . . . . . . . 41

3.6 Multiplicativity of the BSSs . . . . . . . . . . . . . . . . . . . . . . . 43

4 Vanishing lines and localization 47

4.1 Vanishing lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2 The localization map: the trigraded perspective . . . . . . . . . . . . 49

4.3 The localization map: the bigraded perspective . . . . . . . . . . . . 50

7

Page 8: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

5 Calculating the 1-line of the ๐‘ž-CSS; its image in ๐ป*(๐ด) 53

5.1 The ๐ธ1-page of the ๐‘žโˆ’11 -BSS . . . . . . . . . . . . . . . . . . . . . . . 53

5.2 The first family of differentials, principal towers . . . . . . . . . . . . 55

5.2.1 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.2.2 Quick proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.2.3 The proof of proposition 5.2.2.1 . . . . . . . . . . . . . . . . . 56

5.3 The second family of differentials, side towers . . . . . . . . . . . . . 64

5.3.1 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.3.2 Quick proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.3.3 A Kudo transgression theorem . . . . . . . . . . . . . . . . . . 65

5.3.4 Completing the proof of proposition 5.3.1.2 . . . . . . . . . . . 72

5.4 The ๐ธโˆž-page of the ๐‘žโˆ’11 -BSS . . . . . . . . . . . . . . . . . . . . . . . 74

5.5 Summary of main results . . . . . . . . . . . . . . . . . . . . . . . . . 79

6 The localized algebraic Novikov spectral sequence 81

6.1 Algebraic Novikov spectral sequences . . . . . . . . . . . . . . . . . . 81

6.2 Evidence for the main result . . . . . . . . . . . . . . . . . . . . . . . 82

6.3 The filtration spectral sequence (๐‘ž0-FILT) . . . . . . . . . . . . . . . 84

6.4 The ๐ธโˆž-page of the loc.alg.NSS . . . . . . . . . . . . . . . . . . . . . 88

7 Some permanent cycles in the ASS 91

7.1 Maps between stunted projective spaces . . . . . . . . . . . . . . . . 91

7.2 Homotopy and cohomotopy classes in stunted projective spaces . . . . 98

7.3 A permanent cycle in the ASS . . . . . . . . . . . . . . . . . . . . . . 102

8 Adams spectral sequences 105

8.1 Towers and their spectral sequences . . . . . . . . . . . . . . . . . . . 105

8.2 The modified Adams spectral sequence for ๐‘†/๐‘๐‘› . . . . . . . . . . . . 112

8.3 The modified Adams spectral sequence for ๐‘†/๐‘โˆž . . . . . . . . . . . . 115

8.4 A permanent cycle in the MASS-(๐‘›+ 1) . . . . . . . . . . . . . . . . 116

8.5 The localized Adams spectral sequences . . . . . . . . . . . . . . . . . 117

8

Page 9: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

8.6 Calculating the LASS-โˆž . . . . . . . . . . . . . . . . . . . . . . . . . 118

8.7 The Adams spectral sequence . . . . . . . . . . . . . . . . . . . . . . 120

A Maps of spectral sequences 123

B Convergence of spectral sequences 129

9

Page 10: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

THIS PAGE INTENTIONALLY LEFT BLANK

10

Page 11: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

Chapter 1

Introduction

1.1 The stable homotopy groups of spheres

Algebraic topologists are interested in the class of spaces which can be built from

spheres. For this reason, when one tries to understand the continuous maps between

two spaces up to homotopy, it is natural to restrict attention to the maps between

spheres first. The groups of interest

๐œ‹๐‘›+๐‘˜(๐‘†๐‘˜) = homotopy classes of maps ๐‘†๐‘›+๐‘˜ โˆ’โ†’ ๐‘†๐‘˜

are called the homotopy groups of spheres.

Topologists soon realized that it is easier to work in a stable setting. Instead,

one asks about the stable homotopy groups of spheres or, equivalently, the homotopy

groups of the sphere spectrum

๐œ‹๐‘›(๐‘†0) = colim๐‘˜ ๐œ‹๐‘›+๐‘˜(๐‘†๐‘˜).

Calculating all of these groups is an impossible task but one can ask for partial

information. In particular, one can try to understand the global structure of these

groups by proving the existence of recurring patterns. These patterns are clearly

visible in spectral sequence charts for calculating ๐œ‹*(๐‘†0) and this thesis came about

11

Page 12: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

because of the authorโ€™s desire to understand the mystery behind these powerful dots

and lines, which others in the field appeared so in awe of. It tells the story of the

stable homotopy groups of spheres for odd primes at chromatic height 1, through the

lens of the Adams spectral sequence.

1.2 Calculational tools in homotopy theory

The Adams spectral sequence (ASS) and the Adams-Novikov spectral sequence (ANSS)

are useful tools for homotopy theorists. Theoretically, they enable a calculation of the

stable homotopy groups but they have broader utility than this. Much of contempo-

rary homotopy theory has been inspired by analyzing the structure of these spectral

sequences.

The ASS has ๐ธ2-page given by the cohomology of the dual Steenrod algebra ๐ป*(๐ด)

and it converges ๐‘-adically to ๐œ‹*(๐‘†0). The ANSS has as its ๐ธ2-page the cohomology

of the Hopf algebroid ๐ต๐‘ƒ*๐ต๐‘ƒ given to us by the ๐‘-typical factor of complex cobordism

and it converges ๐‘-locally to ๐œ‹*(๐‘†0).

The ANSS has the advantage that elements constructed using non-nilpotent self

maps occur in low filtration. This means that the classes they represent are less likely

to be hit by differentials in the spectral sequence and so proving such elements are

nontrivial in homotopy often comes down to an algebraic calculation of the ๐ธ2-page.

The ASS has the advantage that such elements have higher filtration and, therefore,

less indeterminacy in the spectral sequence. For this reason, among others, arguing

with both spectral sequences is fruitful.

๐ป*(๐‘ƒ ;๐‘„) CESS +3

alg.NSS

๐ป*(๐ด)

ASS

๐ป*(๐ต๐‘ƒ*๐ต๐‘ƒ ) ANSS +3 ๐œ‹*(๐‘†

0)

(1.2.1)

The relationship between the two spectral sequences is strengthened by the exis-

tence of an algebra ๐ป*(๐‘ƒ ;๐‘„), which serves as the ๐ธ2-page for two spectral sequences:

12

Page 13: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

the Cartan-Eilenberg spectral sequence (CESS) which converges to ๐ป*(๐ด), and the

algebraic Novikov spectral sequence (alg.NSS) converging to ๐ป*(๐ต๐‘ƒ*๐ต๐‘ƒ ). We will

say more about the algebra ๐ป*(๐‘ƒ ;๐‘„) shortly. For now it will be a black box and we

will give the relevant definitions in the next section.

Continuing our comparison of the two spectral sequences for calculating ๐œ‹*(๐‘†0),

we note that the ASS has the advantage that its ๐ธ2-page can be calculated, in a

range, efficiently with the aid of a computer. The algebra required to calculate the

๐ธ2-page of the ANSS is more difficult. For this reason, the chromatic spectral sequence

(๐‘ฃ-CSS) was developed in [12] to calculate the 1 and 2-line.

โจ๐‘›โ‰ฅ0๐ป

*(๐‘ƒ ; ๐‘žโˆ’1๐‘› ๐‘„/(๐‘žโˆž0 , . . . , ๐‘ž

โˆž๐‘›โˆ’1))

๐‘ž-CSS +3

alg.NSS

๐ป*(๐‘ƒ ;๐‘„)

alg.NSS

โจ๐‘›โ‰ฅ0๐ป

*(๐ต๐‘ƒ*๐ต๐‘ƒ ; ๐‘ฃโˆ’1๐‘› ๐ต๐‘ƒ*/(๐‘

โˆž, . . . , ๐‘ฃโˆž๐‘›โˆ’1))๐‘ฃ-CSS +3 ๐ป*(๐ต๐‘ƒ*๐ต๐‘ƒ )

In [10, ยง5], Miller sets up a chromatic spectral sequence for computing ๐ป*(๐‘ƒ ;๐‘„).

To distinguish this spectral sequence from the more frequently used chromatic spectral

sequence of [12], we call it the ๐‘ž-CSS. At odd primes, Miller [10, ยง4] shows that the

๐ธ2-page of the ASS can be identified with ๐ป*(๐‘ƒ ;๐‘„) and so he compares the ๐‘ž-CSS

and the ๐‘ฃ-CSS to explain some differences between the Adams and Adams-Novikov

๐ธ2-terms. He also observes that it is almost trivial to calculate the 1-line in the ๐ต๐‘ƒ

case ([12, ยง4]), but notes that it is more difficult to calculate the 1-line of the ๐‘ž-CSS.

The main result of this thesis is a calculation of the 1-line of the ๐‘ž-CSS, that is, of

๐ป*(๐‘ƒ ; ๐‘žโˆ’11 ๐‘„/๐‘žโˆž0 ).

The most interesting application of this work is a calculation of the ASS, at odd

primes, above a line of slope 1/(๐‘2 โˆ’ ๐‘ โˆ’ 1). We note that as the prime tends to

infinity, the fraction of the ASS described tends to 1. As a consequence of this work,

we are able to describe, for the first time, differentials of arbitrarily long length in the

ASS.

13

Page 14: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

1.3 Some ๐ต๐‘ƒ*๐ต๐‘ƒ -comodules and the corresponding

๐‘ƒ -comodules

Our main result is the calculation of a Bockstein spectral sequence converging to

๐ป*(๐‘ƒ ; ๐‘žโˆ’11 ๐‘„/๐‘žโˆž0 ), the 1-line of the chromatic spectral sequence for ๐ป*(๐‘ƒ ;๐‘„). First,

we recall how ๐‘ƒ , ๐‘„ and related ๐‘ƒ -comodules are defined. They come from mimicking

constructions used in the chromatic spectral sequence for ๐ป*(๐ต๐‘ƒ*๐ต๐‘ƒ ) and so we also

recall some relevant ๐ต๐‘ƒ*๐ต๐‘ƒ -comodules. ๐‘ is an odd prime throughout this thesis.

Recall that the coefficient ring of the Brown-Peterson spectrum ๐ต๐‘ƒ is a polynomial

algebra Z(๐‘)[๐‘ฃ1, ๐‘ฃ2, ๐‘ฃ3, . . .] on the Hazewinkel generators.

๐‘ โˆˆ ๐ต๐‘ƒ* and ๐‘ฃ๐‘๐‘›โˆ’1

1 โˆˆ ๐ต๐‘ƒ*/๐‘๐‘›

are ๐ต๐‘ƒ*๐ต๐‘ƒ -comodule primitives and so we have ๐ต๐‘ƒ*๐ต๐‘ƒ -comodules ๐‘ฃโˆ’11 ๐ต๐‘ƒ*/๐‘,

๐ต๐‘ƒ*/๐‘โˆž = colim(. . . โˆ’โ†’ ๐ต๐‘ƒ*/๐‘

๐‘› ๐‘โˆ’โ†’ ๐ต๐‘ƒ*/๐‘๐‘›+1 โˆ’โ†’ . . .), and

๐‘ฃโˆ’11 ๐ต๐‘ƒ*/๐‘

โˆž = colim(. . . โˆ’โ†’ (๐‘ฃ๐‘๐‘›โˆ’1

1 )โˆ’1๐ต๐‘ƒ*/๐‘๐‘› ๐‘โˆ’โ†’ (๐‘ฃ๐‘

๐‘›

1 )โˆ’1๐ต๐‘ƒ*/๐‘๐‘›+1 โˆ’โ†’ . . .).

By filtering the ๐ต๐‘ƒ cobar construction by powers of the kernel of the augmentation

๐ต๐‘ƒ* โˆ’โ†’ F๐‘ we obtain the algebraic Novikov spectral sequence

๐ป*(๐‘ƒ ;๐‘„) =โ‡’ ๐ป*(๐ต๐‘ƒ*๐ต๐‘ƒ ).

๐‘ƒ = F๐‘[๐œ‰1, ๐œ‰2, ๐œ‰3, . . .] is the polynomial sub Hopf algebra of the dual Steenrod algebra

๐ด and

๐‘„ = gr*๐ต๐‘ƒ* = F๐‘[๐‘ž0, ๐‘ž1, ๐‘ž2, . . .]

is the associated graded of ๐ต๐‘ƒ*; ๐‘ž๐‘› denotes the class of ๐‘ฃ๐‘›. Similarly to above, we

have ๐‘ƒ -comodules ๐‘žโˆ’11 ๐‘„/๐‘ž0, ๐‘„/๐‘žโˆž0 and ๐‘žโˆ’1

1 ๐‘„/๐‘žโˆž0 and there are appropriate algebraic

Novikov spectral sequences (the first three vertical spectral sequences in figure 1-2).

14

Page 15: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

1.4 Main results

We have a Bockstein spectral sequence, the ๐‘žโˆ’11 -Bockstein spectral sequence (๐‘žโˆ’1

1 -BSS)

coming from ๐‘ž0-multiplication:

[๐ป*(๐‘ƒ ; ๐‘žโˆ’1

1 ๐‘„/๐‘ž0)[๐‘ž0

]]/๐‘žโˆž0 =โ‡’ ๐ป*(๐‘ƒ ; ๐‘žโˆ’1

1 ๐‘„/๐‘žโˆž0 ).

Our main theorem is the complete calculation of this spectral sequence, and this, as

we shall describe, tells us a lot about the Adams ๐ธ2-page.

The key input for the calculation is a result of Miller, which we recall presently.

Theorem 1.4.1 (Miller, [10, 3.6]).

๐ป*(๐‘ƒ ; ๐‘žโˆ’11 ๐‘„/๐‘ž0) = F๐‘[๐‘žยฑ1

1 ]โŠ— ๐ธ[โ„Ž๐‘›,0 : ๐‘› โ‰ฅ 1]โŠ— F๐‘[๐‘๐‘›,0 : ๐‘› โ‰ฅ 1].

Here โ„Ž๐‘›,0 and ๐‘๐‘›,0 are elements which can be written down explicitly, though their

formulae are not important for the current discussion. To state the main theorem in

a clear way we change these exterior and polynomial generators by units.

Notation 1.4.2. For ๐‘› โ‰ฅ 1, let ๐‘[๐‘›] = ๐‘๐‘›โˆ’1๐‘โˆ’1

, ๐œ–๐‘› = ๐‘žโˆ’๐‘[๐‘›]

1 โ„Ž๐‘›,0, and ๐œŒ๐‘› = ๐‘ž1โˆ’๐‘[๐‘›+1]

1 ๐‘๐‘›,0.

We have ๐ป*(๐‘ƒ ; ๐‘žโˆ’11 ๐‘„/๐‘ž0) = F๐‘[๐‘žยฑ1

1 ]โŠ— ๐ธ[๐œ–๐‘› : ๐‘› โ‰ฅ 1]โŠ— F๐‘[๐œŒ๐‘› : ๐‘› โ‰ฅ 1].

We introduce some convenient notation for differentials in the ๐‘žโˆ’11 -BSS.

Notation 1.4.3. Suppose ๐‘ฅ, ๐‘ฆ โˆˆ ๐ป*(๐‘ƒ ; ๐‘žโˆ’11 ๐‘„/๐‘ž0). We write ๐‘‘๐‘Ÿ๐‘ฅ = ๐‘ฆ to mean that

for all ๐‘ฃ โˆˆ Z, ๐‘ž๐‘ฃ0๐‘ฅ and ๐‘ž๐‘ฃ+๐‘Ÿ0 ๐‘ฆ survive until the ๐ธ๐‘Ÿ-page and that ๐‘‘๐‘Ÿ๐‘ž๐‘ฃ0๐‘ฅ = ๐‘ž๐‘ฃ+๐‘Ÿ0 ๐‘ฆ. In this

case, notice that ๐‘ž๐‘ฃ0๐‘ฅ is a permanent cycle for ๐‘ฃ โ‰ฅ โˆ’๐‘Ÿ.

๐ป*(๐‘ƒ ; ๐‘žโˆ’11 ๐‘„/๐‘ž0) is an algebra and with the notation just introduced differentials

are derivations, i.e. from differentials ๐‘‘๐‘Ÿ๐‘ฅ = ๐‘ฆ and ๐‘‘๐‘Ÿ๐‘ฅโ€ฒ = ๐‘ฆโ€ฒ we deduce that ๐‘‘๐‘Ÿ(๐‘ฅ๐‘ฅโ€ฒ) =

๐‘ฆ๐‘ฅโ€ฒ + (โˆ’1)|๐‘ฅ|๐‘ฅ๐‘ฆโ€ฒ.

Using .= to denote equality up to multiplication by an element in Fร—

๐‘ , we are now

ready to state the main theorem.

15

Page 16: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

Theorem 1.4.4. In the ๐‘žโˆ’11 -BSS we have two families of differentials. For ๐‘› โ‰ฅ 1,

1. ๐‘‘๐‘[๐‘›]๐‘ž๐‘˜๐‘๐‘›โˆ’1

1.

= ๐‘ž๐‘˜๐‘๐‘›โˆ’1

1 ๐œ–๐‘›, whenever ๐‘˜ โˆˆ Zโˆ’ ๐‘Z;

2. ๐‘‘๐‘๐‘›โˆ’1๐‘ž๐‘˜๐‘๐‘›

1 ๐œ–๐‘›.

= ๐‘ž๐‘˜๐‘๐‘›

1 ๐œŒ๐‘›, whenever ๐‘˜ โˆˆ Z.

Together with the fact that ๐‘‘๐‘Ÿ1 = 0 for ๐‘Ÿ โ‰ฅ 1, these two families of differentials

determine the ๐‘žโˆ’11 -BSS.

We describe the significance of this theorem in terms of the Adams spectral se-

quence ๐ธ2-page. To do so, we need to recall how the 1-line of the chromatic spectral se-

quence manifests itself in ๐ป*(๐ด). In the following zig-zag, ๐ฟ is the natural localization

map, ๐œ• is the boundary map coming from the short exact sequence of ๐‘ƒ -comodules

0 โˆ’โ†’ ๐‘„ โˆ’โ†’ ๐‘žโˆ’10 ๐‘„ โˆ’โ†’ ๐‘„/๐‘žโˆž0 โˆ’โ†’ 0, and the isomorphism ๐ป*(๐‘ƒ ;๐‘„) โˆผ= ๐ป*(๐ด) is the

one given by Miller in [10, ยง4].

๐ป*(๐‘ƒ ; ๐‘žโˆ’11 ๐‘„/๐‘žโˆž0 ) ๐ป*(๐‘ƒ ;๐‘„/๐‘žโˆž0 )๐ฟoo ๐œ• // ๐ป*(๐‘ƒ ;๐‘„) ๐ป*(๐ด)

โˆผ=oo (1.4.5)

If an element of ๐ป*(๐‘ƒ ; ๐‘žโˆ’11 ๐‘„/๐‘žโˆž0 ) is a permanent cycle in the ๐‘ž-CSS, then we can

lift it under ๐ฟ and map via ๐œ• (and the isomorphism) to ๐ป*(๐ด). If there is no lift of

an element of ๐ป*(๐‘ƒ ; ๐‘žโˆ’11 ๐‘„/๐‘žโˆž0 ) under ๐ฟ then it must support a nontrivial chromatic

differential.

We now turn to figure 1-1. Recall that ๐‘ž0 is the class detecting multiplication by ๐‘

in the ASS. Figure 1-1 displays selected โ€œ๐‘ž0-towersโ€ in the ASS at the prime 3; most

of these are visible in the charts of Nassau [14]. In the range displayed, we see that

there are โ€œprincipal towersโ€ in topological degrees which are one less than a multiple

of 2๐‘โˆ’ 2 and โ€œside towersโ€ in topological degrees which are two less than a multiple

of ๐‘(2๐‘ โˆ’ 2). Under the zig-zag of (1.4.5) (lifting uniquely under ๐œ• and applying ๐ฟ)

we obtain ๐‘ž0-towers in ๐ป*(๐‘ƒ ; ๐‘žโˆ’11 ๐‘„/๐‘žโˆž0 ). The principal towers are sent to ๐‘ž0-towers

which correspond to differentials in the first family of 1.4.4. The side towers are sent

to ๐‘ž0-towers which correspond to differentials in the second family of 1.4.4. In the

ASS, in the range plotted, there are as many differentials as possible between each

16

Page 17: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

180 185 190 195 200 205 210 21510

15

20

25

30

35

40

45

50

55

๐‘กโˆ’ ๐‘ 

๐‘ 

๐‘ž451 ๐œ–2

๐‘ž451 ๐œŒ2

๐‘ž451

๐‘ž451 ๐œ–3

๐‘ž461

๐‘ž471

๐‘ž481 ๐œ–1

๐‘ž481 ๐œŒ1

๐‘ž481

๐‘ž481 ๐œ–2

๐‘ž511

๐‘ž511 ๐œ–2

๐‘ž541 ๐œ–3

๐‘ž541 ๐œŒ3

๐‘ž541

๐‘ž541 ๐œ–4

Figure 1-1: The relevant part of ๐ป๐‘ ,๐‘ก(๐ด) when ๐‘ = 3, in the range 175 < ๐‘กโˆ’ ๐‘  < 218,with a line of slope 1/(๐‘2โˆ’ ๐‘โˆ’ 1) = 1/5 drawn. Vertical black lines indicate multipli-cation by ๐‘ž0. The top and bottom of selected ๐‘ž0-towers are labelled by the source andtarget, respectively, of the corresponding Bockstein differential. Red arrows indicateAdams differentials up to higher Cartan-Eilenberg filtration.

17

Page 18: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

principal tower and its side towers. Some permanent cycles are left at the top of each

principal tower. They detect ๐‘ฃ1-periodic elements in the given dimension.

Almost all of what we have described about figure 1-1 is true in general.

In each positive dimension ๐ท which is one less than a multiple of 2๐‘โˆ’ 2 there is a

โ€œprincipal tower.โ€ As long as ๐‘ = (๐ท+ 1)/(2๐‘โˆ’ 2) is not a power of ๐‘, the principal

tower maps under the zig-zag (1.4.5) to the ๐‘ž0-tower corresponding to the Bockstein

differential on ๐‘ž๐‘1 . If ๐‘ = (๐ท+1)/(2๐‘โˆ’2) is a power of ๐‘, so that ๐ท = ๐‘๐‘›(2๐‘โˆ’2)โˆ’1

where ๐‘› โ‰ฅ 0, the principal tower has length ๐‘๐‘› and it starts on the 1-line at โ„Ž1,๐‘›.

This is a statement about the existence of chromatic differentials: for ๐‘› โ‰ฅ 1, there

are chromatic differentials on the ๐‘ž0-tower corresponding to the Bockstein differential

on ๐‘ž๐‘๐‘›

1 .

In each positive dimension ๐ท which is two less than a multiple of ๐‘(2๐‘โˆ’ 2) there

are โ€œside towers.โ€ If ๐‘๐‘› is the highest power of ๐‘ dividing ๐‘ = (๐ท+ 2)/(2๐‘โˆ’ 2), then

there are ๐‘› side towers. In most cases, the ๐‘—th side tower (we order from higher Adams

filtration to lower Adams filtration) maps under the zig-zag (1.4.5) to the ๐‘ž0-tower

corresponding to the Bockstein differential on ๐‘ž๐‘1 ๐œ–๐‘—. However, if ๐‘ = (๐ท+2)/(2๐‘โˆ’2)

is a power of ๐‘ so that ๐ท = ๐‘๐‘›(2๐‘โˆ’ 2)โˆ’ 2 where ๐‘› โ‰ฅ 1, the ๐‘›th side tower has length

๐‘๐‘›โˆ’๐‘[๐‘›] and it starts on the 2-line at ๐‘1,๐‘›โˆ’1; for ๐‘› โ‰ฅ 2, there are chromatic differentials

on the ๐‘ž0-tower corresponding to the Bockstein differential on ๐‘ž๐‘๐‘›

1 ๐œ–๐‘›.

To make the assertions above we have to calculate some differentials in a Bockstein

spectral sequence for ๐ป*(๐‘ƒ ;๐‘„). We omit stating the relevant result here.

We have not described all the elements in ๐ป*(๐‘ƒ ; ๐‘žโˆ’11 ๐‘„/๐‘žโˆž0 ). The remaining ele-

ments line up in a convenient way but to be more precise we must talk about the

localized algebraic Novikov spectral sequence (loc.alg.NSS)

๐ป*(๐‘ƒ ; ๐‘žโˆ’11 ๐‘„/๐‘žโˆž0 ) =โ‡’ ๐ป*(๐ต๐‘ƒ*๐ต๐‘ƒ ; ๐‘ฃโˆ’1

1 ๐ต๐‘ƒ*/๐‘โˆž).

This is also important if we are to address the Adams differentials between principal

towers and their side towers.

Theorem 1.4.4 allows us to understand the associated graded of the ๐ธ2-page of the

18

Page 19: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

loc.alg.NSS with respect to the Bockstein filtration. Since the Bockstein filtration is

respected by ๐‘‘loc.alg.NSS2 : ๐ป๐‘ ,๐‘ข(๐‘ƒ ; [๐‘žโˆ’1

1 ๐‘„/๐‘žโˆž0 ]๐‘ก) โˆ’โ†’ ๐ป๐‘ +1,๐‘ข(๐‘ƒ ; [๐‘žโˆ’11 ๐‘„/๐‘žโˆž0 ]๐‘ก+1) we have a

filtration spectral sequence (๐‘ž0-FILT)

๐ธ0(๐‘ž0-FILT) = ๐ธโˆž(๐‘žโˆ’11 -BSS) =โ‡’ ๐ธ3(loc.alg.NSS).

Theorem 1.4.4 enables us to write down some obvious permanent cycles in the ๐‘žโˆ’11 -

BSS. The next theorem tells us that they are the only elements which appear on the

๐ธ1-page of the ๐‘ž0-FILT.

Theorem 1.4.6. ๐ธ1(๐‘ž0-FILT) has an F๐‘-basis given by the following elements.

๐‘ž๐‘ฃ0 : ๐‘ฃ < 0

โˆช๐‘ž๐‘ฃ0๐‘ž

๐‘˜๐‘๐‘›โˆ’1

1 : ๐‘› โ‰ฅ 1, ๐‘˜ โˆˆ Zโˆ’ ๐‘Z, โˆ’๐‘[๐‘›] โ‰ค ๐‘ฃ < 0

โˆช๐‘ž๐‘ฃ0๐‘ž

๐‘˜๐‘๐‘›

1 ๐œ–๐‘› : ๐‘› โ‰ฅ 1, ๐‘˜ โˆˆ Z, 1โˆ’ ๐‘๐‘› โ‰ค ๐‘ฃ < 0

This theorem tells us that the ๐‘‘2 differentials in the loc.alg.NSS which do not

increase Bockstein filtration kill all the ๐‘ž0-towers except those corresponding to the

differentials of theorem 1.4.4. This is precisely what we meant when we said that โ€œthe

remaining elements line up in a convenient way.โ€ Once theorem 1.4.6 is proved, the

calculation of the remainder of the loc.alg.NSS is straightforward because one knows

๐ป*(๐ต๐‘ƒ*๐ต๐‘ƒ ; ๐‘ฃโˆ’11 ๐ต๐‘ƒ*/๐‘

โˆž) by [12, ยง4].

We now turn to the Adams differentials between principal towers and their side

towers, which is the motivation for drawing figure 1-2. In [11], Miller uses the square

analogous to (1.2.1) for the mod ๐‘ Moore spectrum to deduce Adams differentials

(up to higher Cartan-Eilenberg filtration) from algebraic Novikov differentials. The

algebraic Novikov spectral sequence he calculates is precisely the one labelled as the

๐‘ฃ1-alg.NSS in figure 1-2 and this is the key input to proving theorem 1.4.6. We can use

the same techniques to deduce Adams differentials for the sphere from differentials in

the alg.NSS. We make this statement precise (see also, [2, S8]).

19

Page 20: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

๐ป*(๐‘ƒ ; ๐‘žโˆ’11 ๐‘„/๐‘ž0)

๐‘ฃ1-alg.NSS

// ๐ป*(๐‘ƒ ; ๐‘žโˆ’11 ๐‘„/๐‘žโˆž0 )

loc.alg.NSS

๐ป*(๐‘ƒ ;๐‘„/๐‘žโˆž0 )

๐ฟoo ๐œ• // ๐ป*(๐‘ƒ ;๐‘„)

alg.NSS

CESS +3 ๐ป*(๐ด)

ASS

โˆผ=xx

๐ป*(๐ต๐‘ƒ*๐ต๐‘ƒ ; ๐‘ฃโˆ’11 ๐ต๐‘ƒ*/๐‘) // ๐ป*(๐ต๐‘ƒ*๐ต๐‘ƒ ; ๐‘ฃโˆ’1

1 ๐ต๐‘ƒ*/๐‘โˆž) ๐ป*(๐ต๐‘ƒ*๐ต๐‘ƒ ;๐ต๐‘ƒ*/๐‘

โˆž)๐ฟoo ๐œ• // ๐ป*(๐ต๐‘ƒ*๐ต๐‘ƒ ) ANSS +3 ๐œ‹*(๐‘†0)

Figure 1-2: Obtaining information about the Adams spectral sequence from the Millerโ€™s ๐‘ฃ1-algebraic Novikov spectral sequence.Having calculated the ๐‘žโˆ’1

1 -BSS, Millerโ€™s calculation of the ๐‘ฃ1-alg.NSS allows us to calculate the loc.alg.NSS. Above a line ofslope 1/(๐‘2 โˆ’ ๐‘ โˆ’ 1) the ๐ธ2-page of the loc.alg.NSS is isomorphic to the ๐ธ2-page of the alg.NSS. Thus, our localized algebraicNovikov differentials allow us to deduce unlocalized ones, which can, in turn, be used to deduce Adams ๐‘‘2 differentials up tohigher Cartan-Eilenberg filtration.

20

Page 21: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

Theorem 1.4.7 (Miller, [11, 6.1]). Suppose ๐‘ฅ โˆˆ ๐ป๐‘ ,๐‘ข(๐‘ƒ ;๐‘„๐‘ก). Use the identification

๐ป*(๐ด) = ๐ป*(๐‘ƒ ;๐‘„) to view ๐‘ฅ as lying in ๐ป๐‘ +๐‘ก,๐‘ข+๐‘ก(๐ด). Then we have

๐‘‘ASS2 ๐‘ฅ โˆˆ

๐‘ก+1โจ๐‘–โ‰ฅ0

๐ป๐‘ +๐‘–+1,๐‘ข+๐‘–(๐‘ƒ ;๐‘„๐‘กโˆ’๐‘–+1) โŠ‚ ๐ป๐‘ +๐‘ก+2,๐‘ข+๐‘ก+1(๐ด),

where the zero-th coordinate is ๐‘‘alg.NSS2 ๐‘ฅ โˆˆ ๐ป๐‘ +1,๐‘ข(๐‘ƒ ;๐‘„๐‘ก+1).

Moreover, the map ๐œ• : ๐ป*(๐‘ƒ ;๐‘„/๐‘žโˆž0 ) โˆ’โ†’ ๐ป*(๐‘ƒ ;๐‘„) is an isomorphism away from

low topological degrees, since ๐ป*(๐‘ƒ ; ๐‘žโˆ’10 ๐‘„) = F๐‘[๐‘žยฑ1

0 ] and we have the following result

concerning the localization map L.

Proposition 1.4.8. The localization map

๐ฟ : ๐ป๐‘ ,๐‘ข(๐‘ƒ ; [๐‘„/๐‘žโˆž0 ]๐‘ก) โˆ’โ†’ ๐ป๐‘ ,๐‘ข(๐‘ƒ ; [๐‘žโˆ’11 ๐‘„/๐‘žโˆž0 ]๐‘ก)

is an isomorphism if (๐‘ข+ ๐‘ก) < ๐‘(๐‘โˆ’ 1)(๐‘ + ๐‘ก)โˆ’ 2. In particular, the localization map

is an isomorphism above a line of slope 1/(๐‘2 โˆ’ ๐‘โˆ’ 1) when we plot elements in the

(๐‘ขโˆ’ ๐‘ , ๐‘ + ๐‘ก)-plane, the plane that corresponds to the usual way of drawing the Adams

spectral sequence.

The upshot of all of this is that as long as we are above a particular line of

slope 1/(๐‘2 โˆ’ ๐‘ โˆ’ 1), the ๐‘‘2 differentials in the loc.alg.NSS can be transferred to ๐‘‘2

differentials in the unlocalized spectral sequence (the alg.NSS), and using theorem

1.4.7 we obtain ๐‘‘2 differentials in the Adams spectral sequence. In fact, we can do

even better. Proposition 1.4.8 states the isomorphism range which one proves when

one chooses to use the bigrading (๐œŽ, ๐œ†) = (๐‘  + ๐‘ก, ๐‘ข + ๐‘ก). We can also prove a version

which makes full use of the trigrading (๐‘ , ๐‘ก, ๐‘ข) and this allows one to obtain more

information. In particular, it allows one to show that the bottom of a principal tower

in the Adams spectral sequence always supports ๐‘‘2 differentials which map to the last

side tower.

To complete the story we discuss the higher Adams differentials between principal

towers and their side towers. Looking at figure 1-1 one would hope to prove that if a

21

Page 22: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

principal tower has ๐‘› side towers, then the ๐‘—th side tower is the target for nontrivial

๐‘‘๐‘›โˆ’๐‘—+2 differentials. We have just addressed the case when ๐‘— = ๐‘› and one finds that in

the loc.alg.NSS everything goes as expected. The issue is that theorem 1.4.7 does not

exist for higher differentials. For instance, ๐‘‘alg.NSS2 ๐‘ฅ = 0, simply says that ๐‘‘ASS

2 ๐‘ฅ has

higher Cartan-Eilenberg filtration. In this case ๐‘‘alg.NSS3 ๐‘ฅ lives in the wrong trigrading

to give any more information about ๐‘‘ASS2 ๐‘ฅ. Instead, we set up and calculate a spectral

sequence which converges to the homotopy of the ๐‘ฃ1-periodic sphere spectrum

๐‘ฃโˆ’11 ๐‘†/๐‘โˆž = hocolim(. . . โˆ’โ†’ (๐‘ฃ๐‘

๐‘›โˆ’1

1 )โˆ’1๐‘†/๐‘๐‘›๐‘โˆ’โ†’ (๐‘ฃ๐‘

๐‘›

1 )โˆ’1๐‘†/๐‘๐‘›+1 โˆ’โ†’ . . .).

This is the localized Adams spectral sequence for the ๐‘ฃ1-periodic sphere (LASS-โˆž)

๐ป*(๐‘ƒ ; ๐‘žโˆ’11 ๐‘„/๐‘žโˆž0 ) =โ‡’ ๐œ‹*(๐‘ฃ

โˆ’11 ๐‘†/๐‘โˆž).

This spectral sequence behaves as one would like with respect to differentials between

principal towers and their side towers (i.e. in the same way as the loc.alg.NSS) and

moreover, the zig-zag of (1.4.5) consists of maps of spectral sequences, which enables

a comparison with the Adams spectral sequence. It is this calculation that allows

us to describe differentials of arbitrarily long length in the ASS. They come from

differentials between primary towers and side towers. We find such differentials in

the LASS-โˆž, sufficiently far above the line of slope 1/(๐‘2โˆ’ ๐‘โˆ’ 1), and transfer them

across to the ASS.

In order to set up the LASS-โˆž we prove an odd primary analog of a result of

Davis and Mahowald, which appears in [6]. This is of interest in its own right and we

state it below.

In [1] Adams shows that there is a CW spectrum ๐ต with one cell in each positive

dimension congruent to 0 or โˆ’1 modulo ๐‘ž = 2๐‘ โˆ’ 2 such that ๐ต โ‰ƒ (ฮฃโˆž๐ตฮฃ๐‘)(๐‘).

Denote the skeletal filtration by a superscript in square brackets. We use the following

notation.

Notation 1.4.9. For 1 โ‰ค ๐‘› โ‰ค ๐‘š let ๐ต๐‘š๐‘› = ๐ต[๐‘š๐‘ž]/๐ต[(๐‘›โˆ’1)๐‘ž].

22

Page 23: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

The following theorem allows a very particular construction of a ๐‘ฃ1 self-map for

๐‘†/๐‘๐‘›+1.

Theorem 1.4.10. The element ๐‘ž๐‘๐‘›โˆ’๐‘›โˆ’1

0 โ„Ž1,๐‘› โˆˆ ๐ป๐‘๐‘›โˆ’๐‘›,๐‘๐‘›(๐‘ž+1)โˆ’๐‘›โˆ’1(๐ด) is a permanent

cycle in the Adams spectral sequence represented by a map

๐›ผ : ๐‘†๐‘๐‘›๐‘žโˆ’1 ๐‘– // ๐ต๐‘๐‘›

๐‘๐‘›โˆ’๐‘›๐‘“ // ๐ต๐‘๐‘›โˆ’1

๐‘๐‘›โˆ’๐‘›โˆ’1// . . . // ๐ต๐‘›+2

2

๐‘“ // ๐ต๐‘›+11

๐‘ก // ๐‘†0.

Here, ๐‘– comes from the fact that the top cell of ๐ต[๐‘๐‘›๐‘žโˆ’1]/๐ต[(๐‘๐‘›โˆ’๐‘›โˆ’1)๐‘žโˆ’1] splits off, ๐‘ก

is obtained from the transfer map ๐ตโˆž1 โˆ’โ†’ ๐‘†0, and each ๐‘“ is got by factoring a

multiplication-by-๐‘ map.

Moreover, there is an element โˆˆ ๐œ‹๐‘๐‘›๐‘ž(๐‘†/๐‘๐‘›+1) whose image in ๐ต๐‘ƒ๐‘๐‘›๐‘ž(๐‘†/๐‘) is

๐‘ฃ๐‘๐‘›

1 , and whose desuspension maps to ๐›ผ under

๐œ‹๐‘๐‘›๐‘žโˆ’1(ฮฃโˆ’1๐‘†/๐‘๐‘›+1) โˆ’โ†’ ๐œ‹๐‘๐‘›๐‘žโˆ’1(๐‘†

0).

1.5 Outline of thesis

Chapter 2 is an expository chapter on spectral sequences. A correspondence approach

is presented, terminology is defined, and we say what it means for a spectral sequence

to converge. In chapter 3 we introduce all the Bockstein spectral sequences that we

use and prove their important properties, namely, that differentials in the ๐‘„-BSS and

the ๐‘žโˆž0 -BSS coincide, and that the differentials in the ๐‘žโˆ’11 -BSS are derivations.

Chapter 4 contains our first important result. After finding some vanishing lines

we examine the range in which the localization map๐ป*(๐‘ƒ ;๐‘„/๐‘žโˆž0 )โ†’ ๐ป*(๐‘ƒ ; ๐‘žโˆ’11 ๐‘„/๐‘žโˆž0 )

is an isomorphism. We do this from a trigraded and a bigraded perspective.

Chapter 5 contains our main results. We calculate the ๐‘žโˆ’11 -BSS and find some

differentials in the ๐‘„-BSS. We address the family of differentials corresponding to the

principal towers using an explicit argument with cocycles. The family of differentials

corresponding to the side towers is obtained using a Kudo transgression theorem. A

combinatorial argument gives the ๐ธโˆž-page of the ๐‘žโˆ’11 -BSS.

23

Page 24: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

Chapter 6 contains the calculation of the localized algebraic Novikov spectral se-

quence. The key ingredients for the calculation are the combinatorics used to describe

the ๐ธโˆž-page of the ๐‘žโˆ’11 -BSS and Millerโ€™s calculation of the ๐‘ฃ1-algebraic Novikov spec-

tral sequence.

In chapter 7 we construct representatives for some permanent cycles in the Adams

spectral sequence using the geometry of stunted projective spaces and the transfer

map.

In chapter 8 we set up the localized Adams spectral sequence for the ๐‘ฃ1-periodic

sphere (LASS-โˆž), calculate it, and demonstrate the consequences the calculation

has for the Adams spectral sequence for the sphere. Along the way we construct

a modified Adams spectral sequence for the mod ๐‘๐‘› Moore spectrum and the Prรผfer

sphere. We lift the permanent cycles of the previous chapter to permanent cycles in

these spectral sequences and we complete the proof of the last theorem stated in the

introduction.

In the appendices we construct various maps of spectral sequences and check the

convergence of our spectral sequences.

24

Page 25: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

Chapter 2

Spectral sequence terminology

Spectral sequences are used in abundance throughout this thesis. Graduate students

in topology often live in fear of spectral sequences and so we take this opportunity to

give a presentation of spectral sequences, which, we hope, shows that they are not all

that bad. We also fix the terminology which is used throughout the rest of the thesis.

All of this chapter is expository. Everything we say is surely documented in [3].

2.1 A correspondence approach

The reader is probably familiar with the notion of an exact couple which is one of the

most common ways in which a spectral sequence arises.

Definition 2.1.1. An exact couple consists of abelian groups ๐ด and ๐ธ together with

homomorphisms ๐‘–, ๐‘— and ๐‘˜ such that the following triangle is exact.

๐ด

๐‘—

๐ด๐‘–oo

๐ธ

๐‘˜

;;

Given an exact couple, one can form the associated derived exact couple. Iterating

this process gives rise to a spectral sequence. Experience has led the author to

conclude that, although this inductive definition is slick, it disguises some of the

25

Page 26: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

important features that spectral sequences have and which are familiar to those who

work with them on a daily basis. Various properties become buried in the induction

and the author feels that first time users should not have to struggle for long periods

of time to discover these properties however rewarding that process might be.

An alternative approach exploits correspondences. A correspondence ๐‘“ : ๐บ1 โˆ’โ†’

๐บ2 is a subgroup ๐‘“ โŠ‚ ๐บ1 ร— ๐บ2. The images of ๐‘“ under the projection maps are the

domain dom(๐‘“) and the image im(๐‘“) of the correspondence. We can also define the

kernel of a correspondence ker (๐‘“) โŠ‚ dom(๐‘“).

We will find that the picture becomes clearer, especially once gradings are intro-

duced, when we spread out the exact couple:

. . . ๐ดoo

๐ดoo . . .๐‘–oo ๐ด๐‘–oo

๐‘—

. . .oo

๐ธ

๐‘˜

;;

๐ธ

Let ๐œ‹ : ๐ธร—๐ดร—๐ดร—๐ธ โˆ’โ†’ ๐ธร—๐ธ be the projection map. Then we make the following

definitions.

Definition 2.1.2. For each ๐‘Ÿ โ‰ฅ 1 let

๐‘‘๐‘Ÿ = (๐‘ฅ, , ๐‘ฆ, ๐‘ฆ) โˆˆ ๐ธ ร— ๐ดร— ๐ดร— ๐ธ : ๐‘˜๐‘ฅ = = ๐‘–๐‘Ÿโˆ’1๐‘ฆ and ๐‘—๐‘ฆ = ๐‘ฆ

and ๐‘‘๐‘Ÿ = ๐œ‹( ๐‘‘๐‘Ÿ). Let ๐‘‘0 = ๐ธ ร— 0 โŠ‚ ๐ธ ร— ๐ธ.

. . .๐‘–oo ๐‘ฆ๐‘–oo_

๐‘—

๐‘ฅ

8๐‘˜

;;

๐‘ฆ

Since ๐‘–, ๐‘—, ๐‘˜ and ๐œ‹ are homomorphisms of abelian groups ๐‘‘๐‘Ÿ and ๐‘‘๐‘Ÿ are subgroups of

๐ธร—๐ดร—๐ดร—๐ธ and ๐ธร—๐ธ, respectively. In particular, ๐‘‘๐‘Ÿ : ๐ธ โˆ’โ†’ ๐ธ is a correspondence.

We note that ๐‘‘0 is the zero homomorphism and that ๐‘‘1 = ๐‘—๐‘˜.

26

Page 27: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

Notation 2.1.3. We write ๐‘‘๐‘Ÿ๐‘ฅ = ๐‘ฆ if (๐‘ฅ, ๐‘ฆ) โˆˆ ๐‘‘๐‘Ÿ.

We have the following useful observations.

Lemma 2.1.4.

1. For ๐‘Ÿ โ‰ฅ 1, ๐‘‘๐‘Ÿ๐‘ฅ is defined if and only if ๐‘‘๐‘Ÿโˆ’1๐‘ฅ = 0, i.e.

(๐‘ฅ, 0) โˆˆ ๐‘‘๐‘Ÿโˆ’1 โ‡โ‡’ โˆƒ๐‘ฆ : (๐‘ฅ, ๐‘ฆ) โˆˆ ๐‘‘๐‘Ÿ.

2. For ๐‘Ÿ โ‰ฅ 1, ๐‘‘๐‘Ÿ0 = ๐‘ฆ if and only if there exists an ๐‘ฅ with ๐‘‘๐‘Ÿโˆ’1๐‘ฅ = ๐‘ฆ, i.e.

(0, ๐‘ฆ) โˆˆ ๐‘‘๐‘Ÿ โ‡โ‡’ โˆƒ๐‘ฅ : (๐‘ฅ, ๐‘ฆ) โˆˆ ๐‘‘๐‘Ÿโˆ’1.

We note that the first part of the lemma says that dom(๐‘‘๐‘Ÿ) = ker (๐‘‘๐‘Ÿโˆ’1) for ๐‘Ÿ โ‰ฅ 1.

The second part of the lemma has the following corollary.

Corollary 2.1.5. For ๐‘Ÿ โ‰ฅ 1, the following conditions are equivalent:

1. ๐‘‘๐‘Ÿ๐‘ฅ = ๐‘ฆ and ๐‘‘๐‘Ÿ๐‘ฅ = ๐‘ฆโ€ฒ;

2. ๐‘‘๐‘Ÿ๐‘ฅ = ๐‘ฆ and there exists an ๐‘ฅโ€ฒ with ๐‘‘๐‘Ÿโˆ’1๐‘ฅโ€ฒ = ๐‘ฆโ€ฒ โˆ’ ๐‘ฆ.

It is also immediate from the definitions that the following lemma holds.

Lemma 2.1.6. Suppose ๐‘Ÿ โ‰ฅ 1 and that ๐‘‘๐‘Ÿ๐‘ฅ = ๐‘ฆ. Then ๐‘‘๐‘ ๐‘ฆ = 0 for any ๐‘  โ‰ฅ 1.

Spectral sequences consist of pages.

Definition 2.1.7. For ๐‘Ÿ โ‰ฅ 1, let ๐ธ๐‘Ÿ = ker ๐‘‘๐‘Ÿโˆ’1/ im ๐‘‘๐‘Ÿโˆ’1. This is the ๐‘Ÿth page of the

spectral sequence.

One is often taught that a spectral sequence begins with an ๐ธ1 or ๐ธ2-page and

that one obtains successive pages by calculating differentials and taking homology.

We relate our correspondence approach to this one presently.

27

Page 28: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

We have a surjection ๐ธ๐‘Ÿ โˆ’โ†’ ker ๐‘‘๐‘Ÿโˆ’1/โ‹ƒ๐‘  im ๐‘‘๐‘ , an injection

โ‹‚๐‘  ker ๐‘‘๐‘ / im ๐‘‘๐‘Ÿโˆ’1 โˆ’โ†’

๐ธ๐‘Ÿ, and the preceding lemmas show that ๐‘‘๐‘Ÿ defines a homomorphism allowing us to

form the following composite which, for now, we call ๐›ฟ๐‘Ÿ.

๐ธ๐‘Ÿ โˆ’โ†’ ker ๐‘‘๐‘Ÿโˆ’1/โ‹ƒ๐‘ 

im ๐‘‘๐‘  โˆ’โ†’โ‹‚๐‘ 

ker ๐‘‘๐‘ / im ๐‘‘๐‘Ÿโˆ’1 โˆ’โ†’ ๐ธ๐‘Ÿ.

We have an identification of the ๐ธ๐‘Ÿ+1-page as the homology of the ๐ธ๐‘Ÿ-page with

respect to the differential ๐›ฟ๐‘Ÿ. We will blur the distinction between the correspondence

๐‘‘๐‘Ÿ and the differential ๐›ฟ๐‘Ÿ, calling them both ๐‘‘๐‘Ÿ.

We note that the ๐ธ1 page is ๐ธ. Our Bockstein spectral sequences have convenient

descriptions from the ๐ธ1-page and so we use the correspondence approach. Conse-

quently, all our differentials will be written in terms of elements on the ๐ธ1-page. Our

topological spectral sequences have better descriptions from the ๐ธ2-page. The corre-

spondence approach also allows us to write all our formulae in terms of elements of

the ๐ธ2-pages.

Here is some terminology that we will use freely throughout this thesis.

Definition 2.1.8. Suppose ๐‘‘๐‘Ÿ๐‘ฅ = ๐‘ฆ. Then ๐‘ฅ is said to survive to the ๐ธ๐‘Ÿ-page and

support a ๐‘‘๐‘Ÿ differential. ๐‘ฆ is said to be the target of a ๐‘‘๐‘Ÿ differential, to be hit by a

๐‘‘๐‘Ÿ differential, and to be a boundary. If, in addition, ๐‘ฆ /โˆˆ im ๐‘‘๐‘Ÿโˆ’1, then the differential

is said to be nontrivial and ๐‘ฅ is said to support a nontrivial differential.

Definition 2.1.9. Elements ofโ‹‚๐‘  ker ๐‘‘๐‘  are called permanent cycles.

We write ๐ธโˆž forโ‹‚๐‘  ker ๐‘‘๐‘ /

โ‹ƒ๐‘  im ๐‘‘๐‘ , permanent cycles modulo boundaries, the

๐ธโˆž-page of the spectral sequence.

Note that lemma 2.1.6 says that targets of differentials are permanent cycles or,

said another way, elements that are hit by a differential survive to all pages of the

spectral sequence. In particular, note that we use the word hit, not kill.

28

Page 29: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

2.2 Convergence

The purpose of a spectral sequence is to give a procedure to calculate an abelian

group of interest ๐‘€ . This procedure can be viewed as having three steps, which we

outline below, but first, we give some terminology.

Definition 2.2.1. A filtration of an abelian group ๐‘€ is a sequence of subgroups

๐‘€ โŠƒ . . . โŠƒ ๐น ๐‘ โˆ’1๐‘€ โŠƒ ๐น ๐‘ ๐‘€ โŠƒ ๐น ๐‘ +1๐‘€ โŠƒ . . . โŠƒ 0, ๐‘  โˆˆ Z.

The associated graded abelian group corresponding to this filtration is the graded

abelian groupโจ

๐‘ โˆˆZ ๐น๐‘ ๐‘€/๐น ๐‘ +1๐‘€ .

The ๐ธโˆž-page of a spectral sequence should tell us about the associated graded of

an abelian group ๐‘€ we are trying to calculate. In particular, the ๐ธโˆž-page should be

Z-graded, so we consider the story described in the previous section, with the added

assumption that ๐ด and ๐ธ have a Z-grading ๐‘ , that ๐‘– : ๐ด๐‘ +1 โˆ’โ†’ ๐ด๐‘ , ๐‘— : ๐ด๐‘  โˆ’โ†’ ๐ธ๐‘ 

and ๐‘˜ : ๐ธ๐‘  โˆ’โ†’ ๐ด๐‘ +1. We can redraw the exact couple as follows.

. . . ๐ด๐‘ oo

๐ด๐‘ +1oo . . .

๐‘–oo ๐ด๐‘ +๐‘Ÿ๐‘–oo

๐‘—

. . .oo

๐ธ๐‘ 

๐‘˜

::

๐ธ๐‘ +๐‘Ÿ

We see that ๐‘‘๐‘Ÿ has degree ๐‘Ÿ and so ๐ธโˆž becomes Z-graded. In all the cases we consider

in the thesis the abelian group ๐‘€ we are trying to calculate will be either the limit

or colimit of the directed system ๐ด๐‘ ๐‘ โˆˆZ.

We now describe the way in which a spectral sequence can be used to calculate

an abelian group ๐‘€ .

1. Define a filtration of ๐‘€ and an identification ๐ธ๐‘ โˆž = ๐น ๐‘ ๐‘€/๐น ๐‘ +1๐‘€ between the

๐ธโˆž-page of the spectral sequence and the associated graded of ๐‘€ .

2. Resolve extension problems. Depending on circumstances this will give us either

๐น ๐‘ ๐‘€ for each ๐‘  or ๐‘€/๐น ๐‘ ๐‘€ for each ๐‘ .

29

Page 30: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

3. Recover ๐‘€ . Depending on circumstances this will either be via an isomorphism

๐‘€ โˆ’โ†’ lim๐‘ ๐‘€/๐น ๐‘ ๐‘€ or an isomorphism colim๐‘ ๐น๐‘ ๐‘€ โˆ’โ†’๐‘€ .

In all the cases we consider, ๐‘€ will be graded and the filtration will respect this

grading. Thus, the associated graded will be bigraded. Correspondingly, the exact

couple will be bigraded. There are three cases which arise for us. We highlight how

each affects the procedure above.

1. Each case is determined by the way in which the filtration behaves.

(a) ๐น 0๐‘€ = ๐‘€ andโ‹‚๐น ๐‘ ๐‘€ = 0.

(b) ๐น 0๐‘€ = 0 andโ‹ƒ๐น ๐‘ ๐‘€ = ๐‘€ .

(c)โ‹ƒ๐น ๐‘ ๐‘€ = ๐‘€ and keeping track of the additional gradings the identifica-

tion in the first part of the procedure becomes ๐ธ๐‘ ,๐‘กโˆž = ๐น ๐‘ ๐‘€๐‘กโˆ’๐‘ /๐น

๐‘ +1๐‘€๐‘กโˆ’๐‘ ;

moreover, for each ๐‘ข there exists an ๐‘  such that ๐น ๐‘ ๐‘€๐‘ข = 0.

2. The way in which we would go about resolving extension problems varies ac-

cording to which case we are in.

(a) ๐‘€/๐น 0๐‘€ = 0 so suppose that we know ๐‘€/๐น ๐‘ ๐‘€ where ๐‘  โ‰ฅ 0. The first

part of the procedure gives us ๐น ๐‘ ๐‘€/๐น ๐‘ +1๐‘€ and so resolving an extension

problem gives ๐‘€/๐น ๐‘ +1๐‘€ . By induction, we know ๐‘€/๐น ๐‘ ๐‘€ for all ๐‘ .

(b) ๐น 0๐‘€ = 0 so suppose that we know ๐น ๐‘ +1๐‘€ where ๐‘  < 0. The first part of

the procedure gives us ๐น ๐‘ ๐‘€/๐น ๐‘ +1๐‘€ and so resolving an extension problem

gives ๐น ๐‘ ๐‘€ . By induction, we know ๐น ๐‘ ๐‘€ for all ๐‘ .

(c) This is similar to (2b). Fixing ๐‘ข, there exists an ๐‘ 0 with ๐น ๐‘ 0๐‘€๐‘ข = 0. Sup-

pose that we know ๐น ๐‘ +1๐‘€๐‘ข where ๐‘  < ๐‘ 0. The first part of the procedure

gives us ๐น ๐‘ ๐‘€๐‘ข/๐น๐‘ +1๐‘€๐‘ข and so resolving an extension problem gives ๐น ๐‘ ๐‘€๐‘ข.

By induction, we know ๐น ๐‘ ๐‘€๐‘ข for all ๐‘ . We can now vary ๐‘ข.

3. In case (๐‘Ž) we need an isomorphism ๐‘€ โˆ’โ†’ lim๐‘ ๐‘€/๐น ๐‘ ๐‘€ . In cases (๐‘) and (๐‘)

we have an isomorphism colim๐‘ ๐น๐‘ ๐‘€ โˆ’โ†’๐‘€ .

30

Page 31: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

When we say that our spectral sequences converge we ignore whether or not we

can resolve the extension problems. This is paralleled by the fact that, when making

such a statement, we ignore whether or not it is possible to calculate the differentials

in the spectral sequence. The point is, that theoretically, both of these issues can be

overcome even if it is extremely difficult to do so in practice. We conclude that the

important statements for convergence are given in stages (1) and (3) of our procedure

and we make the requisite definition.

Definition 2.2.2. Suppose given a graded abelian group ๐‘€ and a spectral sequence

๐ธ** . Suppose that ๐‘€ is filtered, that we have an identification ๐ธ๐‘ 

โˆž = ๐น ๐‘ ๐‘€/๐น ๐‘ +1๐‘€

and that one of the following conditions holds.

1. ๐น 0๐‘€ = ๐‘€ ,โ‹‚๐น ๐‘ ๐‘€ = 0 and the natural map ๐‘€ โ†’ lim๐‘ ๐‘€/๐น ๐‘ ๐‘€ is an isomor-

phism.

2. ๐น 0๐‘€ = 0 andโ‹ƒ๐น ๐‘ ๐‘€ = ๐‘€ .

3.โ‹ƒ๐น ๐‘ ๐‘€ = ๐‘€ , if we keep track of the additional gradings then we have ๐ธ๐‘ ,๐‘ก

โˆž =

๐น ๐‘ ๐‘€๐‘กโˆ’๐‘ /๐น๐‘ +1๐‘€๐‘กโˆ’๐‘ , and for each ๐‘ข there exists an ๐‘  such that ๐น ๐‘ ๐‘€๐‘ข = 0.

Then the spectral sequence is said to converge and we write ๐ธ๐‘ 1

๐‘ =โ‡’ ๐‘€ or ๐ธ๐‘ 

2๐‘ 

=โ‡’ ๐‘€

depending on which page of the spectral sequence has the more concise description.

It would appear that the notation ๐ธ๐‘ 1

๐‘ =โ‡’ ๐‘€ is over the top since ๐‘  appears twice,

but once other gradings are recorded it is the ๐‘  above the โ€œ =โ‡’ โ€ that indicates the

filtration degree.

Suppose that ๐ธ๐‘ 1

๐‘ =โ‡’ ๐‘€ (or equivalently ๐ธ๐‘ 

2๐‘ 

=โ‡’ ๐‘€). We have some terminol-

ogy to describe the relationship between permanent cycles and elements of ๐‘€ .

Definition 2.2.3. Suppose that ๐‘ฅ is a permanent cycle defined in ๐ธ๐‘ ๐‘Ÿ (usually ๐‘Ÿ = 1

or ๐‘Ÿ = 2) and ๐‘ง โˆˆ ๐น ๐‘ ๐‘€ . Then we say that ๐‘ฅ detects ๐‘ง or that ๐‘ง represents ๐‘ฅ, to mean

that the image of ๐‘ฅ in ๐ธ๐‘ โˆž and the image of ๐‘ง in ๐น ๐‘ ๐‘€/๐น ๐‘ +1๐‘€ correspond under the

given identification ๐ธ๐‘ โˆž = ๐น ๐‘ ๐‘€/๐น ๐‘ +1๐‘€ .

Suppose that ๐‘ฅ โˆˆ ๐ธ๐‘ ๐‘Ÿ detects ๐‘ง โˆˆ ๐น ๐‘ ๐‘€ . Notice that ๐‘ฅ is a boundary if and only

if ๐‘ง โˆˆ ๐น ๐‘ +1๐‘€ .

31

Page 32: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

THIS PAGE INTENTIONALLY LEFT BLANK

32

Page 33: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

Chapter 3

Bockstein spectral sequences

In this chapter, we set up all the Bockstein spectral sequences used in this thesis and

prove the properties that we require of them.

3.1 The Hopf algebra ๐‘ƒ and some ๐‘ƒ -comodules

Throughout this thesis ๐‘ is an odd prime.

Definition 3.1.1. Let ๐‘ƒ denote the polynomial algebra over F๐‘ on the Milnor gen-

erators ๐œ‰๐‘› : ๐‘› โ‰ฅ 1 where |๐œ‰๐‘›| = 2๐‘๐‘› โˆ’ 2. ๐‘ƒ is a Hopf algebra when equipped with

the Milnor diagonal

๐‘ƒ โˆ’โ†’ ๐‘ƒ โŠ— ๐‘ƒ, ๐œ‰๐‘› โ†ฆโˆ’โ†’๐‘›โˆ‘๐‘–=0

๐œ‰๐‘๐‘–

๐‘›โˆ’๐‘– โŠ— ๐œ‰๐‘–, (๐œ‰0 = 1).

Definition 3.1.2. Let ๐‘„ denote the polynomial algebra over F๐‘ on the generators

๐‘ž๐‘› : ๐‘› โ‰ฅ 0 where |๐‘ž๐‘›| = 2๐‘๐‘› โˆ’ 2. ๐‘„ is an algebra in ๐‘ƒ -comodules when equipped

with the coaction map

๐‘„ โˆ’โ†’ ๐‘ƒ โŠ—๐‘„, ๐‘ž๐‘› โ†ฆโˆ’โ†’๐‘›โˆ‘๐‘–=0

๐œ‰๐‘๐‘–

๐‘›โˆ’๐‘– โŠ— ๐‘ž๐‘–.

We write ๐‘„๐‘ก for the sub-๐‘ƒ -comodule consisting of monomials of length ๐‘ก.

Note that the multiplication on ๐‘„ is commutative, which is the same as graded

33

Page 34: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

commutative since everything lives in even degrees. We shall see later that ๐‘ก is the

Novikov weight. Miller [10] also refers to ๐‘ก as the Cartan degree.

๐‘ž0 is a ๐‘ƒ -comodule primitive and so ๐‘„/๐‘ž0 and ๐‘žโˆ’10 ๐‘„ are ๐‘ƒ -comodules.

Definition 3.1.3. Define๐‘„/๐‘žโˆž0 by the following short exact sequence of ๐‘ƒ -comodules.

0 // ๐‘„ // ๐‘žโˆ’10 ๐‘„ // ๐‘„/๐‘žโˆž0 // 0

๐‘„/๐‘žโˆž0 is a ๐‘„-module in ๐‘ƒ -comodules.

We find that ๐‘ž1 โˆˆ ๐‘„/๐‘ž0 is a comodule primitive so we may define ๐‘žโˆ’11 ๐‘„/๐‘ž0 which

is an algebra in ๐‘ƒ -comodules. We may also define ๐‘žโˆ’11 ๐‘„/๐‘žโˆž0 , a ๐‘„-module in ๐‘ƒ -

comodules, but this requires a more sophisticated construction, which we now outline.

Definition 3.1.4. For ๐‘› โ‰ฅ 1, ๐‘€๐‘› is the sub-๐‘ƒ -comodule of ๐‘„/๐‘žโˆž0 defined by the

following short exact sequence of ๐‘ƒ -comodules. ๐‘€๐‘› is a ๐‘„-module in ๐‘ƒ -comodules.

0 // ๐‘„ // ๐‘„โŸจ๐‘žโˆ’๐‘›0 โŸฉ //๐‘€๐‘›// 0.

Lemma 3.1.5. ๐‘ž๐‘๐‘›โˆ’1

1 : ๐‘€๐‘› โˆ’โ†’๐‘€๐‘› is a homomorphism of ๐‘„-modules in ๐‘ƒ -comodules.

Definition 3.1.6. For each ๐‘˜ โ‰ฅ 0 let ๐‘€๐‘›(๐‘˜) = ๐‘€๐‘›. ๐‘žโˆ’11 ๐‘€๐‘› is defined to be the

colimit of the following diagram.

๐‘€๐‘›(0)๐‘ž๐‘

๐‘›โˆ’1

1 //๐‘€๐‘›(1)๐‘ž๐‘

๐‘›โˆ’1

1 //๐‘€๐‘›(2)๐‘ž๐‘

๐‘›โˆ’1

1 //๐‘€๐‘›(3)๐‘ž๐‘

๐‘›โˆ’1

1 // . . .

Definition 3.1.7. We have homomorphisms ๐‘žโˆ’11 ๐‘€๐‘› โˆ’โ†’ ๐‘žโˆ’1

1 ๐‘€๐‘›+1 induced by the

inclusions ๐‘€๐‘› โˆ’โ†’๐‘€๐‘›+1. ๐‘žโˆ’11 ๐‘„/๐‘žโˆž0 is defined to be the colimit of following diagram.

๐‘žโˆ’11 ๐‘€1

// ๐‘žโˆ’11 ๐‘€2

// ๐‘žโˆ’11 ๐‘€3

// ๐‘žโˆ’11 ๐‘€4

// . . .

Notation 3.1.8. If Q is a ๐‘ƒ -comodule then we write ฮฉ*(๐‘ƒ ;Q) for the cobar con-

struction on ๐‘ƒ with coefficients in Q. In particular, we have

ฮฉ๐‘ (๐‘ƒ ;Q) = ๐‘ƒโŠ—๐‘  โŠ—Q

34

Page 35: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

where ๐‘ƒ = F๐‘ โŠ• ๐‘ƒ as F๐‘-modules. We write [๐‘1| . . . |๐‘๐‘ ]๐‘ž for ๐‘1 โŠ— . . .โŠ— ๐‘๐‘  โŠ— ๐‘ž. We set

ฮฉ*๐‘ƒ = ฮฉ*(๐‘ƒ ;F๐‘).

We recall (see [10, pg. 75]) that the differentials are given by an alternating sum

making use of the diagonal and coaction maps. We also recall that if Q is an algebra in

๐‘ƒ -comodules then ฮฉ*(๐‘ƒ ;Q) is a DG-F๐‘-algebra; if Qโ€ฒ is a Q-module in ๐‘ƒ -comodules

then ฮฉ*(๐‘ƒ ;Qโ€ฒ) is a DG-ฮฉ*(๐‘ƒ ;Q)-module.

Definition 3.1.9. If Q is a ๐‘ƒ -comodule then๐ป*(๐‘ƒ ;Q) is the cohomology of ฮฉ*(๐‘ƒ ;Q).

We remark that in our setting ๐ป*(๐‘ƒ ;Q) will always have three gradings. There

is the cohomological grading ๐‘ . ๐‘ƒ and its comodules are graded and so we have an

internal degree ๐‘ข. The Novikov weight ๐‘ก on ๐‘„ persists to ๐‘„/๐‘ž0, ๐‘žโˆ’10 ๐‘„, ๐‘„/๐‘žโˆž0 , ๐‘žโˆ’1

1 ๐‘„/๐‘ž0,

and ๐‘žโˆ’11 ๐‘„/๐‘žโˆž0 .

Later on, we will use an algebraic Novikov spectral sequence. From this point of

view, right ๐‘ƒ -comodules are more natural (see [2], for instance). However, Millerโ€™s

paper [10] is such a strong source of guidance for this work that we choose to use left

๐‘ƒ -comodules as he does there.

3.2 The ๐‘„-Bockstein spectral sequence (๐‘„-BSS)

Applying ๐ป*(๐‘ƒ ;โˆ’) to the short exact sequence of ๐‘ƒ -comodules

0 // ๐‘„๐‘ž0 // ๐‘„ // ๐‘„/๐‘ž0 // 0

gives a long exact sequence. We also have a trivial long exact sequence consisting of

the zero group every three terms and ๐ป*(๐‘ƒ ;๐‘„) elsewhere. Intertwining these long

exact sequences gives an exact couple, the nontrivial part, of which, looks as follows

35

Page 36: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

(๐‘ฃ โ‰ฅ 0).

๐ป๐‘ ,๐‘ข(๐‘ƒ ;๐‘„๐‘กโˆ’๐‘ฃ)

๐ป๐‘ ,๐‘ข(๐‘ƒ ;๐‘„๐‘กโˆ’๐‘ฃโˆ’1)oo . . .๐‘ž0oo ๐ป๐‘ ,๐‘ข(๐‘ƒ ;๐‘„๐‘กโˆ’๐‘ฃโˆ’๐‘Ÿ)

๐‘ž0oo

๐ป๐‘ ,๐‘ข(๐‘ƒ ; [๐‘„/๐‘ž0]

๐‘กโˆ’๐‘ฃ)โŸจ๐‘ž๐‘ฃ0โŸฉ

๐œ•

66

๐ป๐‘ ,๐‘ข(๐‘ƒ ; [๐‘„/๐‘ž0]๐‘กโˆ’๐‘ฃโˆ’๐‘Ÿ)โŸจ๐‘ž๐‘ฃ+๐‘Ÿ0 โŸฉ

Here ๐œ• raises the degree of ๐‘  by one relative to what is indicated and the powers

of ๐‘ž0 are used to distinguish copies of ๐ป*(๐‘ƒ ;๐‘„/๐‘ž0) from one another.

Definition 3.2.1. The spectral sequence arising from this exact couple is called the

๐‘„-Bockstein spectral sequence (๐‘„-BSS). It has ๐ธ1-page given by

๐ธ๐‘ ,๐‘ก,๐‘ข,๐‘ฃ1 (๐‘„-BSS) =

โŽงโŽชโŽจโŽชโŽฉ๐ป๐‘ ,๐‘ข(๐‘ƒ ; [๐‘„/๐‘ž0]

๐‘กโˆ’๐‘ฃ)โŸจ๐‘ž๐‘ฃ0โŸฉ if ๐‘ฃ โ‰ฅ 0

0 if ๐‘ฃ < 0

and ๐‘‘๐‘Ÿ has degree (1, 0, 0, ๐‘Ÿ).

The spectral sequence converges to ๐ป*(๐‘ƒ ;๐‘„) and the filtration degree is given by

๐‘ฃ. In particular, we have an identification

๐ธ๐‘ ,๐‘ก,๐‘ข,๐‘ฃโˆž (๐‘„-BSS) = ๐น ๐‘ฃ๐ป๐‘ ,๐‘ข(๐‘ƒ ;๐‘„๐‘ก)/๐น ๐‘ฃ+1๐ป๐‘ ,๐‘ข(๐‘ƒ ;๐‘„๐‘ก)

where ๐น ๐‘ฃ๐ป*(๐‘ƒ ;๐‘„) = im(๐‘ž๐‘ฃ0 : ๐ป*(๐‘ƒ ;๐‘„) โˆ’โ†’ ๐ป*(๐‘ƒ ;๐‘„)) for ๐‘ฃ โ‰ฅ 0. The identification

is given by lifting an element of ๐น ๐‘ฃ๐ป*(๐‘ƒ ;๐‘„) to the ๐‘ฃth copy of ๐ป*(๐‘ƒ ;๐‘„) and mapping

this lift down to ๐ป*(๐‘ƒ ;๐‘„/๐‘ž0)โŸจ๐‘ž๐‘ฃ0โŸฉ to give a permanent cycle.

Remark 3.2.2. One can describe the ๐ธ1-page of the ๐‘„-BSS more concisely as the

algebra ๐ป*(๐‘ƒ ;๐‘„/๐‘ž0)[๐‘ž0]. The first three gradings (๐‘ , ๐‘ก, ๐‘ข) are obtained from the grad-

ings on the elements of ๐ป*(๐‘ƒ ;๐‘„/๐‘ž0) and ๐‘ž0; the adjoined polynomial generator ๐‘ž0 has

๐‘ฃ-grading 1, whereas elements of ๐ป*(๐‘ƒ ;๐‘„/๐‘ž0) have ๐‘ฃ-grading 0.

Notation 3.2.3. Suppose ๐‘ฅ, ๐‘ฆ โˆˆ ๐ป*(๐‘ƒ ;๐‘„/๐‘ž0). We write ๐‘‘๐‘Ÿ๐‘ฅ = ๐‘ฆ to mean that for

every ๐‘ฃ โ‰ฅ 0, ๐‘ž๐‘ฃ0๐‘ฅ survives to the ๐ธ๐‘Ÿ-page, ๐‘ž๐‘ฃ0๐‘ฆ is a permanent cycle, and ๐‘‘๐‘Ÿ๐‘ž๐‘ฃ0๐‘ฅ =

36

Page 37: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

๐‘ž๐‘ฃ+๐‘Ÿ0 ๐‘ฆ. In this case, ๐‘ฅ is said to support a ๐‘‘๐‘Ÿ differential. If one of the differentials

๐‘‘๐‘Ÿ๐‘ž๐‘ฃ0๐‘ฅ = ๐‘ž๐‘ฃ+๐‘Ÿ0 ๐‘ฆ is nontrivial, then ๐‘ฅ is said to support a nontrivial differential.

Lemma 3.2.4. Suppose ๐‘ฅ, ๐‘ฆ โˆˆ ๐ป*(๐‘ƒ ;๐‘„/๐‘ž0). Then ๐‘‘๐‘Ÿ๐‘ฅ = ๐‘ฆ in the ๐‘„-BSS if and only

if there exist ๐‘Ž and ๐‘ in ฮฉ*(๐‘ƒ ;๐‘„) with ๐‘‘๐‘Ž = ๐‘ž๐‘Ÿ0๐‘ such that their images in ฮฉ*(๐‘ƒ ;๐‘„/๐‘ž0)

are cocycles representing ๐‘ฅ and ๐‘ฆ, respectively.

Proof. Suppose that ๐‘‘๐‘Ÿ๐‘ฅ = ๐‘ฆ in the ๐‘„-BSS. By definition 2.1.2 there exist and ๐‘ฆ

fitting into the following diagram.

๐ป๐‘ +1,๐‘ข(๐‘ƒ ;๐‘„๐‘กโˆ’1) . . .๐‘ž0oo ๐ป๐‘ +1,๐‘ข(๐‘ƒ ;๐‘„๐‘กโˆ’๐‘Ÿ)

๐‘ž0oo

๐ป๐‘ ,๐‘ข(๐‘ƒ ; [๐‘„/๐‘ž0]

๐‘ก))

๐œ•

77

๐ป๐‘ +1,๐‘ข(๐‘ƒ ; [๐‘„/๐‘ž0]๐‘กโˆ’๐‘Ÿ)

. . .๐‘ž0oo ๐‘ฆ๐‘ž0oo_

๐‘ฅ

.

๐œ•

66

๐‘ฆ

Let ๐ด โˆˆ ฮฉ*(๐‘ƒ ;๐‘„/๐‘ž0) be a representative for ๐‘ฅ and ๐ต โˆˆ ฮฉ*(๐‘ƒ ;๐‘„) be a representative

for ๐‘ฆ. There exists an ๐ด โˆˆ ฮฉ*(๐‘ƒ ;๐‘„) representing , and an ๐‘Žโ€ฒ and ๐›ผโ€ฒ fitting into the

following diagram.

ฮฉ*(๐‘ƒ ;๐‘„)๐‘ž0 //

ฮฉ*(๐‘ƒ ;๐‘„) //

๐‘‘

ฮฉ*(๐‘ƒ ;๐‘„/๐‘ž0)

ฮฉ*(๐‘ƒ ;๐‘„)

๐‘ž0 // ฮฉ*(๐‘ƒ ;๐‘„) // ฮฉ*(๐‘ƒ ;๐‘„/๐‘ž0)

๐‘Žโ€ฒ //_

๐ด_

๐ด // ๐›ผโ€ฒ // 0

Moreover, there exists ๐ถ โˆˆ ฮฉ*(๐‘ƒ ;๐‘„) such that ๐ด = ๐‘ž๐‘Ÿโˆ’10๐ต + ๐‘‘ ๐ถ. Let ๐‘Ž = ๐‘Žโ€ฒ โˆ’ ๐‘ž0 ๐ถ.

37

Page 38: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

We see that ๐‘Ž, like ๐‘Žโ€ฒ, gives a lift of ๐ด, and that

๐‘‘๐‘Ž = ๐›ผโ€ฒ โˆ’ ๐‘ž0๐‘‘ ๐ถ = ๐‘ž0( ๐ดโˆ’ ๐‘‘ ๐ถ) = ๐‘ž0(๐‘ž๐‘Ÿโˆ’10๐ต) = ๐‘ž๐‘Ÿ0 ๐ต.

Taking ๐‘ = ๐ต completes the โ€œonly ifโ€ direction.

The โ€œifโ€ direction is clear.

3.3 The ๐‘žโˆž0 -Bockstein spectral sequence (๐‘žโˆž0 -BSS)

Applying ๐ป*(๐‘ƒ ;โˆ’) to the short exact sequence of ๐‘ƒ -comodules

0 // ๐‘„/๐‘ž0 // ๐‘„/๐‘žโˆž0๐‘ž0 // ๐‘„/๐‘žโˆž0 // 0

gives a long exact sequence. We also have a trivial long exact sequence consisting

of the zero group every three terms and ๐ป*(๐‘ƒ ;๐‘„/๐‘žโˆž0 ) elsewhere. Intertwining these

long exact sequences gives an exact couple, the nontrivial part, of which, looks as

follows (๐‘ฃ < 0).

๐ป๐‘ ,๐‘ข(๐‘ƒ ; [๐‘„/๐‘žโˆž0 ]๐‘กโˆ’๐‘ฃ+๐‘Ÿ)

๐ป๐‘ ,๐‘ข(๐‘ƒ ; [๐‘„/๐‘žโˆž0 ]๐‘กโˆ’๐‘ฃ+๐‘Ÿโˆ’1)oo . . .๐‘ž0oo ๐ป๐‘ ,๐‘ข(๐‘ƒ ; [๐‘„/๐‘žโˆž0 ]๐‘กโˆ’๐‘ฃ)

๐‘ž0oo

๐œ•

๐ป๐‘ ,๐‘ข(๐‘ƒ ; [๐‘„/๐‘ž0]

๐‘กโˆ’๐‘ฃ+๐‘Ÿ)โŸจ๐‘ž๐‘ฃโˆ’๐‘Ÿ0 โŸฉ

66

๐ป๐‘ ,๐‘ข(๐‘ƒ ; [๐‘„/๐‘ž0]๐‘กโˆ’๐‘ฃ)โŸจ๐‘ž๐‘ฃ0โŸฉ

Here ๐œ• raises the degree of ๐‘  by one relative to what is indicated and the powers of

๐‘ž0 are used to distinguish copies of ๐ป*(๐‘ƒ ;๐‘„/๐‘ž0) from one another.

Definition 3.3.1. The spectral sequence arising from this exact couple is called the

๐‘žโˆž0 -Bockstein spectral sequence (๐‘žโˆž0 -BSS). It has ๐ธ1-page given by

๐ธ๐‘ ,๐‘ก,๐‘ข,๐‘ฃ1 (๐‘žโˆž0 -BSS) =

โŽงโŽชโŽจโŽชโŽฉ๐ป๐‘ ,๐‘ข(๐‘ƒ ; [๐‘„/๐‘ž0]

๐‘กโˆ’๐‘ฃ)โŸจ๐‘ž๐‘ฃ0โŸฉ if ๐‘ฃ < 0

0 if ๐‘ฃ โ‰ฅ 0

and ๐‘‘๐‘Ÿ has degree (1, 0, 0, ๐‘Ÿ). The spectral sequence converges to ๐ป*(๐‘ƒ ;๐‘„/๐‘žโˆž0 ) and

38

Page 39: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

the filtration degree is given by ๐‘ฃ. In particular, we have an identification

๐ธ๐‘ ,๐‘ก,๐‘ข,๐‘ฃโˆž (๐‘žโˆž0 -BSS) = ๐น ๐‘ฃ๐ป๐‘ ,๐‘ข(๐‘ƒ ; [๐‘„/๐‘žโˆž0 ]๐‘ก)/๐น ๐‘ฃ+1๐ป๐‘ ,๐‘ข(๐‘ƒ ; [๐‘„/๐‘žโˆž0 ]๐‘ก)

where ๐น ๐‘ฃ๐ป*(๐‘ƒ ;๐‘„/๐‘žโˆž0 ) = ker (๐‘žโˆ’๐‘ฃ0 : ๐ป*(๐‘ƒ ;๐‘„/๐‘žโˆž0 ) โˆ’โ†’ ๐ป*(๐‘ƒ ;๐‘„/๐‘žโˆž0 )) for ๐‘ฃ โ‰ค 0. The

identification is given by taking a permanent cycle in ๐ป*(๐‘ƒ ;๐‘„/๐‘ž0)โŸจ๐‘ž๐‘ฃ0โŸฉ, mapping it

up to ๐ป*(๐‘ƒ ;๐‘„/๐‘žโˆž0 ) and pulling this element back to the 0th copy of ๐ป*(๐‘ƒ ;๐‘„/๐‘žโˆž0 ).

Remark 3.3.2. One can describe the ๐ธ1-page of the ๐‘žโˆž0 -BSS more concisely as the

๐ป*(๐‘ƒ ;๐‘„/๐‘ž0)[๐‘ž0]-module [๐ป*(๐‘ƒ ;๐‘„/๐‘ž0)

[๐‘ž0

]]/๐‘žโˆž0 .

Notation 3.3.3. Suppose ๐‘ฅ, ๐‘ฆ โˆˆ ๐ป*(๐‘ƒ ;๐‘„/๐‘ž0). We write ๐‘‘๐‘Ÿ๐‘ฅ = ๐‘ฆ to mean that for

all ๐‘ฃ โˆˆ Z, ๐‘ž๐‘ฃ0๐‘ฅ and ๐‘ž๐‘ฃ0๐‘ฆ survive until the ๐ธ๐‘Ÿ-page and that ๐‘‘๐‘Ÿ๐‘ž๐‘ฃ0๐‘ฅ = ๐‘ž๐‘ฃ+๐‘Ÿ0 ๐‘ฆ. In this case,

notice that ๐‘ž๐‘ฃ0๐‘ฅ is a permanent cycle for ๐‘ฃ โ‰ฅ โˆ’๐‘Ÿ and that ๐‘ž๐‘ฃ0๐‘ฆ is a permanent cycle

for all ๐‘ฃ โˆˆ Z.

Again, ๐‘ฅ is said to support a ๐‘‘๐‘Ÿ differential. If one of the differentials ๐‘‘๐‘Ÿ๐‘ž๐‘ฃ0๐‘ฅ = ๐‘ž๐‘ฃ+๐‘Ÿ0 ๐‘ฆ

is nontrivial, then ๐‘ฅ is said to support a nontrivial differential.

3.4 The ๐‘„-BSS and the ๐‘žโˆž0 -BSS: a relationship

Suppose that ๐‘ฅ โˆˆ ๐ป๐‘ ,๐‘ข(๐‘ƒ ; [๐‘„/๐‘ž0]๐‘ก), ๐‘ฆ โˆˆ ๐ป๐‘ +1,๐‘ข(๐‘ƒ ; [๐‘„/๐‘ž0]

๐‘กโˆ’๐‘Ÿ). 3.2.3 and 3.3.3 give

meanings to the equation ๐‘‘๐‘Ÿ๐‘ฅ = ๐‘ฆ in the ๐‘„-BSS and the ๐‘žโˆž0 -BSS, respectively. It

appears, a priori, that the truth of the equation ๐‘‘๐‘Ÿ๐‘ฅ = ๐‘ฆ depends on which spectral

sequence we are working in. The following lemma shows that this is not the case.

Lemma 3.4.1. Suppose ๐‘ฅ, ๐‘ฆ โˆˆ ๐ป*(๐‘ƒ ;๐‘„/๐‘ž0). Then ๐‘‘๐‘Ÿ๐‘ฅ = ๐‘ฆ in the ๐‘„-BSS if and only

if ๐‘‘๐‘Ÿ๐‘ฅ = ๐‘ฆ in the ๐‘žโˆž0 -BSS.

Proof. Suppose that ๐‘‘๐‘Ÿ๐‘ฅ = ๐‘ฆ in the ๐‘„-BSS. By lemma 3.2.4, we find that there

exist ๐‘Ž and ๐‘ in ฮฉ*(๐‘ƒ ;๐‘„) with ๐‘‘๐‘Ž = ๐‘ž๐‘Ÿ0๐‘ such that their images in ฮฉ*(๐‘ƒ ;๐‘„/๐‘ž0) are

cocycles representing ๐‘ฅ and ๐‘ฆ, respectively. Let ๐‘Ž and ๐‘ be the images of ๐‘Ž and ๐‘ in

ฮฉ*(๐‘ƒ ;๐‘„/๐‘ž0), respectively.

39

Page 40: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

Then we have

ฮฉ*(๐‘ƒ ;๐‘„/๐‘ž0) //

ฮฉ*(๐‘ƒ ;๐‘„/๐‘žโˆž0 )๐‘ž0 //

๐‘‘

ฮฉ*(๐‘ƒ ;๐‘„/๐‘žโˆž0 )

ฮฉ*(๐‘ƒ ;๐‘„/๐‘ž0) // ฮฉ*(๐‘ƒ ;๐‘„/๐‘žโˆž0 )

๐‘ž0 // ฮฉ*(๐‘ƒ ;๐‘„/๐‘žโˆž0 )

๐‘Ž/๐‘ž๐‘Ÿ+10

//_

๐‘Ž/๐‘ž๐‘Ÿ0_

๐‘ // ๐‘/๐‘ž0

// 0

and so

๐ป*(๐‘ƒ ;๐‘„/๐‘žโˆž0 ) . . .๐‘ž0oo ๐ป*(๐‘ƒ ;๐‘„/๐‘žโˆž0 )

๐‘ž0oo

๐œ•

๐ป*(๐‘ƒ ;๐‘„/๐‘ž0)

55

๐ป*(๐‘ƒ ;๐‘„/๐‘ž0)

๐‘Ž/๐‘ž0 . . .๐‘ž0oo ๐‘Ž/๐‘ž๐‘Ÿ0

๐‘ž0oo

๐œ•

๐‘ฅ = ๐‘Ž

55

๐‘ฆ = ๐‘

giving ๐‘‘๐‘Ÿ๐‘ฅ = ๐‘ฆ in the ๐‘žโˆž0 -BSS.

We prove the converse using induction on ๐‘Ÿ. The result is clear for ๐‘Ÿ = 0 since,

by convention, ๐‘‘0 is zero for both spectral sequences. For ๐‘Ÿ โ‰ฅ 1 we have

๐‘‘๐‘Ÿ๐‘ฅ = ๐‘ฆ in the ๐‘žโˆž0 -BSS

=โ‡’ ๐‘‘๐‘Ÿโˆ’1๐‘ฅ = 0 in the ๐‘žโˆž0 -BSS (Lemma 2.1.4)

=โ‡’ ๐‘‘๐‘Ÿโˆ’1๐‘ฅ = 0 in the ๐‘„-BSS (Induction)

=โ‡’ ๐‘‘๐‘Ÿ๐‘ฅ = ๐‘ฆโ€ฒ in the ๐‘„-BSS for some ๐‘ฆโ€ฒ (Lemma 2.1.4)

=โ‡’ ๐‘‘๐‘Ÿ๐‘ฅ = ๐‘ฆโ€ฒ in the ๐‘žโˆž0 -BSS (1st half of proof)

=โ‡’ ๐‘‘๐‘Ÿโˆ’1๐‘ฅโ€ฒ = ๐‘ฆโ€ฒ โˆ’ ๐‘ฆ in the ๐‘žโˆž0 -BSS for some ๐‘ฅโ€ฒ (Corollary 2.1.5)

=โ‡’ ๐‘‘๐‘Ÿโˆ’1๐‘ฅโ€ฒ = ๐‘ฆโ€ฒ โˆ’ ๐‘ฆ in the ๐‘„-BSS (Induction)

=โ‡’ ๐‘‘๐‘Ÿ๐‘ฅ = ๐‘ฆ in the ๐‘„-BSS (Corollary 2.1.5)

40

Page 41: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

which completes the proof.

3.5 The ๐‘žโˆ’11 -Bockstein spectral sequence (๐‘žโˆ’1

1 -BSS)

We can mimic the construction of the ๐‘žโˆž0 -BSS using the following short exact sequence

of ๐‘ƒ -comodules.

0 // ๐‘žโˆ’11 ๐‘„/๐‘ž0 // ๐‘žโˆ’1

1 ๐‘„/๐‘žโˆž0๐‘ž0 // ๐‘žโˆ’1

1 ๐‘„/๐‘žโˆž0 // 0 (3.5.1)

Definition 3.5.2. The spectral sequence arising from this exact couple is called the

๐‘žโˆ’11 -Bockstein spectral sequence (๐‘žโˆ’1

1 -BSS). It has ๐ธ1-page given by

๐ธ1(๐‘žโˆ’11 -BSS) =

[๐ป*(๐‘ƒ ; ๐‘žโˆ’1

1 ๐‘„/๐‘ž0)[๐‘ž0

]]/๐‘žโˆž0

and ๐‘‘๐‘Ÿ has degree (1, 0, 0, ๐‘Ÿ). The spectral sequence converges to ๐ป*(๐‘ƒ ; ๐‘žโˆ’11 ๐‘„/๐‘žโˆž0 )

and the filtration degree is given by ๐‘ฃ. In particular, we have an identification

๐ธ๐‘ ,๐‘ก,๐‘ข,๐‘ฃโˆž (๐‘žโˆ’1

1 -BSS) = ๐น ๐‘ฃ๐ป๐‘ ,๐‘ข(๐‘ƒ ; [๐‘žโˆ’11 ๐‘„/๐‘žโˆž0 ]๐‘ก)/๐น ๐‘ฃ+1๐ป๐‘ ,๐‘ข(๐‘ƒ ; [๐‘žโˆ’1

1 ๐‘„/๐‘žโˆž0 ]๐‘ก)

where, as in the ๐‘žโˆž0 -BSS, ๐น ๐‘ฃ = ker ๐‘žโˆ’๐‘ฃ0 for ๐‘ฃ โ‰ค 0. The identification is given by

taking a permanent cycle in ๐ป*(๐‘ƒ ; ๐‘žโˆ’11 ๐‘„/๐‘ž0)โŸจ๐‘ž๐‘ฃ0โŸฉ, mapping it up to ๐ป*(๐‘ƒ ; ๐‘žโˆ’1

1 ๐‘„/๐‘žโˆž0 )

and pulling this element back to the 0th copy of ๐ป*(๐‘ƒ ; ๐‘žโˆ’11 ๐‘„/๐‘žโˆž0 ).

We follow the notational conventions in 3.3.3.

We notice, that as a consequence of lemma 3.4.1, a ๐‘‘๐‘Ÿ-differential in the ๐‘žโˆž0 -BSS

can be validated using only elements in ฮฉ*(๐‘ƒ ;๐‘€๐‘Ÿ+1) (see definition 3.1.4). The same

can be said of the ๐‘žโˆ’11 -BSS and the proof is similar. The following lemma statement

makes use of the connecting homomorphism in the long exact sequence coming from

the short exact sequence of ๐‘ƒ -comodules

0 // ๐‘žโˆ’11 ๐‘„/๐‘ž0 // ๐‘žโˆ’1

1 ๐‘€๐‘Ÿ+1๐‘ž0 // ๐‘žโˆ’1

1 ๐‘€๐‘Ÿ// 0.

41

Page 42: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

Lemma 3.5.3. Suppose that ๐‘ฅ, ๐‘ฆ โˆˆ ๐ป*(๐‘žโˆ’11 ๐‘„/๐‘ž0) and that ๐‘‘๐‘Ÿ๐‘ฅ = ๐‘ฆ in the ๐‘žโˆ’1

1 -BSS.

Then there exist โˆˆ ๐ป*(๐‘ƒ ; ๐‘žโˆ’11 ๐‘€1) and ๐‘ฆ โˆˆ ๐ป*(๐‘ƒ ; ๐‘žโˆ’1

1 ๐‘€๐‘Ÿ) with the properties that

= ๐‘ž๐‘Ÿโˆ’10 ๐‘ฆ, and under the maps

๐ป*(๐‘ƒ ; ๐‘žโˆ’11 ๐‘„/๐‘ž0)

โˆผ=โˆ’โ†’ ๐ป*(๐‘ƒ ; ๐‘žโˆ’11 ๐‘€1), ๐œ• : ๐ป*(๐‘ƒ ; ๐‘žโˆ’1

1 ๐‘€๐‘Ÿ) โˆ’โ†’ ๐ป*(๐‘žโˆ’11 ๐‘„/๐‘ž0),

๐‘ฅ is mapped to , and ๐‘ฆ is mapped to ๐‘ฆ, respectively. We summarize this situation by

saying that ๐‘‘๐‘Ÿ๐‘ฅ = ๐‘ฆ in the ๐‘€๐‘Ÿ+1-zig-zag.

Proof. The result is clear for ๐‘Ÿ = 1 and so we proceed by induction on ๐‘Ÿ. For ๐‘Ÿ > 1

we have

๐‘‘๐‘Ÿ๐‘ฅ = ๐‘ฆ in the ๐‘žโˆ’11 -BSS

=โ‡’ ๐‘‘๐‘Ÿโˆ’1๐‘ฅ = 0 in the ๐‘žโˆ’11 -BSS (Lemma 2.1.4)

=โ‡’ ๐‘‘๐‘Ÿโˆ’1๐‘ฅ = 0 in the ๐‘€๐‘Ÿ-zig-zag (Induction)

=โ‡’ ๐‘‘๐‘Ÿ๐‘ฅ = ๐‘ฆโ€ฒ in the ๐‘€๐‘Ÿ+1-zig-zag for some ๐‘ฆโ€ฒ (Lemma 2.1.4)

=โ‡’ ๐‘‘๐‘Ÿ๐‘ฅ = ๐‘ฆโ€ฒ in the ๐‘žโˆ’11 -BSS

=โ‡’ ๐‘‘๐‘Ÿโˆ’1๐‘ฅโ€ฒ = ๐‘ฆโ€ฒ โˆ’ ๐‘ฆ in the ๐‘žโˆ’1

1 -BSS for some ๐‘ฅโ€ฒ (Corollary 2.1.5)

=โ‡’ ๐‘‘๐‘Ÿโˆ’1๐‘ฅโ€ฒ = ๐‘ฆโ€ฒ โˆ’ ๐‘ฆ in the ๐‘€๐‘Ÿ-zig-zag (Induction)

=โ‡’ ๐‘‘๐‘Ÿ๐‘ฅ = ๐‘ฆ in the ๐‘€๐‘Ÿ+1-zig-zag (Corollary 2.1.5)

which completes the proof.

We note the following simple result.

Lemma 3.5.4. In the ๐‘žโˆ’11 -BSS we have ๐‘‘๐‘๐‘›โˆ’1๐‘ž

ยฑ๐‘๐‘›1 = 0.

Proof. One sees that ๐‘žยฑ๐‘๐‘›

1 /๐‘ž๐‘๐‘›

0 โˆˆ ฮฉ*(๐‘ƒ ; ๐‘žโˆ’11 ๐‘„/๐‘žโˆž0 ) is a cocycle.

We have an evident map of spectral sequences

๐ธ*,*,*,** (๐‘žโˆž0 -BSS) โˆ’โ†’ ๐ธ*,*,*,*

* (๐‘žโˆ’11 -BSS).

42

Page 43: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

3.6 Multiplicativity of the BSSs

The ๐‘„-BSS is multiplicative because ฮฉ*(๐‘ƒ ;๐‘„) โˆ’โ†’ ฮฉ*(๐‘ƒ ;๐‘„/๐‘ž0) is a map of DG

algebras.

Lemma 3.6.1. Suppose ๐‘ฅ, ๐‘ฅโ€ฒ, ๐‘ฆ, ๐‘ฆโ€ฒ โˆˆ ๐ป*(๐‘ƒ ;๐‘„/๐‘ž0) and that ๐‘‘๐‘Ÿ๐‘ฅ = ๐‘ฆ and ๐‘‘๐‘Ÿ๐‘ฅโ€ฒ = ๐‘ฆโ€ฒ in

the ๐‘„-BSS. Then

๐‘‘๐‘Ÿ(๐‘ฅ๐‘ฅโ€ฒ) = ๐‘ฆ๐‘ฅโ€ฒ + (โˆ’1)|๐‘ฅ|๐‘ฅ๐‘ฆโ€ฒ.

Here |๐‘ฅ| and |๐‘ฆ| denote the cohomological gradings of ๐‘ฅ and ๐‘ฆ, respectively, since

every element of ๐‘ƒ , ๐‘„ and ๐‘„/๐‘ž0 has even ๐‘ข grading.

Proof. Suppose ๐‘‘๐‘Ÿ๐‘ฅ = ๐‘ฆ and ๐‘‘๐‘Ÿ๐‘ฅโ€ฒ = ๐‘ฆโ€ฒ.

Lemma 3.2.4 tells us that there exist ๐‘Ž, ๐‘Žโ€ฒ, ๐‘, ๐‘โ€ฒ โˆˆ ฮฉ*(๐‘ƒ ;๐‘„) such that their images

in ฮฉ*(๐‘ƒ ;๐‘„/๐‘ž0) represent ๐‘ฅ, ๐‘ฅโ€ฒ, ๐‘ฆ, ๐‘ฆโ€ฒ, respectively, and such that ๐‘‘๐‘Ž = ๐‘ž๐‘Ÿ0๐‘, ๐‘‘๐‘Žโ€ฒ = ๐‘ž๐‘Ÿ0๐‘โ€ฒ.

The image of ๐‘Ž๐‘Žโ€ฒ โˆˆ ฮฉ*(๐‘ƒ ;๐‘„) in ฮฉ*(๐‘ƒ ;๐‘„/๐‘ž0) represents ๐‘ฅ๐‘ฅโ€ฒ and the image of

๐‘๐‘Žโ€ฒ + (โˆ’1)|๐‘Ž|๐‘Ž๐‘โ€ฒ โˆˆ ฮฉ*(๐‘ƒ ;๐‘„)

in ฮฉ*(๐‘ƒ ;๐‘„/๐‘ž0) represents ๐‘ฆ๐‘ฅโ€ฒ + (โˆ’1)|๐‘ฅ|๐‘ฅ๐‘ฆโ€ฒ. Since ๐‘‘(๐‘Ž๐‘Žโ€ฒ) = ๐‘ž๐‘Ÿ0(๐‘๐‘Žโ€ฒ + (โˆ’1)|๐‘Ž|๐‘Ž๐‘โ€ฒ), lemma

3.2.4 completes the proof.

Corollary 3.6.2. We have a multiplication

๐ธ๐‘ ,๐‘ก,๐‘ข,๐‘ฃ1 (๐‘„-BSS)โŠ— ๐ธ๐‘ โ€ฒ,๐‘กโ€ฒ,๐‘ขโ€ฒ,๐‘ฃโ€ฒ

1 (๐‘„-BSS) โˆ’โ†’ ๐ธ๐‘ +๐‘ โ€ฒ,๐‘ก+๐‘กโ€ฒ,๐‘ข+๐‘ขโ€ฒ,๐‘ฃ+๐‘ฃโ€ฒ

1 (๐‘„-BSS)

restricting to the following maps.

ker ๐‘‘๐‘Ÿ โŠ— im ๐‘‘๐‘Ÿ //

im ๐‘‘๐‘Ÿ

โ‹‚๐‘  ker ๐‘‘๐‘  โŠ—

โ‹ƒ๐‘  im ๐‘‘๐‘  //

โ‹ƒ๐‘  im ๐‘‘๐‘ 

ker ๐‘‘๐‘Ÿ โŠ— ker ๐‘‘๐‘Ÿ // ker ๐‘‘๐‘Ÿ

โ‹‚๐‘  ker ๐‘‘๐‘  โŠ—

โ‹‚๐‘  ker ๐‘‘๐‘  //

โ‹‚๐‘  ker ๐‘‘๐‘ 

im ๐‘‘๐‘Ÿ โŠ— ker ๐‘‘๐‘Ÿ //

OO

im ๐‘‘๐‘Ÿ

OO

โ‹ƒ๐‘  im ๐‘‘๐‘  โŠ—

โ‹‚๐‘  ker ๐‘‘๐‘  //

OO

โ‹ƒ๐‘  im ๐‘‘๐‘ 

OO

43

Page 44: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

Thus we have induced maps

๐ธ๐‘ ,๐‘ก,๐‘ข,๐‘ฃ๐‘Ÿ (๐‘„-BSS)โŠ— ๐ธ๐‘ โ€ฒ,๐‘กโ€ฒ,๐‘ขโ€ฒ,๐‘ฃโ€ฒ

๐‘Ÿ (๐‘„-BSS) โˆ’โ†’ ๐ธ๐‘ +๐‘ โ€ฒ,๐‘ก+๐‘กโ€ฒ,๐‘ข+๐‘ขโ€ฒ,๐‘ฃ+๐‘ฃโ€ฒ

๐‘Ÿ (๐‘„-BSS)

for 1 โ‰ค ๐‘Ÿ โ‰ค โˆž. Moreover,

๐ธ๐‘ ,๐‘ก,๐‘ข,*โˆž (๐‘„-BSS)โŠ— ๐ธ๐‘ โ€ฒ,๐‘กโ€ฒ,๐‘ขโ€ฒ,*

โˆž (๐‘„-BSS) โˆ’โ†’ ๐ธ๐‘ +๐‘ โ€ฒ,๐‘ก+๐‘กโ€ฒ,๐‘ข+๐‘ขโ€ฒ,*โˆž (๐‘„-BSS)

is the associated graded of the map

๐ป๐‘ ,๐‘ข(๐‘ƒ ;๐‘„๐‘ก)โŠ—๐ป๐‘ โ€ฒ,๐‘ขโ€ฒ(๐‘ƒ ;๐‘„๐‘กโ€ฒ) โˆ’โ†’ ๐ป๐‘ +๐‘ โ€ฒ,๐‘ข+๐‘ขโ€ฒ(๐‘ƒ ;๐‘„๐‘ก+๐‘กโ€ฒ).

Lemma 3.4.1 means that we have the following corollary to the previous lemma.

Corollary 3.6.3. Suppose ๐‘ฅ, ๐‘ฅโ€ฒ, ๐‘ฆ, ๐‘ฆโ€ฒ โˆˆ ๐ป*(๐‘ƒ ;๐‘„/๐‘ž0) and that ๐‘‘๐‘Ÿ๐‘ฅ = ๐‘ฆ and ๐‘‘๐‘Ÿ๐‘ฅโ€ฒ = ๐‘ฆโ€ฒ

in the ๐‘žโˆž0 -BSS. Then

๐‘‘๐‘Ÿ(๐‘ฅ๐‘ฅโ€ฒ) = ๐‘ฆ๐‘ฅโ€ฒ + (โˆ’1)|๐‘ฅ|๐‘ฅ๐‘ฆโ€ฒ.

The ๐‘žโˆž0 -BSS is not multiplicative in the sense that we do not have a strict analogue

of corollary 3.6.2. This is unsurprising because๐ป*(๐‘ƒ ;๐‘„/๐‘žโˆž0 ) does not have an obvious

algebra structure. However, we do have a pairing between the ๐‘„-BSS and the ๐‘žโˆž0 -BSS

converging to the ๐ป*(๐‘ƒ ;๐‘„)-module structure map of ๐ป*(๐‘ƒ ;๐‘„/๐‘žโˆž0 ).

An identical result to lemma 3.6.1 holds for the ๐‘žโˆ’11 -BSS.

Lemma 3.6.4. Suppose ๐‘ฅ, ๐‘ฅโ€ฒ, ๐‘ฆ, ๐‘ฆโ€ฒ โˆˆ ๐ป*(๐‘ƒ ; ๐‘žโˆ’11 ๐‘„/๐‘ž0) and that ๐‘‘๐‘Ÿ๐‘ฅ = ๐‘ฆ and ๐‘‘๐‘Ÿ๐‘ฅโ€ฒ = ๐‘ฆโ€ฒ

in the ๐‘žโˆ’11 -BSS. Then

๐‘‘๐‘Ÿ(๐‘ฅ๐‘ฅโ€ฒ) = ๐‘ฆ๐‘ฅโ€ฒ + (โˆ’1)|๐‘ฅ|๐‘ฅ๐‘ฆโ€ฒ.

Proof. Suppose that ๐‘‘๐‘Ÿ๐‘ฅ = ๐‘ฆ in the ๐‘žโˆ’11 -BSS. We claim that for large enough ๐‘˜ the

elements ๐‘ž๐‘˜๐‘๐‘Ÿ

1 ๐‘ฅ and ๐‘ž๐‘˜๐‘๐‘Ÿ

1 ๐‘ฆ lift to elements ๐‘‹ and ๐‘Œ in ๐ป*(๐‘ƒ ;๐‘„/๐‘ž0) with the property

that ๐‘‘๐‘Ÿ๐‘‹ = ๐‘Œ in the ๐‘žโˆž0 -BSS.

By lemma 3.5.3, we have and ๐‘ฆ demonstrating that ๐‘‘๐‘Ÿ๐‘ฅ = ๐‘ฆ in the ๐‘€๐‘Ÿ+1-zig-zag.

Using definition 3.1.6 and the fact that filtered colimits commute with tensor products

and homology, we can find a ๐‘˜ such that ๐‘ž๐‘˜๐‘๐‘Ÿ

1 ๐‘ฅ and ๐‘ž๐‘˜๐‘๐‘Ÿ

1 ๐‘ฆ lift to ๐‘‹ โˆˆ ๐ป*(๐‘ƒ ;๐‘„/๐‘ž0) and

44

Page 45: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

๐‘Œ โˆˆ ๐ป*(๐‘ƒ ;๐‘€๐‘Ÿ), respectively, and such that their images in ๐ป*(๐‘ƒ ;๐‘€1) coincide. Let

๐‘Œ โˆˆ ๐ป*(๐‘ƒ ;๐‘„/๐‘ž0) be the image of ๐‘Œ . Then ๐‘Œ lifts ๐‘ž๐‘˜๐‘๐‘Ÿ

1 ๐‘ฆ and ๐‘‘๐‘Ÿ๐‘‹ = ๐‘Œ in the ๐‘žโˆž0 -BSS,

proving the claim.

Suppose that ๐‘‘๐‘Ÿ๐‘ฅ = ๐‘ฆ and ๐‘‘๐‘Ÿ๐‘ฅโ€ฒ = ๐‘ฆโ€ฒ in the ๐‘žโˆ’11 -BSS. For large enough ๐‘˜, we obtain

elements ๐‘‹, ๐‘‹ โ€ฒ, ๐‘Œ and ๐‘Œ โ€ฒ lifting ๐‘ž๐‘˜๐‘๐‘Ÿ

1 ๐‘ฅ, ๐‘ž๐‘˜๐‘๐‘Ÿ

1 ๐‘ฅโ€ฒ, ๐‘ž๐‘˜๐‘๐‘Ÿ

1 ๐‘ฆ and ๐‘ž๐‘˜๐‘๐‘Ÿ

1 ๐‘ฆโ€ฒ, respectively, and

differentials ๐‘‘๐‘Ÿ๐‘‹ = ๐‘Œ and ๐‘‘๐‘Ÿ๐‘‹ โ€ฒ = ๐‘Œ โ€ฒ in the ๐‘žโˆž0 -BSS. The previous corollary gives

๐‘‘๐‘Ÿ(๐‘‹๐‘‹โ€ฒ) = ๐‘Œ ๐‘‹ โ€ฒ + (โˆ’1)|๐‘‹|๐‘‹๐‘Œ โ€ฒ.

Mapping into the ๐‘žโˆ’11 -BSS and using lemma 3.5.3 we obtain

๐‘‘๐‘Ÿ(๐‘ž2๐‘˜๐‘๐‘Ÿ

1 (๐‘ฅ๐‘ฅโ€ฒ)) = ๐‘ž2๐‘˜๐‘๐‘Ÿ

1 (๐‘ฆ๐‘ฅโ€ฒ + (โˆ’1)|๐‘ฅ|๐‘ฅ๐‘ฆโ€ฒ)

in the ๐‘€๐‘Ÿ+1-zig-zag. Dividing through by ๐‘ž2๐‘˜๐‘๐‘Ÿ

1 completes the proof.

45

Page 46: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

THIS PAGE INTENTIONALLY LEFT BLANK

46

Page 47: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

Chapter 4

Vanishing lines and localization

In this chapter we prove some vanishing lines for ๐ป*(๐‘ƒ ;Q) with various choices of Q.

We also analyze the localization map ๐ป*(๐‘ƒ ;๐‘„/๐‘žโˆž0 ) โˆ’โ†’ ๐ป*(๐‘ƒ ; ๐‘žโˆ’11 ๐‘„/๐‘žโˆž0 ).

4.1 Vanishing lines

We make note of vanishing lines for ๐ป*(๐‘ƒ ;Q) in the cases (see section 3.1 for defini-

tions)

Q = ๐‘„/๐‘ž0, ๐‘žโˆ’11 ๐‘„/๐‘ž0, ๐‘€๐‘›, ๐‘ž

โˆ’11 ๐‘€๐‘›, ๐‘„/๐‘ž

โˆž0 , ๐‘ž

โˆ’11 ๐‘„/๐‘žโˆž0 .

Notation 4.1.1. We write ๐‘ž for |๐‘ž1| = 2๐‘โˆ’ 2.

Definition 4.1.2. For ๐‘  โˆˆ Zโ‰ฅ0 let ๐‘ˆ(2๐‘ ) = ๐‘๐‘ž๐‘  and ๐‘ˆ(2๐‘  + 1) = ๐‘๐‘ž๐‘  + ๐‘ž and write

๐‘ˆ(โˆ’1) =โˆž.

In [10] Miller uses the following result.

Lemma 4.1.3. ๐ป๐‘ ,๐‘ข(๐‘ƒ ; [๐‘„/๐‘ž0]๐‘ก) = 0 when ๐‘ข < ๐‘ˆ(๐‘ ) + ๐‘ž๐‘ก.

Since ๐‘ž1 has (๐‘ก, ๐‘ข) bigrading (1, ๐‘ž) we obtain the following corollary.

Corollary 4.1.4. ๐ป๐‘ ,๐‘ข(๐‘ƒ ; [๐‘žโˆ’11 ๐‘„/๐‘ž0]

๐‘ก) = 0 when ๐‘ข < ๐‘ˆ(๐‘ ) + ๐‘ž๐‘ก.

Lemma 4.1.5. For each ๐‘› โ‰ฅ 1, ๐ป๐‘ ,๐‘ข(๐‘ƒ ; [๐‘€๐‘›]๐‘ก) = 0 whenever ๐‘ข < ๐‘ˆ(๐‘ ) + ๐‘ž(๐‘ก+ 1).

47

Page 48: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

Proof. We proceed by induction on ๐‘›.

The previous corollary together with the isomorphism ๐ป*(๐‘ƒ ;๐‘„/๐‘ž0) โˆผ= ๐ป*(๐‘ƒ ;๐‘€1)

gives the base case.

The long exact sequence associated to the short exact sequence of ๐‘ƒ -comodules

0 โˆ’โ†’ ๐‘€1 โˆ’โ†’ ๐‘€๐‘›+1๐‘ž0โˆ’โ†’ ๐‘€๐‘› โˆ’โ†’ 0 shows ๐ป๐‘ ,๐‘ข(๐‘ƒ ; [๐‘€๐‘›+1]

๐‘ก) is zero provided that

๐ป๐‘ ,๐‘ข(๐‘ƒ ; [๐‘€1]๐‘ก) and ๐ป๐‘ ,๐‘ข([๐‘€๐‘›]๐‘ก+1) are zero. Since ๐‘ข < ๐‘ˆ(๐‘ ) + ๐‘ž(๐‘ก + 1) implies that

๐‘ข < ๐‘ˆ(๐‘ ) + ๐‘ž((๐‘ก+ 1) + 1) the inductive step is complete.

Corollary 4.1.6. For Q = ๐‘€๐‘›, ๐‘žโˆ’11 ๐‘€๐‘›, ๐‘„/๐‘ž

โˆž0 , or ๐‘žโˆ’1

1 ๐‘„/๐‘žโˆž0 we have

๐ป๐‘ ,๐‘ข(๐‘ƒ ;Q๐‘ก) = 0 whenever ๐‘ข < ๐‘ˆ(๐‘ ) + ๐‘ž(๐‘ก+ 1).

Notation 4.1.7. We write (๐œŽ, ๐œ†) for (๐‘ + ๐‘ก, ๐‘ข+ ๐‘ก).

Since (๐‘ž + 1)๐‘ โˆ’ 1 โ‰ค ๐‘ˆ(๐‘ ) we have the following corollaries.

Corollary 4.1.8. For Q = ๐‘„/๐‘ž0 or ๐‘žโˆ’11 ๐‘„/๐‘ž0 we have

๐ป๐‘ ,๐‘ข(๐‘ƒ ;Q๐‘ก) = 0 whenever ๐œ†โˆ’ ๐œŽ < ๐‘ž๐œŽ โˆ’ 1.

Corollary 4.1.9. For Q = ๐‘€๐‘›, ๐‘„/๐‘žโˆž0 , ๐‘ž

โˆ’11 ๐‘€๐‘›, or ๐‘žโˆ’1

1 ๐‘„/๐‘žโˆž0 we have

๐ป๐‘ ,๐‘ข(๐‘ƒ ;Q๐‘ก) = 0 whenever ๐œ†โˆ’ ๐œŽ < ๐‘ž(๐œŽ + 1)โˆ’ 1.

Lemma 4.1.10. For ๐‘› โ‰ฅ 1, ๐ป๐‘ ,๐‘ข(๐‘ƒ ; [๐‘€๐‘›]๐‘ก) โˆ’โ†’ ๐ป๐‘ ,๐‘ข(๐‘ƒ ; [๐‘„/๐‘žโˆž0 ]๐‘ก) is

1. surjective when ๐œ†โˆ’ ๐œŽ = ๐‘๐‘›โˆ’1๐‘ž and ๐œŽ โ‰ฅ ๐‘๐‘›โˆ’1 โˆ’ ๐‘›.

2. injective when ๐œ†โˆ’ ๐œŽ = ๐‘๐‘›โˆ’1๐‘ž โˆ’ 1 and ๐œŽ โ‰ฅ ๐‘๐‘›โˆ’1 โˆ’ ๐‘›+ 1;

Proof. The previous corollary tells us that ๐ป๐‘ ,๐‘ข(๐‘ƒ ; [๐‘„/๐‘žโˆž0 ]๐‘ก) = 0 when ๐œ†โˆ’ ๐œŽ = ๐‘๐‘›โˆ’1๐‘ž

and ๐œŽ โ‰ฅ ๐‘๐‘›โˆ’1. The following exact sequence completes the proof.

๐ป๐‘ โˆ’1,๐‘ข(๐‘ƒ ; [๐‘„/๐‘žโˆž0 ]๐‘ก+๐‘›) // ๐ป๐‘ ,๐‘ข(๐‘ƒ ; [๐‘€๐‘›]๐‘ก) // ๐ป๐‘ ,๐‘ข(๐‘ƒ ; [๐‘„/๐‘žโˆž0 ]๐‘ก) // ๐ป๐‘ ,๐‘ข(๐‘ƒ ; [๐‘„/๐‘žโˆž0 ]๐‘ก+๐‘›)

48

Page 49: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

4.2 The localization map: the trigraded perspective

In this section we analyze the map ๐ป*(๐‘ƒ ;๐‘„/๐‘žโˆž0 ) โˆ’โ†’ ๐ป*(๐‘ƒ ; ๐‘žโˆ’11 ๐‘„/๐‘žโˆž0 ). In particular,

we find a range in which it is an isomorphism. The result which allows us to do this

follows. Throughout this section ๐‘  โ‰ฅ 0. Recall definition 4.1.2.

Proposition 4.2.1 ([10, pg. 81]). The localization map

๐ป๐‘ ,๐‘ข(๐‘ƒ ; [๐‘„/๐‘ž0]๐‘ก) โˆ’โ†’ ๐ป๐‘ ,๐‘ข(๐‘ƒ ; [๐‘žโˆ’1

1 ๐‘„/๐‘ž0]๐‘ก)

1. is injective if ๐‘ข < ๐‘ˆ(๐‘ โˆ’ 1) + (2๐‘2 โˆ’ 2)(๐‘ก+ 1)โˆ’ ๐‘ž;

2. is surjective if ๐‘ข < ๐‘ˆ(๐‘ ) + (2๐‘2 โˆ’ 2)(๐‘ก+ 1)โˆ’ ๐‘ž.

This allows us to prove the following lemma which explains how we can transfer

differentials between the ๐‘žโˆž0 -BSS and the ๐‘žโˆ’11 -BSS.

Lemma 4.2.2. Suppose ๐‘ข < ๐‘ˆ(๐‘ )+(2๐‘2โˆ’2)(๐‘ก+2)โˆ’๐‘ž so that proposition 4.2.1 gives a

surjection ๐ธ๐‘ ,๐‘ก,๐‘ข,*1 (๐‘žโˆž0 -BSS)โ†’ ๐ธ๐‘ ,๐‘ก,๐‘ข,*

1 (๐‘žโˆ’11 -BSS) and an injection ๐ธ๐‘ +1,๐‘ก,๐‘ข,*

1 (๐‘žโˆž0 -BSS)โ†’

๐ธ๐‘ +1,๐‘ก,๐‘ข,*1 (๐‘žโˆ’1

1 -BSS).

Suppose ๐‘ฅ โˆˆ ๐ธ๐‘ ,๐‘ก,๐‘ข,*1 (๐‘žโˆž0 -BSS) maps to ๐‘ฅ โˆˆ ๐ธ๐‘ ,๐‘ก,๐‘ข,*

1 (๐‘žโˆ’11 -BSS) and that ๐‘‘๐‘Ÿ๐‘ฅ = ๐‘ฆ in

the ๐‘žโˆ’11 -BSS. Then, in fact, ๐‘ฆ lies in ๐ธ๐‘ +1,๐‘ก,๐‘ข,*

1 (๐‘žโˆž0 -BSS) and ๐‘‘๐‘Ÿ๐‘ฅ = ๐‘ฆ in the ๐‘žโˆž0 -BSS.

Proof. We proceed by induction on ๐‘Ÿ. The result is true in the case ๐‘Ÿ = 0 where

๐‘‘0 = 0 and the case ๐‘Ÿ = 1 where ๐‘‘๐‘Ÿ is a function. Suppose ๐‘Ÿ > 1. Then

๐‘‘๐‘Ÿ๐‘ฅ = ๐‘ฆ in the ๐‘žโˆ’11 -BSS

=โ‡’ ๐‘‘๐‘Ÿโˆ’1๐‘ฅ = 0 in the ๐‘žโˆ’11 -BSS (Lemma 2.1.4)

=โ‡’ ๐‘‘๐‘Ÿโˆ’1๐‘ฅ = 0 in the ๐‘žโˆž0 -BSS (Induction)

=โ‡’ ๐‘‘๐‘Ÿ๐‘ฅ = ๐‘ฆโ€ฒ in the ๐‘žโˆž0 -BSS for some ๐‘ฆโ€ฒ (Lemma 2.1.4)

=โ‡’ ๐‘‘๐‘Ÿ๐‘ฅ = ๐‘ฆโ€ฒ in the ๐‘žโˆ’11 -BSS (Map of SSs)

=โ‡’ ๐‘‘๐‘Ÿโˆ’1๐‘ฅโ€ฒ = ๐‘ฆโ€ฒ โˆ’ ๐‘ฆ in the ๐‘žโˆ’1

1 -BSS for some ๐‘ฅโ€ฒ (Corollary 2.1.5)

=โ‡’ ๐‘‘๐‘Ÿโˆ’1๐‘ฅโ€ฒ = ๐‘ฆโ€ฒ โˆ’ ๐‘ฆ in the ๐‘žโˆž0 -BSS (Induction)

=โ‡’ ๐‘‘๐‘Ÿ๐‘ฅ = ๐‘ฆ in the ๐‘žโˆž0 -BSS (Corollary 2.1.5)

49

Page 50: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

We remark that the statement about ๐‘ฆ lying in ๐ธ๐‘ +1,๐‘ก,๐‘ข,*1 (๐‘žโˆž0 ) is actually trivial: the

map ๐ธ๐‘ +1,๐‘ก,๐‘ข,*1 (๐‘žโˆž0 -BSS) โˆ’โ†’ ๐ธ๐‘ +1,๐‘ก,๐‘ข,*

1 (๐‘žโˆ’11 -BSS) is an isomorphism since ๐‘  โ‰ฅ 0 implies

๐‘ˆ(๐‘ ) < ๐‘ˆ(๐‘ + 1).

Corollary 4.2.3. ๐ธ๐‘ ,๐‘ก,๐‘ข,*โˆž (๐‘žโˆž0 -BSS) โˆ’โ†’ ๐ธ๐‘ ,๐‘ก,๐‘ข,*

โˆž (๐‘žโˆ’11 -BSS) is

1. injective if ๐‘ข < ๐‘ˆ(๐‘ โˆ’ 1) + (2๐‘2 โˆ’ 2)(๐‘ก+ 2)โˆ’ ๐‘ž;

2. surjective if ๐‘ข < ๐‘ˆ(๐‘ ) + (2๐‘2 โˆ’ 2)(๐‘ก+ 2)โˆ’ ๐‘ž.

Proof. Suppose ๐‘ข < ๐‘ˆ(๐‘ ) + (2๐‘2โˆ’ 2)(๐‘ก+ 2)โˆ’ ๐‘ž and that ๐‘ฆ โˆˆ ๐ธ๐‘ +1,๐‘ก,๐‘ข,*โˆž (๐‘žโˆž0 -BSS) maps

to zero in ๐ธ๐‘ +1,๐‘ก,๐‘ข,*โˆž (๐‘žโˆ’1

1 -BSS). This says that ๐‘‘๐‘Ÿ๐‘ฅ = ๐‘ฆ for some ๐‘ฅ in ๐ธ๐‘ ,๐‘ก,๐‘ข,*1 (๐‘žโˆž0 -BSS).

By the previous lemma ๐‘‘๐‘Ÿ๐‘ฅ = ๐‘ฆ, which says that ๐‘ฆ is zero in ๐ธ๐‘ +1,๐‘ก,๐‘ข,*โˆž (๐‘žโˆž0 -BSS). This

proves the first statement when ๐‘  > 0. For ๐‘  = 0, the result is clear since it holds at

the ๐ธ1-page and the only boundary is zero.

Suppose ๐‘ข < ๐‘ˆ(๐‘ )+(2๐‘2โˆ’2)(๐‘ก+2)โˆ’๐‘ž and we have an element of ๐ธ๐‘ ,๐‘ก,๐‘ข,*โˆž (๐‘žโˆ’1

1 -BSS).

We can write this element as ๐‘ฅ for ๐‘ฅ โˆˆ ๐ธ๐‘ ,๐‘ก,๐‘ข,*1 (๐‘žโˆž0 -BSS). Moreover, since ๐‘‘๐‘Ÿ๐‘ฅ = 0 for

each ๐‘Ÿ the previous lemma tells us that each ๐‘‘๐‘Ÿ๐‘ฅ = 0 for each ๐‘Ÿ, i.e. ๐‘ฅ is a permanent

cycle, as is required to prove the second statement.

Proposition 4.2.4. The localization map

๐ป๐‘ ,๐‘ข(๐‘ƒ ; [๐‘„/๐‘žโˆž0 ]๐‘ก) โˆ’โ†’ ๐ป๐‘ ,๐‘ข(๐‘ƒ ; [๐‘žโˆ’11 ๐‘„/๐‘žโˆž0 ]๐‘ก)

1. is injective if ๐‘ข < ๐‘ˆ(๐‘ โˆ’ 1) + (2๐‘2 โˆ’ 2)(๐‘ก+ 2)โˆ’ ๐‘ž;

2. is surjective if ๐‘ข < ๐‘ˆ(๐‘ ) + (2๐‘2 โˆ’ 2)(๐‘ก+ 2)โˆ’ ๐‘ž.

Proof. We have ๐ป*(๐‘ƒ ;Q) =โ‹ƒ๐‘ฃ ๐น

๐‘ฃ๐ป*(๐‘ƒ ;Q) and ๐น 0๐ป*(๐‘ƒ ;Q) = 0 when Q = ๐‘„/๐‘žโˆž0

or ๐‘žโˆ’11 ๐‘„/๐‘žโˆž0 and so the result follows from the previous corollary.

4.3 The localization map: the bigraded perspective

Recall the bigrading (๐œŽ, ๐œ†) of definition 4.1.7. We prove the analogues of the results

of the last section with respect to this bigrading.

50

Page 51: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

Proposition 4.3.1 ([10, 4.7(๐‘Ž)]). The localization map

๐ป๐‘ ,๐‘ข(๐‘ƒ ; [๐‘„/๐‘ž0]๐‘ก) โˆ’โ†’ ๐ป๐‘ ,๐‘ข(๐‘ƒ ; [๐‘žโˆ’1

1 ๐‘„/๐‘ž0]๐‘ก)

1. is a surjection if ๐œŽ โ‰ฅ 0 and ๐œ† < ๐‘ˆ(๐œŽ + 1)โˆ’ ๐‘ž โˆ’ 1;

2. is an isomorphism if ๐œŽ โ‰ฅ 0 and ๐œ† < ๐‘ˆ(๐œŽ)โˆ’ ๐‘ž โˆ’ 1.

Corollary 4.3.2. The localization map

๐ป๐‘ ,๐‘ข(๐‘ƒ ; [๐‘„/๐‘ž0]๐‘ก) โˆ’โ†’ ๐ป๐‘ ,๐‘ข(๐‘ƒ ; [๐‘žโˆ’1

1 ๐‘„/๐‘ž0]๐‘ก)

1. is a surjection if ๐œ† < ๐‘(๐‘โˆ’ 1)๐œŽ โˆ’ 1, i.e. ๐œ†โˆ’ ๐œŽ < (๐‘2 โˆ’ ๐‘โˆ’ 1)๐œŽ โˆ’ 1;

2. is an isomorphism if ๐œ† < ๐‘(๐‘โˆ’ 1)(๐œŽ โˆ’ 1)โˆ’ 1,

i.e. ๐œ†โˆ’ ๐œŽ < (๐‘2 โˆ’ ๐‘โˆ’ 1)(๐œŽ โˆ’ 1)โˆ’ 2.

Proof. Consider ๐‘”(๐œŽ) = ๐‘(๐‘โˆ’ 1)๐œŽ โˆ’ ๐‘ˆ(๐œŽ) for ๐œŽ โ‰ฅ 0. We have ๐‘”(1) = ๐‘(๐‘โˆ’ 3) + 2 โ‰ฅ

0 = ๐‘”(0) and ๐‘”(๐œŽ + 2) = ๐‘”(๐œŽ). Thus ๐‘(๐‘โˆ’ 1)๐œŽ โˆ’ ๐‘ˆ(๐œŽ) โ‰ค ๐‘(๐‘โˆ’ 3) + 2 and so

๐‘(๐‘โˆ’ 1)(๐œŽ โˆ’ 1)โˆ’ 1 โ‰ค[๐‘ˆ(๐œŽ) + ๐‘(๐‘โˆ’ 3) + 2

]โˆ’ ๐‘(๐‘โˆ’ 1)โˆ’ 1 = ๐‘ˆ(๐œŽ)โˆ’ ๐‘ž โˆ’ 1.

Together with the previous proposition, this proves the claim for ๐œŽ โ‰ฅ 0.

When ๐œŽ < 0, ๐ป๐‘ ,๐‘ข(๐‘ƒ ; [๐‘„/๐‘ž0]๐‘ก) = 0 and so the localization map is injective. We

just need to prove that ๐ป๐‘ ,๐‘ข(๐‘ƒ ; [๐‘žโˆ’11 ๐‘„/๐‘ž0]

๐‘ก) = 0 whenever ๐œ†โˆ’ ๐œŽ < (๐‘2 โˆ’ ๐‘โˆ’ 1)๐œŽ โˆ’ 1

and ๐œŽ < 0. We can only have [(๐œ†โˆ’ ๐œŽ) + 1]/(๐‘2 โˆ’ ๐‘โˆ’ 1) < ๐œŽ < 0 if (๐œ†โˆ’ ๐œŽ) + 1 < 0.

But then [(๐œ† โˆ’ ๐œŽ) + 1]/๐‘ž < ๐œŽ < 0 and the vanishing line of corollary 4.1.8 gives the

result.

This allows us to prove bigraded versions of all the results of the previous subsec-

tion. In particular, we have the following proposition.

51

Page 52: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

Proposition 4.3.3. The localization map

๐ป๐‘ ,๐‘ข(๐‘ƒ ; [๐‘„/๐‘žโˆž0 ]๐‘ก) โˆ’โ†’ ๐ป๐‘ ,๐‘ข(๐‘ƒ ; [๐‘žโˆ’11 ๐‘„/๐‘žโˆž0 ]๐‘ก)

1. is a surjection if ๐œ† < ๐‘(๐‘โˆ’ 1)(๐œŽ + 1)โˆ’ 2, i.e. ๐œ†โˆ’ ๐œŽ < (๐‘2 โˆ’ ๐‘โˆ’ 1)(๐œŽ + 1)โˆ’ 1;

2. is an isomorphism if ๐œ† < ๐‘(๐‘โˆ’ 1)๐œŽ โˆ’ 2, i.e. ๐œ†โˆ’ ๐œŽ < (๐‘2 โˆ’ ๐‘โˆ’ 1)๐œŽ โˆ’ 2.

52

Page 53: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

Chapter 5

Calculating the 1-line of the ๐‘ž-CSS;

its image in ๐ป*(๐ด)

This chapter contains our main result. We calculate the ๐‘žโˆ’11 -BSS

[๐ป*(๐‘ƒ ; ๐‘žโˆ’1

1 ๐‘„/๐‘ž0)[๐‘ž0

]]/๐‘žโˆž0

๐‘ฃ=โ‡’ ๐ป*(๐‘ƒ ; ๐‘žโˆ’1

1 ๐‘„/๐‘žโˆž0 ).

In the introduction we discussed โ€œprincipal towersโ€ and their โ€œside towers.โ€ Our

presentation of the results is divided up in this way, too.

5.1 The ๐ธ1-page of the ๐‘žโˆ’11 -BSS

Our starting place for the calculation of the ๐‘žโˆ’11 -BSS is a result of Miller in [10] which

gives a description of ๐ธ1(๐‘žโˆ’11 -BSS).

Definition 5.1.1. Denote by ๐‘ƒ โ€ฒ the Hopf algebra obtained from ๐‘ƒ by quotienting

out the ideal generated by the image of the ๐‘-th power map ๐‘ƒ โˆ’โ†’ ๐‘ƒ , ๐œ‰ โ†ฆโˆ’โ†’ ๐œ‰๐‘.

We can make F๐‘[๐‘ž1] into an algebra in ๐‘ƒ โ€ฒ-comodules by defining ๐‘ž1 to be a comod-

ule primitive. The map ๐‘„/๐‘ž0 โˆ’โ†’ ๐‘„/(๐‘ž0, ๐‘ž2, ๐‘ž3, . . .) = F๐‘[๐‘ž1] is an algebra map over

the Hopf algebra map ๐‘ƒ โˆ’โ†’ ๐‘ƒ โ€ฒ. Thus, we have the following induced map.

ฮฉ*(๐‘ƒ ; ๐‘žโˆ’11 ๐‘„/๐‘ž0) โˆ’โ†’ ฮฉ*(๐‘ƒ โ€ฒ;F๐‘[๐‘žยฑ1

1 ]) (5.1.2)

53

Page 54: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

Theorem 5.1.3 (Miller, [10, 4.4]). The map ๐ป*(๐‘ƒ ; ๐‘žโˆ’11 ๐‘„/๐‘ž0) โˆ’โ†’ ๐ป*(๐‘ƒ โ€ฒ;F๐‘[๐‘žยฑ1

1 ]) is

an isomorphism.

[๐œ‰๐‘›] andโˆ‘๐‘โˆ’1

๐‘—=1(โˆ’1)๐‘—โˆ’1

๐‘—[๐œ‰๐‘—๐‘›|๐œ‰๐‘โˆ’๐‘—๐‘› ] are cocycles in ฮฉ*(๐‘ƒ โ€ฒ) and so they define elements

โ„Ž๐‘›,0 and ๐‘๐‘›,0 in ๐ป*(๐‘ƒ โ€ฒ;F๐‘). The cohomology of a primitively generated Hopf algebra

is well understood and the following lemma is a consequence.

Lemma 5.1.4. ๐ป*(๐‘ƒ โ€ฒ;F๐‘) = ๐ธ[โ„Ž๐‘›,0 : ๐‘› โ‰ฅ 1]โŠ— F๐‘[๐‘๐‘›,0 : ๐‘› โ‰ฅ 1].

Corollary 5.1.5. ๐ป*(๐‘ƒ ; ๐‘žโˆ’11 ๐‘„/๐‘ž0) = F๐‘[๐‘žยฑ1

1 ]โŠ—๐ธ[โ„Ž๐‘›,0 : ๐‘› โ‰ฅ 1]โŠ— F๐‘[๐‘๐‘›,0 : ๐‘› โ‰ฅ 1]. The

(๐‘ , ๐‘ก, ๐‘ข) trigradings are as follows.

|๐‘ž1| = (0, 1, 2๐‘โˆ’ 2), |โ„Ž๐‘›,0| = (1, 0, 2๐‘๐‘› โˆ’ 2), |๐‘๐‘›,0| = (2, 0, ๐‘(2๐‘๐‘› โˆ’ 2)).

For our work it is convenient to change these exterior and polynomial generators

by units.

Notation 5.1.6. For ๐‘› โ‰ฅ 1, let ๐‘[๐‘›] = ๐‘๐‘›โˆ’1๐‘โˆ’1

, ๐œ–๐‘› = ๐‘žโˆ’๐‘[๐‘›]

1 โ„Ž๐‘›,0, and ๐œŒ๐‘› = ๐‘žโˆ’๐‘ยท๐‘[๐‘›]

1 ๐‘๐‘›,0.

Let ๐‘[0] = 0 and note that we have ๐‘[๐‘›+1] = ๐‘๐‘› + ๐‘[๐‘›] = ๐‘ ยท ๐‘[๐‘›] + 1 for ๐‘› โ‰ฅ 0.

Corollary 5.1.7. ๐ป*(๐‘ƒ ; ๐‘žโˆ’11 ๐‘„/๐‘ž0) = F๐‘[๐‘žยฑ1

1 ] โŠ— ๐ธ[๐œ–๐‘› : ๐‘› โ‰ฅ 1] โŠ— F๐‘[๐œŒ๐‘› : ๐‘› โ‰ฅ 1]. The

(๐‘ , ๐‘ก, ๐‘ข) trigradings are as follows.

|๐‘ž1| = (0, 1, 2๐‘โˆ’ 2), |๐œ–๐‘›| = (1,โˆ’๐‘[๐‘›], 0), |๐œŒ๐‘›| = (2, 1โˆ’ ๐‘[๐‘›+1], 0).

We make note of some elements that lift uniquely to ๐ป*(๐‘ƒ ;๐‘„/๐‘ž0).

Lemma 5.1.8. The elements

1, ๐‘ž2๐‘๐‘›โˆ’1

1 ๐œ–๐‘›, ๐‘1,0 = ๐‘ž๐‘1๐œŒ1, ๐‘ž2๐‘๐‘›

1 ๐œŒ๐‘› โˆˆ ๐ป*(๐‘ƒ ; ๐‘žโˆ’11 ๐‘„/๐‘ž0)

have unique lifts to ๐ป*(๐‘ƒ ;๐‘„/๐‘ž0). The same is true after multiplying by ๐‘ž๐‘›1 as long as

๐‘› โ‰ฅ 0.

54

Page 55: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

Proof. We use proposition 4.2.1. The (๐‘ , ๐‘ก, ๐‘ข) trigradings of the elements in the lemma

are

(0, 0, 0), (1, 2๐‘๐‘›โˆ’1 โˆ’ ๐‘[๐‘›], 2๐‘ž๐‘๐‘›โˆ’1), (2, 0, ๐‘ž๐‘), (2, 2๐‘๐‘› โˆ’ ๐‘[๐‘›+1] + 1, 2๐‘ž๐‘๐‘›),

respectively. In each case (๐‘ , ๐‘ก, ๐‘ข) satisfies ๐‘ข < ๐‘ˆ(๐‘  โˆ’ 1) + (2๐‘2 โˆ’ 2)(๐‘ก + 1) โˆ’ ๐‘ž and

๐‘ข < ๐‘ˆ(๐‘ ) + (2๐‘2 โˆ’ 2)(๐‘ก+ 1)โˆ’ ๐‘ž; the key inequalities one needs are ๐‘ž < 2๐‘2 โˆ’ 2 and

2๐‘ž๐‘๐‘›โˆ’1 < (2๐‘2 โˆ’ 2)(2๐‘๐‘›โˆ’1 โˆ’ ๐‘[๐‘›] + 1)โˆ’ ๐‘ž. (5.1.9)

The latter inequality is equivalent to (๐‘ + 1)๐‘[๐‘›] < 2๐‘๐‘› + ๐‘, which holds because

๐‘ โ‰ฅ 3. Since ๐‘ž < 2๐‘2 โˆ’ 2 multiplication by a positive power of ๐‘ž1 only makes things

better.

5.2 The first family of differentials, principal towers

5.2.1 Main results

Notation 5.2.1.1. We write .= to denote equality up to multiplication by an element

in Fร—๐‘ .

The main results of this section are as follows. The first concerns the ๐‘žโˆ’11 -BSS

and the second gives the corresponding result in the ๐‘„-BSS.

Proposition 5.2.1.2. For ๐‘› โ‰ฅ 1 and ๐‘˜ โˆˆ Z โˆ’ ๐‘Z we have the following differential

in the ๐‘žโˆ’11 -BSS.

๐‘‘๐‘[๐‘›]๐‘ž๐‘˜๐‘๐‘›โˆ’1

1.

= ๐‘ž๐‘˜๐‘๐‘›โˆ’1

1 ๐œ–๐‘›

Proposition 5.2.1.3. Let ๐‘› โ‰ฅ 1. We have the following differential in the ๐‘„-BSS.

๐‘‘๐‘๐‘›โˆ’1๐‘ž๐‘๐‘›โˆ’1

1.

= โ„Ž1,๐‘›โˆ’1

Moreover, if ๐‘˜ โˆˆ Zโˆ’ ๐‘Z and ๐‘˜ > 1, ๐‘‘๐‘[๐‘›]๐‘ž๐‘˜๐‘๐‘›โˆ’1

1 is defined in the ๐‘„-BSS.

55

Page 56: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

5.2.2 Quick proofs

The differentials in the ๐‘žโˆ’11 -BSS are derivations (lemma 3.6.4) and ๐‘‘๐‘[๐‘›]๐‘ž

โˆ’๐‘๐‘›1 = 0

(lemma 3.5.4). This means that proposition 5.2.1.2 follows quickly from the following

sub-proposition.

Proposition 5.2.2.1. For ๐‘› โ‰ฅ 1 we have the following differential in the ๐‘žโˆ’11 -BSS.

๐‘‘๐‘[๐‘›]๐‘ž๐‘๐‘›โˆ’1

1.

= ๐‘ž๐‘๐‘›โˆ’1

1 ๐œ–๐‘›

This is the consuming calculation of the section. Supposing this result for now,

we prove proposition 5.2.1.3.

Proof of proposition 5.2.1.3. The formula ๐‘‘(

[ ]๐‘ž๐‘๐‘›โˆ’1

1

)= [๐œ‰๐‘

๐‘›โˆ’1

1 ]๐‘ž๐‘๐‘›โˆ’1

0 in ฮฉ*(๐‘ƒ ;๐‘„), to-

gether with lemma 3.2.4 proves the first statement.

By lemma 3.4.1, we can verify the second statement in the ๐‘žโˆž0 -BSS. We have

๐‘ž๐‘ฃ0๐‘ž๐‘˜๐‘๐‘›โˆ’1

1 โˆˆ ๐ธ0,๐‘˜๐‘๐‘›โˆ’1+๐‘ฃ,๐‘˜๐‘ž๐‘๐‘›โˆ’1,๐‘ฃ1 (๐‘žโˆž0 -BSS)

and we will show that ๐‘žโˆ’๐‘[๐‘›]โˆ’1

0 ๐‘ž๐‘˜๐‘๐‘›โˆ’1

1 survives to the ๐ธ๐‘[๐‘›]-page. Proposition 5.2.1.2 and

lemma 4.2.2 say that it is enough to verify that (๐‘ , ๐‘ก, ๐‘ข) = (0, ๐‘˜๐‘๐‘›โˆ’1โˆ’ ๐‘[๐‘›]โˆ’ 1, ๐‘˜๐‘ž๐‘๐‘›โˆ’1)

satisfies ๐‘ข < ๐‘ˆ(๐‘ ) + (2๐‘2 โˆ’ 2)(๐‘ก + 2) โˆ’ ๐‘ž. Since ๐‘ž < 2๐‘2 โˆ’ 2 the worst case is when

๐‘˜ = 2 where the inequality is (5.1.9).

5.2.3 The proof of proposition 5.2.2.1

We prove proposition 5.2.2.1 via the following cocycle version of the statement.

Proposition 5.2.3.1. For each ๐‘› โ‰ฅ 1, there exist cocycles

๐‘ฅ๐‘› โˆˆ ฮฉ0(๐‘ƒ ; ๐‘žโˆ’11 ๐‘„/๐‘žโˆž0 ), ๐‘ฆ๐‘› โˆˆ ฮฉ1(๐‘ƒ ; ๐‘žโˆ’1

1 ๐‘„/๐‘ž0)

such that

1. ๐‘ž๐‘[๐‘›]โˆ’1

0 ๐‘ฅ๐‘› = ๐‘žโˆ’10 ๐‘ž๐‘

๐‘›โˆ’1

1 ,

56

Page 57: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

2. ๐‘ฆ๐‘› = ๐‘ž0๐‘‘(๐‘žโˆ’10 ๐‘ฅ๐‘›),

3. the image of ๐‘ฆ๐‘› in ฮฉ1(๐‘ƒ โ€ฒ;F๐‘[๐‘žยฑ11 ]) is (โˆ’1)๐‘›โˆ’1[๐œ‰๐‘›]๐‘žโˆ’๐‘

[๐‘›โˆ’1]

1 .

In the expression ๐‘ž0๐‘‘(๐‘žโˆ’10 ๐‘ฅ๐‘›), ๐‘žโˆ’1

0 ๐‘ฅ๐‘› denotes the element of ฮฉ0(๐‘ƒ ; ๐‘žโˆ’11 ๐‘„/๐‘žโˆž0 ) with

the following two properties:

1. multiplying by ๐‘ž0 gives ๐‘ฅ๐‘›;

2. the denominators of the terms in ๐‘žโˆ’10 ๐‘ฅ๐‘› have ๐‘ž0 raised to a power greater than

or equal to 2.

Thus, ๐‘ž0๐‘‘(๐‘žโˆ’10 ๐‘ฅ๐‘›) gives a particular representative for the image of the class of ๐‘ฅ๐‘›

under the boundary map ๐œ• : ๐ป0(๐‘ƒ ; ๐‘žโˆ’11 ๐‘„/๐‘žโˆž0 ) โˆ’โ†’ ๐ป1(๐‘ƒ ; ๐‘žโˆ’1

1 ๐‘„/๐‘ž0) coming from the

short exact sequence (3.5.1).

To illuminate the statement of the proposition we draw the relevant diagrams.

ฮฉ0(๐‘ƒ ; ๐‘žโˆ’11 ๐‘„/๐‘žโˆž0 ) ฮฉ0(๐‘ƒ ; ๐‘žโˆ’1

1 ๐‘„/๐‘žโˆž0 )๐‘ž๐‘

[๐‘›]โˆ’10oo

๐‘ž0๐‘‘(๐‘žโˆ’10 (โˆ’))

ฮฉ0(๐‘ƒ ; ๐‘žโˆ’1

1 ๐‘„/๐‘ž0)

55

ฮฉ1(๐‘ƒ ; ๐‘žโˆ’11 ๐‘„/๐‘ž0)

ฮฉ0(๐‘ƒ โ€ฒ;F๐‘[๐‘žยฑ1

1 ]) ฮฉ1(๐‘ƒ โ€ฒ;F๐‘[๐‘žยฑ11 ])

๐‘žโˆ’10 ๐‘ž๐‘

๐‘›โˆ’1

1 ๐‘ฅ๐‘›๐‘ž๐‘

[๐‘›]โˆ’10oo

_

๐‘ž0๐‘‘(๐‘žโˆ’10 (โˆ’))

๐‘ž๐‘

๐‘›โˆ’1

1_

,

66

๐‘ฆ๐‘›_

๐‘ž๐‘๐‘›โˆ’1

1 (โˆ’1)๐‘›โˆ’1[๐œ‰๐‘›]๐‘žโˆ’๐‘[๐‘›โˆ’1]

1

Passing to cohomology and using theorem 5.1.3, we see that the proposition implies

that ๐‘‘๐‘[๐‘›]๐‘ž๐‘๐‘›โˆ’1

1 = (โˆ’1)๐‘›โˆ’1๐‘žโˆ’๐‘[๐‘›โˆ’1]

1 โ„Ž๐‘›,0.

= ๐‘ž๐‘๐‘›โˆ’1

1 ๐œ–๐‘›, as required.

57

Page 58: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

We note that for the ๐‘› = 1 and ๐‘› = 2 cases of the proposition we can take

๐‘ฅ1 = ๐‘žโˆ’10 ๐‘ž1, ๐‘ฆ1 = [๐œ‰1], ๐‘ฅ2 = ๐‘žโˆ’๐‘โˆ’1

0 ๐‘ž๐‘1 โˆ’ ๐‘žโˆ’10 ๐‘žโˆ’1

1 ๐‘ž2, ๐‘ฆ2 = [๐œ‰2]๐‘žโˆ’11 + [๐œ‰1]๐‘ž

โˆ’21 ๐‘ž2.

Sketch proof of proposition 5.2.3.1. We proceed by induction on ๐‘›. So suppose that

we have cocycles ๐‘ฅ๐‘› and ๐‘ฆ๐‘› satisfying the statements in the proposition. Write ๐‘ƒ 0๐‘ฅ๐‘›

and ๐‘ƒ 0๐‘ฆ๐‘› for the cochains in which we have raised every symbol to the ๐‘th power. We

claim that:

1. ๐‘ƒ 0๐‘ฅ๐‘› and ๐‘ƒ 0๐‘ฆ๐‘› are cocyles;

2. ๐‘ž๐‘[๐‘›+1]โˆ’2

0 ๐‘ƒ 0๐‘ฅ๐‘› = ๐‘žโˆ’10 ๐‘ž๐‘

๐‘›

1 ;

3. ๐‘ƒ 0๐‘ฆ๐‘› = ๐‘ž0๐‘‘(๐‘žโˆ’10 ๐‘ƒ 0๐‘ฅ๐‘›).

Since ๐‘ฆ๐‘› maps to (โˆ’1)๐‘›โˆ’1[๐œ‰๐‘›]๐‘žโˆ’๐‘[๐‘›โˆ’1]

1 in ฮฉ1(๐‘ƒ โ€ฒ;F๐‘[๐‘žยฑ11 ]) and ๐œ‰๐‘๐‘› is zero in ๐‘ƒ โ€ฒ, ๐‘ƒ 0๐‘ฆ๐‘›

maps to 0. By theorem 5.1.3, we deduce that there exists a ๐‘ค๐‘› โˆˆ ฮฉ0(๐‘ƒ ; ๐‘žโˆ’11 ๐‘„/๐‘ž0)

with ๐‘‘๐‘ค๐‘› = ๐‘ƒ 0๐‘ฆ๐‘›. We summarize some of this information in the following diagram.

ฮฉ*(๐‘ƒ ; ๐‘žโˆ’11 ๐‘„/๐‘ž0) // ฮฉ*(๐‘ƒ ; ๐‘žโˆ’1

1 ๐‘„/๐‘žโˆž0 ) // ฮฉ*(๐‘ƒ ; ๐‘žโˆ’11 ๐‘„/๐‘žโˆž0 )

๐‘ค๐‘›_

๐‘‘

๐‘žโˆ’10 ๐‘ƒ 0๐‘ฅ๐‘›

//_

๐‘‘

๐‘ƒ 0๐‘ฅ๐‘›

๐‘ƒ 0๐‘ฆ๐‘› // ๐‘žโˆ’1

0 ๐‘ƒ 0๐‘ฆ๐‘›

Let ๐‘ฅ๐‘›+1 = ๐‘žโˆ’10 ๐‘ƒ 0๐‘ฅ๐‘›โˆ’ ๐‘žโˆ’1

0 ๐‘ค๐‘›, a cocycle in ฮฉ0(๐‘ƒ ; ๐‘žโˆ’11 ๐‘„/๐‘žโˆž0 ) and ๐‘ฆ๐‘›+1 = ๐‘ž0๐‘‘(๐‘žโˆ’1

0 ๐‘ฅ๐‘›+1),

a cocycle in ฮฉ1(๐‘ƒ ; ๐‘žโˆ’11 ๐‘„/๐‘ž0). We claim that:

1. ๐‘ž๐‘[๐‘›+1]โˆ’1

0 ๐‘ฅ๐‘›+1 = ๐‘žโˆ’10 ๐‘ž๐‘

๐‘›

1 ;

2. ๐‘ฆ๐‘›+1 = ๐‘ž0๐‘‘(๐‘žโˆ’10 ๐‘ฅ๐‘›+1);

3. the image of ๐‘ฆ๐‘›+1 in ฮฉ1(๐‘ƒ โ€ฒ;F๐‘[๐‘žยฑ11 ]) is (โˆ’1)๐‘›[๐œ‰๐‘›+1]๐‘ž

โˆ’๐‘[๐‘›]

1 .

58

Page 59: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

The first claim follows from the claim above that ๐‘ž๐‘[๐‘›+1]โˆ’2

0 ๐‘ƒ 0๐‘ฅ๐‘› = ๐‘žโˆ’10 ๐‘ž๐‘

๐‘›

1 , since then

๐‘ž๐‘[๐‘›+1]โˆ’1

0 ๐‘ฅ๐‘›+1 = ๐‘ž๐‘[๐‘›+1]โˆ’1

0 [๐‘žโˆ’10 ๐‘ƒ 0๐‘ฅ๐‘› โˆ’ ๐‘žโˆ’1

0 ๐‘ค๐‘›] = ๐‘ž๐‘[๐‘›+1]โˆ’2

0 ๐‘ƒ 0๐‘ฅ๐‘› = ๐‘žโˆ’10 ๐‘ž๐‘

๐‘›

1 . The second

claim holds by definition of ๐‘ฆ๐‘›+1.

In order to convert the sketch proof into a proof we must prove the first three

claims and the final claim. The next lemma takes care of the first two claims.

Lemma 5.2.3.2. Suppose that ๐‘ฅ โˆˆ ฮฉ0(๐‘ƒ ; ๐‘žโˆ’11 ๐‘„/๐‘žโˆž0 ) and ๐‘ฆ โˆˆ ฮฉ1(๐‘ƒ ; ๐‘žโˆ’1

1 ๐‘„/๐‘ž0) are

cocycles. Then ๐‘ƒ 0๐‘ฅ and ๐‘ƒ 0๐‘ฆ are cocyles, too. Moreover, ๐‘ž๐‘[๐‘›]โˆ’1

0 ๐‘ฅ = ๐‘žโˆ’10 ๐‘ž๐‘

๐‘›โˆ’1

1 implies

๐‘ž๐‘[๐‘›+1]โˆ’2

0 ๐‘ƒ 0๐‘ฅ = ๐‘žโˆ’10 ๐‘ž๐‘

๐‘›

1 .

Proof. The result is clear for ๐‘ƒ 0๐‘ฆ since Fr : ๐‘ƒ โˆ’โ†’ ๐‘ƒ , ๐œ‰ โ†ฆโˆ’โ†’ ๐œ‰๐‘ is a Hopf algebra map

and ๐‘žโˆ’11 ๐‘„/๐‘ž0 โˆ’โ†’ ๐‘žโˆ’1

1 ๐‘„/๐‘ž0, q โ†ฆโˆ’โ†’ q๐‘ is an algebra map over Fr.

Suppose that ๐‘ฅ and ๐‘ƒ 0๐‘ฅ involve negative powers of ๐‘ž0 at worst ๐‘žโˆ’๐‘›0 and that ๐‘ฅ

involves negative powers of ๐‘ž1 at worst ๐‘žโˆ’๐‘˜1 . Then we have the following sequence of

injections (recall definitions 3.1.4 through 3.1.7).

ฮฉ*(๐‘ƒ ;๐‘€๐‘›(๐‘˜)) // ฮฉ*(๐‘ƒ ;๐‘€๐‘›(๐‘˜๐‘)) // ฮฉ*(๐‘ƒ ; ๐‘žโˆ’11 ๐‘€๐‘›) // ฮฉ*(๐‘ƒ ; ๐‘žโˆ’1

1 ๐‘„/๐‘žโˆž0 )

๐‘ž๐‘˜๐‘๐‘›โˆ’1

1 ๐‘ฅ // ๐‘ฅ // ๐‘ฅ

๐‘ž๐‘˜๐‘๐‘›

1 ๐‘ƒ 0๐‘ฅ // ๐‘ƒ 0๐‘ฅ // ๐‘ƒ 0๐‘ฅ

Since ๐‘ฅ is a cocycle in ฮฉ0(๐‘ƒ ; ๐‘žโˆ’11 ๐‘„/๐‘žโˆž0 ), ๐‘ž๐‘˜๐‘

๐‘›โˆ’1

1 ๐‘ฅ is a cocycle in ฮฉ0(๐‘ƒ ;๐‘€๐‘›(๐‘˜)). Thus,

๐‘ž๐‘˜๐‘๐‘›

1 ๐‘ƒ 0๐‘ฅ is a cocycle in ฮฉ0(๐‘ƒ ;๐‘€๐‘›(๐‘˜๐‘)) and ๐‘ƒ 0๐‘ฅ is a cocycle in ฮฉ0(๐‘ƒ ; ๐‘žโˆ’11 ๐‘„/๐‘žโˆž0 ). Also,

๐‘ž๐‘[๐‘›]โˆ’1

0 ๐‘ฅ = ๐‘žโˆ’10 ๐‘ž๐‘

๐‘›โˆ’1

1 =โ‡’ ๐‘ž๐‘ยท๐‘[๐‘›]โˆ’๐‘

0 ๐‘ƒ 0๐‘ฅ = ๐‘žโˆ’๐‘0 ๐‘ž๐‘๐‘›

1 =โ‡’ ๐‘ž๐‘ยท๐‘[๐‘›]โˆ’1

0 ๐‘ƒ 0๐‘ฅ = ๐‘žโˆ’10 ๐‘ž๐‘

๐‘›

1 .

The proof is completed by noting that ๐‘ ยท ๐‘[๐‘›] โˆ’ 1 = ๐‘[๐‘›+1] โˆ’ 2.

The next lemma takes care of the third claim.

Lemma 5.2.3.3. Suppose ๐‘ฅ โˆˆ ฮฉ0(๐‘ƒ ; ๐‘žโˆ’11 ๐‘„/๐‘žโˆž0 ) is a cocycle and that

๐‘ž0๐‘‘(๐‘žโˆ’10 ๐‘ฅ) = ๐‘ฆ โˆˆ ฮฉ1(๐‘ƒ ; ๐‘žโˆ’1

1 ๐‘„/๐‘ž0).

Then ๐‘ž0๐‘‘(๐‘žโˆ’10 ๐‘ƒ 0๐‘ฅ) = ๐‘ƒ 0๐‘ฆ โˆˆ ฮฉ1(๐‘ƒ ; ๐‘žโˆ’1

1 ๐‘„/๐‘ž0).

59

Page 60: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

Proof. Suppose that ๐‘žโˆ’10 ๐‘ฅ and ๐‘žโˆ’๐‘0 ๐‘ƒ 0๐‘ฅ involve negative powers of ๐‘ž0 at worst ๐‘žโˆ’๐‘›0 and

that ๐‘žโˆ’10 ๐‘ฅ involves negative powers of ๐‘ž1 at worst ๐‘žโˆ’๐‘˜1 . Then we have the following

sequence of injections (recall definitions 3.1.4 through 3.1.7).

ฮฉ*(๐‘ƒ ;๐‘€๐‘›(๐‘˜)) // ฮฉ*(๐‘ƒ ;๐‘€๐‘›(๐‘˜๐‘)) // ฮฉ*(๐‘ƒ ; ๐‘žโˆ’11 ๐‘€๐‘›) // ฮฉ*(๐‘ƒ ; ๐‘žโˆ’1

1 ๐‘„/๐‘žโˆž0 )

๐‘ž๐‘˜๐‘๐‘›โˆ’1

1 ๐‘žโˆ’10 ๐‘ฅ // ๐‘žโˆ’1

0 ๐‘ฅ // ๐‘žโˆ’10 ๐‘ฅ

๐‘ž๐‘˜๐‘๐‘›

1 ๐‘žโˆ’๐‘0 ๐‘ƒ 0๐‘ฅ // ๐‘žโˆ’๐‘0 ๐‘ƒ 0๐‘ฅ // ๐‘žโˆ’๐‘0 ๐‘ƒ 0๐‘ฅ

We have

๐‘‘(๐‘ž๐‘˜๐‘๐‘›

1 ๐‘žโˆ’๐‘0 ๐‘ƒ 0๐‘ฅ) = ๐‘ƒ 0๐‘‘(๐‘ž๐‘˜๐‘๐‘›โˆ’1

1 ๐‘žโˆ’10 ๐‘ฅ) โˆˆ ฮฉ1(๐‘ƒ ;๐‘€๐‘›(๐‘˜๐‘))

and so

๐‘‘(๐‘žโˆ’๐‘0 ๐‘ƒ 0๐‘ฅ) = ๐‘žโˆ’๐‘˜๐‘๐‘›

1 ๐‘‘(๐‘ž๐‘˜๐‘๐‘›

1 ๐‘žโˆ’๐‘0 ๐‘ƒ 0๐‘ฅ) = ๐‘ƒ 0

[๐‘žโˆ’๐‘˜๐‘

๐‘›โˆ’1

1 ๐‘‘(๐‘ž๐‘˜๐‘๐‘›โˆ’1

1 ๐‘žโˆ’10 ๐‘ฅ)

]= ๐‘ƒ 0๐‘‘(๐‘žโˆ’1

0 ๐‘ฅ)

(5.2.3.4)

in ฮฉ1(๐‘ƒ ; ๐‘žโˆ’11 ๐‘„/๐‘žโˆž0 ). We obtain

๐‘ž0๐‘‘(๐‘žโˆ’10 ๐‘ƒ 0๐‘ฅ) = ๐‘ž0๐‘‘(๐‘ž๐‘โˆ’1

0 (๐‘žโˆ’๐‘0 ๐‘ƒ 0๐‘ฅ)) = ๐‘ž๐‘0๐‘‘(๐‘žโˆ’๐‘0 ๐‘ƒ 0๐‘ฅ) = ๐‘ƒ 0(๐‘ž0๐‘‘(๐‘žโˆ’10 ๐‘ฅ)) = ๐‘ƒ 0๐‘ฆ

where the penultimate equality comes from the preceding observation.

Proof of proposition 5.2.3.1. We are just left with the final claim, that the image of

๐‘ฆ๐‘›+1 in ฮฉ1(๐‘ƒ โ€ฒ;F๐‘[๐‘žยฑ11 ]) is (โˆ’1)๐‘›[๐œ‰๐‘›+1]๐‘ž

โˆ’๐‘[๐‘›]

1 .

Recall that ๐‘ฆ๐‘›+1 is defined to be ๐‘ž0๐‘‘(๐‘žโˆ’10 ๐‘ฅ๐‘›+1) and that ๐‘ฅ๐‘›+1 is ๐‘žโˆ’1

0 ๐‘ƒ 0๐‘ฅ๐‘› โˆ’ ๐‘žโˆ’10 ๐‘ค๐‘›.

We summarize this in the following diagram.

ฮฉ*(๐‘ƒ ; ๐‘žโˆ’11 ๐‘„/๐‘ž0) // ฮฉ*(๐‘ƒ ; ๐‘žโˆ’1

1 ๐‘„/๐‘žโˆž0 ) // ฮฉ*(๐‘ƒ ; ๐‘žโˆ’11 ๐‘„/๐‘žโˆž0 )

๐‘žโˆ’10 ๐‘ฅ๐‘›+1 = ๐‘žโˆ’2

0 ๐‘ƒ 0๐‘ฅ๐‘› โˆ’ ๐‘žโˆ’20 ๐‘ค๐‘›

//_

๐‘‘

๐‘ฅ๐‘›+1

๐‘ฆ๐‘›+1 // ๐‘žโˆ’1

0 ๐‘ฆ๐‘›+1

60

Page 61: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

When considering the image of ๐‘ฆ๐‘›+1 in ฮฉ1(๐‘ƒ โ€ฒ;F๐‘[๐‘žยฑ11 ]) we can ignore contributions

arising from ๐‘žโˆ’20 ๐‘ƒ 0๐‘ฅ๐‘› since (5.2.3.4) gives

๐‘‘(๐‘žโˆ’20 ๐‘ƒ 0๐‘ฅ๐‘›) = ๐‘ž๐‘โˆ’2

0 ๐‘ƒ 0๐‘‘(๐‘žโˆ’10 ๐‘ฅ๐‘›)

and so all terms involve a ๐œ‰๐‘— raised to a ๐‘-th power. Let

๐‘คโ€ฒ๐‘› = ๐‘ค๐‘› + (โˆ’1)๐‘›๐‘žโˆ’๐‘

[๐‘›]

1 ๐‘ž๐‘›+1 โˆˆ ฮฉ0(๐‘ƒ ; ๐‘žโˆ’11 ๐‘„/๐‘ž0)

so that

โˆ’๐‘žโˆ’20 ๐‘ค๐‘› = (โˆ’1)๐‘›๐‘žโˆ’2

0 ๐‘žโˆ’๐‘[๐‘›]

1 ๐‘ž๐‘›+1 โˆ’ ๐‘žโˆ’20 ๐‘คโ€ฒ

๐‘› โˆˆ ฮฉ0(๐‘ƒ ; ๐‘žโˆ’11 ๐‘„/๐‘žโˆž0 ).

As an example, we recall that

๐‘ฅ1 = ๐‘žโˆ’10 ๐‘ž1, ๐‘ฆ1 = [๐œ‰1], ๐‘ฅ2 = ๐‘žโˆ’๐‘โˆ’1

0 ๐‘ž๐‘1 โˆ’ ๐‘žโˆ’10 ๐‘žโˆ’1

1 ๐‘ž2, ๐‘ฆ2 = [๐œ‰2]๐‘žโˆ’11 + [๐œ‰1]๐‘ž

โˆ’21 ๐‘ž2;

we have

๐‘ค1 = ๐‘žโˆ’11 ๐‘ž2, ๐‘ค

โ€ฒ1 = 0, ๐‘ค2 = ๐‘žโˆ’2๐‘โˆ’1

1 ๐‘ž๐‘+12 โˆ’ ๐‘žโˆ’๐‘โˆ’1

1 ๐‘ž3, ๐‘คโ€ฒ2 = ๐‘žโˆ’2๐‘โˆ’1

1 ๐‘ž๐‘+12 .

We consider the contributions from the two terms in the expression for โˆ’๐‘žโˆ’20 ๐‘ค๐‘›

separately.

Lemma 5.2.3.5. The only term of ๐‘‘(๐‘žโˆ’20 ๐‘žโˆ’๐‘

[๐‘›]

1 ๐‘ž๐‘›+1), which is relevant to the image

of ๐‘ฆ๐‘›+1 in ฮฉ1(๐‘ƒ โ€ฒ;F๐‘[๐‘žยฑ11 ]), is [๐œ‰๐‘›+1]๐‘ž

โˆ’10 ๐‘žโˆ’๐‘

[๐‘›]

1 .

Proof. Recall definitions 3.1.4 and 3.1.6. We have a ๐‘ƒ -comodule map

๐‘€2(๐‘[๐‘›โˆ’1] + 1) โˆ’โ†’ ๐‘žโˆ’1

1 ๐‘€2 โŠ‚ ๐‘žโˆ’11 ๐‘„/๐‘žโˆž0 , ๐‘žโˆ’2

0 ๐‘ž๐‘โˆ’11 ๐‘ž๐‘›+1 โ†ฆโˆ’โ†’ ๐‘žโˆ’2

0 ๐‘žโˆ’๐‘[๐‘›]

1 ๐‘ž๐‘›+1.

Under the coaction map ๐‘„ โˆ’โ†’ ๐‘ƒ โŠ—๐‘„, we have

๐‘ž๐‘โˆ’11 โ†ฆโˆ’โ†’

โˆ‘๐‘–+๐‘—=๐‘โˆ’1

(โˆ’1)๐‘–๐œ‰๐‘–1 โŠ— ๐‘ž๐‘–0๐‘ž๐‘—1 and ๐‘ž๐‘›+1 โ†ฆโˆ’โ†’

โˆ‘๐‘Ÿ+๐‘ =๐‘›+1

๐œ‰๐‘๐‘ 

๐‘Ÿ โŠ— ๐‘ž๐‘ .

61

Page 62: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

Under the coaction map ๐‘žโˆ’10 ๐‘„ โˆ’โ†’ ๐‘ƒ โŠ— ๐‘žโˆ’1

0 ๐‘„, we have

๐‘žโˆ’20 ๐‘ž๐‘โˆ’1

1 ๐‘ž๐‘›+1 โ†ฆโˆ’โ†’โˆ‘

๐‘–+๐‘—=๐‘โˆ’1

โˆ‘๐‘Ÿ+๐‘ =๐‘›+1

(โˆ’1)๐‘–๐œ‰๐‘–1๐œ‰๐‘๐‘ 

๐‘Ÿ โŠ— ๐‘ž๐‘–โˆ’20 ๐‘ž๐‘—1๐‘ž๐‘ 

so that under the coaction map ๐‘žโˆ’11 ๐‘„/๐‘žโˆž0 โˆ’โ†’ ๐‘ƒ โŠ— ๐‘žโˆ’1

1 ๐‘„/๐‘žโˆž0 , we have

๐‘žโˆ’20 ๐‘žโˆ’๐‘

[๐‘›]

1 ๐‘ž๐‘›+1 โ†ฆโˆ’โ†’โˆ‘

๐‘–+๐‘—=๐‘โˆ’1

๐‘–=0,1

โˆ‘๐‘Ÿ+๐‘ =๐‘›+1

(โˆ’1)๐‘–๐œ‰๐‘–1๐œ‰๐‘๐‘ 

๐‘Ÿ โŠ— ๐‘ž๐‘–โˆ’20 ๐‘ž

๐‘—โˆ’๐‘(๐‘[๐‘›โˆ’1]+1)1 ๐‘ž๐‘ .

We know that terms involving ๐‘žโˆ’20 must eventually cancel in some way so we ignore

these. Because we are concerned with an image in ฮฉ1(๐‘ƒ โ€ฒ;F๐‘[๐‘žยฑ11 ]) we ignore terms

involving ๐œ‰๐‘—โ€™s raised to a power greater than or equal to ๐‘ and terms involving ๐‘ž๐‘—โ€™s

other than ๐‘ž1 and ๐‘ž0. Since ๐‘› โ‰ฅ 1, we are left with the term corresponding to ๐‘  = 0,

๐‘Ÿ = ๐‘›+ 1, ๐‘– = 0 and ๐‘— = ๐‘โˆ’ 1: it is ๐œ‰๐‘›+1 โŠ— ๐‘žโˆ’10 ๐‘žโˆ’๐‘

[๐‘›]

1 .

The proof of proposition 5.2.3.1 is almost complete. We just need to show that

๐‘‘(๐‘žโˆ’20 ๐‘คโ€ฒ

๐‘›) contributes nothing to the image of ๐‘ฆ๐‘›+1 in ฮฉ1(๐‘ƒ โ€ฒ;F๐‘[๐‘žยฑ11 ]). Recall that

๐‘คโ€ฒ๐‘› = ๐‘ค๐‘› + (โˆ’1)๐‘›๐‘žโˆ’๐‘

[๐‘›]

1 ๐‘ž๐‘›+1 โˆˆ ฮฉ0(๐‘ƒ ; ๐‘žโˆ’11 ๐‘„/๐‘ž0)

and that ๐‘‘๐‘ค๐‘› = ๐‘ƒ 0๐‘ฆ๐‘›.

Denote by ๐‘ƒ โ€ฒโ€ฒ the Hopf algebra obtained from ๐‘ƒ by quotienting out the ideal

generated by the image of the map ๐‘ƒ โˆ’โ†’ ๐‘ƒ , ๐œ‰ โ†ฆโˆ’โ†’ ๐œ‰๐‘2 .

Lemma 5.2.3.6.

๐‘‘๐‘คโ€ฒ๐‘› = ๐‘ƒ 0๐‘ฆ๐‘› + (โˆ’1)๐‘›

โˆ‘๐‘–+๐‘—=๐‘›+1

๐‘–,๐‘—โ‰ฅ1

[๐œ‰๐‘๐‘—

๐‘– ]๐‘žโˆ’๐‘[๐‘›]

1 ๐‘ž๐‘— โˆˆ ฮฉ1(๐‘ƒ ; ๐‘žโˆ’11 ๐‘„/๐‘ž0)

is in the kernel of the map ๐‘ƒ โŠ— ๐‘žโˆ’11 ๐‘„/๐‘ž0 โˆ’โ†’ ๐‘ƒ โ€ฒโ€ฒ โŠ— F๐‘[๐‘žยฑ1

1 ].

Proof. By the inductive hypothesis ๐‘ฆ๐‘› โ‰ก (โˆ’1)๐‘›โˆ’1[๐œ‰๐‘›]๐‘žโˆ’๐‘[๐‘›โˆ’1]

1 modulo the kernel of

๐‘ƒ โŠ— ๐‘žโˆ’11 ๐‘„/๐‘ž0 โˆ’โ†’ ๐‘ƒ โ€ฒ โŠ— F๐‘[๐‘žยฑ1

1 ]. So ๐‘ƒ 0๐‘ฆ๐‘› โ‰ก (โˆ’1)๐‘›โˆ’1[๐œ‰๐‘๐‘›]๐‘žโˆ’๐‘[๐‘›]+1

1 modulo the kernel of

62

Page 63: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

๐‘ƒ โŠ— ๐‘žโˆ’11 ๐‘„/๐‘ž0 โˆ’โ†’ ๐‘ƒ โ€ฒโ€ฒโŠ—F๐‘[๐‘žยฑ1

1 ]. (โˆ’1)๐‘›โˆ’1[๐œ‰๐‘๐‘›]๐‘žโˆ’๐‘[๐‘›]+1

1 cancels with the ๐‘— = 1 term of the

summation in the lemma statement.

Corollary 5.2.3.7. For each monomial ๐‘Š of ๐‘คโ€ฒ๐‘› not equal to a power of ๐‘ž1, there

exists a ๐‘— > 1 such that ๐‘ž๐‘๐‘— divides ๐‘Š .

Proof. The map ๐‘žโˆ’11 ๐‘„/๐‘ž0 โˆ’โ†’ ๐‘ƒ โŠ— ๐‘žโˆ’1

1 ๐‘„/๐‘ž0 โˆ’โ†’ ๐‘ƒ โŠ— F๐‘[๐‘žยฑ11 ] takes

๐‘ž๐‘˜1๐‘›1ยท ยท ยท ๐‘ž๐‘˜๐‘Ÿ๐‘›๐‘Ÿ

โ†ฆโˆ’โ†’ ๐œ‰๐‘˜1๐‘๐‘›1โˆ’1 ยท ยท ยท ๐œ‰๐‘˜๐‘Ÿ๐‘๐‘›๐‘Ÿโˆ’1 โŠ— ๐‘ž

โˆ‘๐‘˜๐‘–

1

and so it is injective with image F๐‘[๐œ‰๐‘1 , ๐œ‰๐‘2 , ๐œ‰

๐‘3 , . . .] โŠ— F๐‘[๐‘žยฑ1

1 ]. One sees that elements

๐‘ž๐‘˜1๐‘›1ยท ยท ยท ๐‘ž๐‘˜๐‘Ÿ๐‘›๐‘Ÿ

with ๐‘Ÿ โ‰ฅ 2, 1 = ๐‘›1 < . . . < ๐‘›๐‘Ÿ, ๐‘˜1 โˆˆ Z, ๐‘˜2, . . . , ๐‘˜๐‘Ÿ โˆˆ 1, 2, . . . , ๐‘โˆ’ 1 are not

sent to ker (๐‘ƒ โˆ’โ†’ ๐‘ƒ โ€ฒโ€ฒ) โŠ— F๐‘[๐‘žยฑ11 ]. By the previous lemma, each monomial of ๐‘คโ€ฒ

๐‘› not

equal to a power of ๐‘ž1 must contain some ๐‘ž๐‘— (๐‘— > 1) raised to a power greater than

or equal to ๐‘.

Since powers of ๐‘ž1 โˆˆ ฮฉ0(๐‘ƒ ; ๐‘žโˆ’11 ๐‘„/๐‘ž0) are cocycles we can assume that ๐‘ค๐‘› and ๐‘คโ€ฒ

๐‘›

do not contain powers of ๐‘ž1 as monomials.

Suppose no power of ๐‘ž1 worse than ๐‘žโˆ’๐‘˜๐‘1 appears in ๐‘คโ€ฒ๐‘›. Making use of the map

(see definitions 3.1.4 and 3.1.6)

ฮฉ*(๐‘ƒ ;๐‘€2(๐‘˜)) โˆ’โ†’ ฮฉ*(๐‘ƒ ; ๐‘žโˆ’11 ๐‘€2) โŠ‚ ฮฉ*(๐‘ƒ ; ๐‘žโˆ’1

1 ๐‘„/๐‘žโˆž0 ), ๐‘žโˆ’20 ๐‘ž๐‘˜๐‘1 ๐‘ค

โ€ฒ๐‘› โ†ฆโˆ’โ†’ ๐‘žโˆ’2

0 ๐‘คโ€ฒ๐‘›

we see that it is sufficient to analyze ๐‘‘(๐‘žโˆ’20 ๐‘ž๐‘˜๐‘1 ๐‘ค

โ€ฒ๐‘›). Viewing ๐‘ž๐‘˜๐‘1 ๐‘คโ€ฒ

๐‘› as lying in ฮฉ0(๐‘ƒ ;๐‘„),

we care about terms of ๐‘‘(๐‘ž๐‘˜๐‘1 ๐‘คโ€ฒ๐‘›) involving a single power of ๐‘ž0. From the previous

corollary we see that the boundary of every monomial in ๐‘คโ€ฒ๐‘› will involve terms which

consist of either a ๐œ‰๐‘— raised to a power greater than or equal to ๐‘ or a ๐‘ž๐‘— with ๐‘— > 1.

We conclude that the contribution from ๐‘‘(๐‘žโˆ’20 ๐‘คโ€ฒ

๐‘›) is zero in ฮฉ1(๐‘ƒ โ€ฒ;F๐‘[๐‘žยฑ11 ]).

Proving the part of proposition 5.3.1.2 which is left to section 5.3.4 relies heavily

on the ideas used in the previous proof. One may like to look ahead to that proof

while the ideas are still fresh.

63

Page 64: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

5.3 The second family of differentials, side towers

5.3.1 Main results

The main results of this section are as follows. The first concerns the ๐‘žโˆ’11 -BSS and

the second gives the corresponding result in the ๐‘„-BSS.

Proposition 5.3.1.1. For ๐‘› โ‰ฅ 1 and ๐‘˜ โˆˆ Z we have the following differential in the

๐‘žโˆ’11 -BSS.

๐‘‘๐‘๐‘›โˆ’1๐‘ž๐‘˜๐‘๐‘›

1 ๐œ–๐‘›.

= ๐‘ž๐‘˜๐‘๐‘›

1 ๐œŒ๐‘›

Proposition 5.3.1.2. Let ๐‘› โ‰ฅ 1. Then ๐‘ž๐‘๐‘›

1 ๐œ–๐‘› โˆˆ ๐ป*(๐‘ƒ ; ๐‘žโˆ’11 ๐‘„/๐‘ž0) lifts to an element

๐ป*(๐‘ƒ ;๐‘„/๐‘ž0) which we also denote by ๐‘ž๐‘๐‘›

1 ๐œ–๐‘›. We have the following differential in the

๐‘„-BSS.

๐‘‘๐‘๐‘›โˆ’๐‘[๐‘›]๐‘ž๐‘๐‘›

1 ๐œ–๐‘›.

= ๐‘1,๐‘›โˆ’1

Moreover, if ๐‘˜ โˆˆ Z and ๐‘˜ > 1, ๐‘‘๐‘๐‘›โˆ’1๐‘ž๐‘˜๐‘๐‘›

1 ๐œ–๐‘› is defined in the ๐‘„-BSS.

5.3.2 Quick proofs

The differentials in the ๐‘žโˆ’11 -BSS are derivations (lemma 3.6.4) and ๐‘‘๐‘๐‘›โˆ’1๐‘ž

ยฑ๐‘๐‘›1 = 0

(lemma 3.5.4). This means that proposition 5.3.1.1 follows quickly from the following

sub-proposition.

Proposition 5.3.2.1. For ๐‘› โ‰ฅ 1 we have the following differential in the ๐‘žโˆ’11 -BSS.

๐‘‘๐‘๐‘›โˆ’1๐‘ž๐‘๐‘›(๐‘+1)1 ๐œ–๐‘›

.= ๐‘ž

๐‘๐‘›(๐‘+1)1 ๐œŒ๐‘›

In this subsection, we prove this proposition assuming the following Kudo trans-

gression theorem.

Recall lemma 5.1.8, which says that ๐‘ž๐‘๐‘›โˆ’1(๐‘+1)

1 ๐œ–๐‘› and ๐‘ž๐‘๐‘›(๐‘+1)1 ๐œŒ๐‘› have unique lifts

to ๐ป*(๐‘ƒ ;๐‘„/๐‘ž0). We denote the lifts by the same name.

Proposition 5.3.2.2 (Kudo transgression). Suppose ๐‘ฅ, ๐‘ฆ โˆˆ ๐ป*(๐‘ƒ ;๐‘„/๐‘ž0), ๐‘ฅ has co-

homological degree 0, ๐‘ฆ has cohomological degree 1, and that ๐‘‘๐‘Ÿ๐‘ฅ = ๐‘ฆ in the ๐‘„-BSS.

64

Page 65: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

Then we have ๐‘‘(๐‘โˆ’1)๐‘Ÿ๐‘ฅ๐‘โˆ’1๐‘ฆ

.= โŸจ๐‘ฆโŸฉ๐‘, where โŸจ๐‘ฆโŸฉ๐‘ will be defined in the course of the

proof.

Moreover, โŸจ๐‘ž๐‘๐‘›โˆ’1(๐‘+1)

1 ๐œ–๐‘›โŸฉ๐‘ = ๐‘ž๐‘๐‘›(๐‘+1)1 ๐œŒ๐‘› in ๐ป*(๐‘ƒ ;๐‘„/๐‘ž0).

The Kudo transgression theorem is the consuming result of this section. Supposing

it for now, we prove proposition 5.3.2.1 and proposition 5.3.1.2, save for the claim

about ๐‘‘๐‘๐‘›โˆ’๐‘[๐‘›]๐‘ž๐‘๐‘›

1 ๐œ–๐‘›.

Proof of proposition 5.3.2.1. Proposition 5.2.1.2, proposition 5.2.1.3 and lemma 5.1.8

tells us that

๐‘‘๐‘[๐‘›]๐‘ž๐‘๐‘›โˆ’1(๐‘+1)1

.= ๐‘ž

๐‘๐‘›โˆ’1(๐‘+1)1 ๐œ–๐‘›

in the ๐‘„-BSS. By the Kudo transgression theorem we have

๐‘‘๐‘๐‘›โˆ’1๐‘ž๐‘๐‘›(๐‘+1)1 ๐œ–๐‘›

.= ๐‘ž

๐‘๐‘›(๐‘+1)1 ๐œŒ๐‘›

in the ๐‘„-BSS and hence (lemma 3.4.1), the ๐‘žโˆ’11 -BSS.

Proof of part of proposition 5.3.1.2. By lemma 3.4.1, we can verify the last statement

in the ๐‘žโˆž0 -BSS. We have

๐‘ž๐‘ฃ0๐‘ž๐‘˜๐‘๐‘›

1 ๐œ–๐‘› โˆˆ ๐ธ1,๐‘˜๐‘๐‘›โˆ’๐‘[๐‘›]+๐‘ฃ,๐‘˜๐‘ž๐‘๐‘›,๐‘ฃ1 (๐‘žโˆž1 -BSS).

Consider the case ๐‘ฃ = โˆ’๐‘๐‘›. By proposition 5.3.1.1 and lemma 4.2.2, it is enough to

show that (๐‘ , ๐‘ก, ๐‘ข) = (1, ๐‘˜๐‘๐‘›โˆ’ ๐‘[๐‘›]โˆ’ ๐‘๐‘›, ๐‘˜๐‘ž๐‘๐‘›) satisfies ๐‘ข < ๐‘ˆ(๐‘ ) + (2๐‘2โˆ’ 2)(๐‘ก+ 2)โˆ’ ๐‘ž.

The worst case is when ๐‘˜ = 2 where the inequality is implied by (5.1.9).

5.3.3 A Kudo transgression theorem

Suppose given a connected commutative Hopf algebra P, a commutative algebra Q in

P-comodules, and suppose that all nontrivial elements of P and Q have even degree.

In order to prove proposition 5.3.2.2, we mimic theorem 3.1 of [9] to define natural

operations

๐›ฝ๐‘ƒ 0 : ฮฉ0(P;Q) โˆ’โ†’ ฮฉ1(P;Q).

65

Page 66: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

Once these operations have been defined and we have observed their basic properties

the proof of the Kudo transgression proposition follows quickly.

The reader should refer to [10, pg. 75-76] for notation regarding twisting mor-

phisms and twisted tensor products. We write ๐œ for the universal twisting morphism

instead of [ ].

The first step towards proving the existence of the operation ๐›ฝ๐‘ƒ 0 is to describe a

map

ฮฆ : ๐‘Š โŠ— ฮฉ*(P;Q)โŠ—๐‘ โˆ’โ†’ ฮฉ*(P;Q),

which acts as the ๐œƒ appearing in [9, theorem 3.1]. This can be obtained by dualizing

the construction in [9, lemma 11.3]. Conveniently, this has already been documented

in [5, lemma 2.3].

0 // Q //

๐œ“Q ๐‘–0

0 //

๐‘–1

0 //

๐‘–2

. . .

0 // PโŠ—Q๐‘‘ //

๐œ–โŠ—1 ๐‘Ÿ0

PโŠ—PโŠ—Q๐‘‘ //

๐‘Ÿ1

PโŠ—PโŠ—PโŠ—Q๐‘‘ //

๐‘Ÿ2

. . .

0 // Q // 0 // 0 // . . .

Consider the diagram above. The top and bottom row are equal to the chain complex

consisting of Q concentrated in cohomological degree zero and the middle row is the

chain complex P โŠ—๐œ ฮฉ*(P;Q). We have the counit ๐œ– : P โˆ’โ†’ F๐‘ and the coaction

๐œ“Q : Q โˆ’โ†’ P โŠ—Q. The definition of a P-comodule gives 1 โˆ’ ๐‘Ÿ๐‘– = 0. We also have

1โˆ’ ๐‘–๐‘Ÿ = ๐‘‘๐‘† + ๐‘†๐‘‘ where ๐‘† is the contraction defined by

๐‘†(๐‘0[๐‘1| . . . |๐‘๐‘ ]๐‘ž) = ๐œ–(๐‘0)๐‘1[๐‘2| . . . |๐‘๐‘ ]๐‘ž.

[Note that just for this section ๐‘ž no longer means 2๐‘โˆ’ 2.]

Let ๐ถ๐‘ denote the cyclic group of order ๐‘ and let ๐‘Š be the standard F๐‘[๐ถ๐‘]-free

resolution of F๐‘ (see [5, definition 2.2]). We are careful to note that the boundary map

66

Page 67: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

in ๐‘Š decreases degree. Following Brunerโ€™s account in [5, lemma 2.3], we can extend

the multiplication map displayed at the top of the following diagram and construct

ฮฆ, a ๐ถ๐‘-equivariant map of DG P-comodules (with ฮฆ(๐‘Š๐‘–โŠ— [PโŠ—๐œ ฮฉ*(P;Q))โŠ—๐‘]๐‘—) = 0

if ๐‘๐‘– > (๐‘โˆ’ 1)๐‘—).

QโŠ—๐‘ //

๐‘’0โŠ—๐‘–โŠ—๐‘

Q

๐‘–

๐‘Š โŠ— (PโŠ—๐œ ฮฉ*(P;Q))โŠ—๐‘ ฮฆ // PโŠ—๐œ ฮฉ*(P;Q)

Precisely, we make the following definition.

Definition 5.3.3.1.

ฮฆ : ๐‘Š โŠ— (PโŠ—๐œ ฮฉ*(P;Q))โŠ—๐‘ โˆ’โ†’ PโŠ—๐œ ฮฉ*(P;Q)

is the map obtained by applying [5, lemma 2.3] to the following set up:

1. ๐‘Ÿ = ๐‘, ๐œŒ = โŸจ(1 2 ยท ยท ยท ๐‘)โŸฉ = ๐ถ๐‘ and ๐’ฑ = ๐‘Š ;

2. (๐‘…,๐ด) = (F๐‘,P), ๐‘€ = ๐‘ = Q and ๐พ = ๐ฟ = PโŠ—๐œ ฮฉ*(P;Q);

3. ๐‘“ : ๐‘€โŠ—๐‘Ÿ โˆ’โ†’ ๐‘ is the iterated multiplication QโŠ—๐‘ โˆ’โ†’ Q.

Letโ€™s recall the construction. Bruner defines

ฮฆ๐‘–,๐‘— : ๐‘Š๐‘– โŠ— [PโŠ—๐œ ฮฉ*(P;Q)โŠ—๐‘]๐‘— โˆ’โ†’ PโŠ—๐œ ฮฉ๐‘—โˆ’๐‘–(P;Q)

inductively. The gradings here are all (co)homological gradings.

As documented in [16, pg. 325, A1.2.15] there is a natural associative multiplica-

tion

(PโŠ—๐œ ฮฉ*(P;Q))โŠ—ฮ” (PโŠ—๐œ ฮฉ*(P;Q)) โˆ’โ†’ PโŠ—๐œ ฮฉ*(P;Q)

๐‘[๐‘1| ยท ยท ยท |๐‘๐‘ ]๐‘ž ยท ๐‘โ€ฒ[๐‘โ€ฒ1| ยท ยท ยท ๐‘โ€ฒ๐‘ก]๐‘žโ€ฒ =โˆ‘

๐‘๐‘โ€ฒ(0)[๐‘1๐‘โ€ฒ(1)| ยท ยท ยท |๐‘๐‘ ๐‘โ€ฒ(๐‘ )|๐‘ž(1)๐‘โ€ฒ1| ยท ยท ยท |๐‘ž(๐‘ก)๐‘โ€ฒ๐‘ก]๐‘ž(๐‘ก+1)๐‘ž

โ€ฒ.

(5.3.3.2)

67

Page 68: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

Here,โˆ‘๐‘โ€ฒ(0) โŠ— ยท ยท ยท โŠ— ๐‘โ€ฒ(๐‘ ) โˆˆ PโŠ—(๐‘ +1) is the ๐‘ -fold diagonal of ๐‘โ€ฒ โˆˆ P and

โˆ‘๐‘ž(1) โŠ— ยท ยท ยท โŠ—

๐‘ž(๐‘ก+1) โˆˆ PโŠ—๐‘กโŠ—Q is the ๐‘ก-fold diagonal of ๐‘ž โˆˆ Q. Also, โŠ—ฮ” denotes the internal tensor

product in the category of P-comodules as in [10, pg. 74]; one checks directly that

the multiplication above is a P-comodule map.

Iterating this multiplication gives a map

(PโŠ—๐œ ฮฉ*(P;Q))โŠ—๐‘ โˆ’โ†’ PโŠ—๐œ ฮฉ*(P;Q)

which determines ฮฆ0,*.

Suppose we have defined ฮฆ๐‘–โ€ฒ,๐‘— for ๐‘–โ€ฒ < ๐‘–. Since ฮฆ๐‘–,๐‘— = 0 for ๐‘— < ๐‘– we may suppose

that we have defined ฮฆ๐‘–,๐‘—โ€ฒ for ๐‘—โ€ฒ < ๐‘—. We define ฮฆ๐‘–,๐‘— using ๐ถ๐‘-equivariance, the

adjunction

P-comodulesforget // F๐‘-modules๐‘ƒโŠ—(โˆ’)

oo ๐‘“ // ๐‘“

and the contracting homotopy

๐‘‡ =

๐‘โˆ‘๐‘–=1

(๐‘–๐‘Ÿ)๐‘–โˆ’1 โŠ— ๐‘† โŠ— 1๐‘โˆ’๐‘–.

In particular, we define ฮฆ๐‘–,๐‘— on ๐‘’๐‘– โŠ— ๐‘ฅ by

ฮฆ๐‘–,๐‘— = ([๐‘‘ฮฆ๐‘–,๐‘—โˆ’1]โˆผ โˆ’ [ฮฆ๐‘–โˆ’1,๐‘—โˆ’1(๐‘‘โŠ— 1)]โˆผ)(1โŠ— ๐‘‡ ).

Our choice of ฮฆ is natural in P and Q because we specified the multiplication

determining ฮฆ0,* and the contracting homotopy ๐‘‡ in a natural way.

ฮฆ restricts to a natural ๐ถ๐‘-equivariant DG homomorphism

ฮฆ : ๐‘Š โŠ— ฮฉ*(P;Q)โŠ—๐‘ โˆ’โ†’ ฮฉ*(P;Q).

In the proof of proposition 5.3.2.2 we need the fact that ฮฆ interacts nicely with

P-comodule primitives.

68

Page 69: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

Definition 5.3.3.3. Suppose that ๐‘ฅ โˆˆ PโŠ—๐œฮฉ*(P;Q) and that ๐‘ž โˆˆ Q is a P-comodule

primitive. We write ๐‘ž๐‘ฅ for ๐‘ฅ ยท 1[]๐‘ž.

Lemma 5.3.3.4. Suppose that ๐‘ž โˆˆ Q is P-comodule primitive. Then

ฮฆ(๐‘’๐‘– โŠ— ๐‘ž๐‘–1๐‘ฅ1 โŠ— ยท ยท ยท โŠ— ๐‘ž๐‘–๐‘๐‘ฅ๐‘) = ๐‘žโˆ‘

๐‘— ๐‘–๐‘—ฮฆ(๐‘’๐‘– โŠ— ๐‘ฅ1 โŠ— ยท ยท ยท โŠ— ๐‘ฅ๐‘).

Proof. A special case of formula (5.3.3.2) gives

๐‘โ€ฒ[๐‘โ€ฒ1| ยท ยท ยท |๐‘โ€ฒ๐‘ ]๐‘žโ€ฒ ยท 1[]๐‘ž = ๐‘โ€ฒ[๐‘โ€ฒ1| ยท ยท ยท |๐‘โ€ฒ๐‘ ]๐‘žโ€ฒ๐‘ž.

Since ๐‘ž โˆˆ Q is a P-comodule primitive we also obtain

1[]๐‘ž ยท ๐‘โ€ฒ[๐‘โ€ฒ1| ยท ยท ยท ๐‘โ€ฒ๐‘ก]๐‘žโ€ฒ = ๐‘โ€ฒ[๐‘โ€ฒ1| ยท ยท ยท |๐‘โ€ฒ๐‘ก]๐‘žโ€ฒ๐‘ž;

left and right multiplication by 1[]๐‘ž agree. This observation proves the ๐‘– = 0 case of

the result since ฮฆ0,*(๐‘’0 โŠ— โˆ’ โŠ— . . . โŠ— โˆ’) is equal to the map (P โŠ—๐œ ฮฉ*(P;Q))โŠ—๐‘ โˆ’โ†’

PโŠ—๐œ ฮฉ*(P;Q). We can now make use of the inductive formula

ฮฆ๐‘–,๐‘— = ([๐‘‘ฮฆ๐‘–,๐‘—โˆ’1]โˆผ โˆ’ [ฮฆ๐‘–โˆ’1,๐‘—โˆ’1(๐‘‘โŠ— 1)]โˆผ)(1โŠ— ๐‘‡ ).

๐œ“Q, ๐œ– โŠ— 1, and ๐‘† commute with multiplication by ๐‘ž and so 1 โŠ— ๐‘‡ commutes with

multiplication by 1โŠ—๐‘ž๐‘–1โŠ— . . .โŠ—๐‘ž๐‘–๐‘ . By an inductive hypothesis we can suppose ฮฆ๐‘–,๐‘—โˆ’1

and ฮฆ๐‘–โˆ’1,๐‘—โˆ’1 have the required property. It follows that ๐‘‘ฮฆ๐‘–,๐‘—โˆ’1 and ฮฆ๐‘–โˆ’1,๐‘—โˆ’1(๐‘‘ โŠ— 1)

have the required property. The same is true of their adjoints and so the result holds

for the adjoint of ฮฆ๐‘–,๐‘— and thus for ฮฆ๐‘–,๐‘— itself.

We finally define ๐›ฝ๐‘ƒ 0 : ฮฉ0(P;Q) โˆ’โ†’ ฮฉ1(P;Q) and note a couple of its properties.

One should read the proof of [9, theorem 3.1]; this definition mimics that of ๐›ฝ๐‘ƒ0 :

๐พ0 โ†’ ๐พโˆ’1. In particular, we take ๐‘ž = ๐‘  = 0 and the reader will note that we omit a

๐œˆ(โˆ’1) in our definition.

Definition 5.3.3.5. Let ๐‘Ž โˆˆ ฮฉ0(P;Q). We define ๐›ฝ๐‘ƒ 0๐‘Ž โˆˆ ฮฉ1(P;Q) as follows.

69

Page 70: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

1. Let ๐‘ = ๐‘‘๐‘Ž โˆˆ ฮฉ1(P;Q).

2. We define ๐‘ก๐‘˜ โˆˆ ฮฉ*(P;Q)โŠ—๐‘ for 0 < ๐‘˜ < ๐‘.

In the following two formulae juxtaposition denotes tensor product.

Write ๐‘ = 2๐‘š+ 1 and define for 0 < ๐‘˜ โ‰ค ๐‘š

๐‘ก2๐‘˜ = (๐‘˜ โˆ’ 1)!โˆ‘๐ผ

๐‘๐‘–1๐‘Ž2๐‘๐‘–2๐‘Ž2 ยท ยท ยท ๐‘๐‘–๐‘˜๐‘Ž2

summed over all ๐‘˜-tuples ๐ผ = (๐‘–1, . . . , ๐‘–๐‘˜) such thatโˆ‘

๐‘— ๐‘–๐‘— = ๐‘โˆ’ 2๐‘˜.

Define for 0 โ‰ค ๐‘˜ < ๐‘š

๐‘ก2๐‘˜+1 = ๐‘˜!โˆ‘๐ผ

๐‘๐‘–1๐‘Ž2 ยท ยท ยท ๐‘๐‘–๐‘˜๐‘Ž2๐‘๐‘–๐‘˜+1๐‘Ž

summed over all (๐‘˜ + 1)-tuples ๐ผ = (๐‘–1, . . . , ๐‘–๐‘˜+1) such thatโˆ‘

๐‘— ๐‘–๐‘— = ๐‘โˆ’ 2๐‘˜ โˆ’ 1.

3. Define ๐‘ โˆˆ ๐‘Š โŠ— ฮฉ*(P;Q)โŠ—๐‘ by

๐‘ =๐‘šโˆ‘๐‘˜=1

(โˆ’1)๐‘˜ [๐‘’๐‘โˆ’2๐‘˜โˆ’1 โŠ— ๐‘ก2๐‘˜ โˆ’ ๐‘’๐‘โˆ’2๐‘˜ โŠ— ๐‘ก2๐‘˜โˆ’1] ,

so ๐‘‘๐‘ = โˆ’๐‘’๐‘โˆ’2 โŠ— ๐‘๐‘ [9, 3.1(8)].

4. ๐›ฝ๐‘ƒ 0๐‘Ž is defined to be ฮฆ๐‘.

Naturality of ๐›ฝ๐‘ƒ 0 follows from the naturality of ฮฆ. Using the observation made

in part (3) of the definition we immediately obtain the following lemma.

Lemma 5.3.3.6. Let ๐‘Ž โˆˆ ฮฉ0(P;Q). Then ๐‘‘(๐›ฝ๐‘ƒ 0๐‘Ž) = โˆ’ฮฆ(๐‘’๐‘โˆ’2 โŠ— (๐‘‘๐‘Ž)๐‘).

Moreover, we make the following definition.

Definition 5.3.3.7. Given ๐‘ โˆˆ ฮฉ1(P;Q), we define โŸจ๐‘โŸฉ๐‘ to be the element

ฮฆ(๐‘’๐‘โˆ’2 โŠ— ๐‘๐‘) โˆˆ ฮฉ2(P;Q).

70

Page 71: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

If ๐‘ฆ โˆˆ ๐ป1(P;Q) is represented by ๐‘, then โŸจ๐‘ฆโŸฉ๐‘ โˆˆ ๐ป2(P;Q) is defined to be the class

of โŸจ๐‘โŸฉ๐‘.

The fact that โŸจ๐‘ฆโŸฉ๐‘ is well-defined is used in [9, definition 2.2].

We are now ready to prove the first statement in the proposition.

Proof of the first part of proposition 5.3.2.2. By lemma 3.2.4 there exists ๐‘Ž and ๐‘ in

ฮฉ*(๐‘ƒ ;๐‘„) with ๐‘‘๐‘Ž = ๐‘ž๐‘Ÿ0๐‘ such that their images ๐‘Ž and ๐‘ in ฮฉ*(๐‘ƒ ;๐‘„/๐‘ž0) are cocycles

representing ๐‘ฅ and ๐‘ฆ, respectively.

Consider ๐›ฝ๐‘ƒ 0๐‘Ž. To get a grasp on what this element looks like we need to go back

to definition 5.3.3.5. Since ๐‘‘๐‘Ž = ๐‘ž๐‘Ÿ0๐‘ we should stare at the definition but replace ๐‘ by

๐‘ž๐‘Ÿ0๐‘. We note that the sum defining ๐‘ involves ๐‘ก1, . . . , ๐‘ก2๐‘š. ๐‘ก2๐‘š is given by

(๐‘šโˆ’ 1)!๐‘šโˆ’1โˆ‘๐‘–=0

๐‘Ž2๐‘–(๐‘ž๐‘Ÿ0๐‘)๐‘Ž2๐‘šโˆ’2๐‘–.

There are only single (๐‘ž๐‘Ÿ0๐‘)โ€™s in each term, whereas the terms in the sums defining

๐‘ก1, . . . , ๐‘ก2๐‘šโˆ’1 all involve at least two (๐‘ž๐‘Ÿ0๐‘)โ€™s. By lemma 5.3.3.4, ๐›ฝ๐‘ƒ 0๐‘Ž is divisible by

๐‘ž๐‘Ÿ0 and the image of ๐ด = (๐›ฝ๐‘ƒ 0๐‘Ž)/๐‘ž๐‘Ÿ0 in ฮฉ1(๐‘ƒ ;๐‘„/๐‘ž0) is a unit multiple of the image of

ฮฆ(๐‘’0 โŠ— ๐‘ก2๐‘š)/๐‘ž๐‘Ÿ0 in ฮฉ1(๐‘ƒ ;๐‘„/๐‘ž0). This latter image is equal to

๐ด = (๐‘šโˆ’ 1)!๐‘šโˆ’1โˆ‘๐‘–=0

๐‘Ž2๐‘– ๐‘ ๐‘Ž2๐‘šโˆ’2๐‘–,

where juxtaposition now denotes multiplication.

On the other hand, lemma 5.3.3.6, lemma 5.3.3.4 and definition 5.3.3.7 give

๐‘‘(๐›ฝ๐‘ƒ 0๐‘Ž).

= ฮฆ(๐‘’๐‘โˆ’2 โŠ— (๐‘ž๐‘Ÿ0๐‘)๐‘) = ๐‘ž๐‘๐‘Ÿ0 ฮฆ(๐‘’๐‘โˆ’2 โŠ— ๐‘๐‘) = ๐‘ž๐‘๐‘Ÿ0 โŸจ๐‘โŸฉ๐‘.

Letting ๐ต = ๐‘‘(๐›ฝ๐‘ƒ 0๐‘Ž)/๐‘ž๐‘๐‘Ÿ0 gives ๐‘‘๐ด = ๐‘ž(๐‘โˆ’1)๐‘Ÿ0 ๐ต, and the image ๐ต of ๐ต in ฮฉ2(๐‘ƒ ;๐‘„/๐‘ž0)

is a unit multiple of โŸจ๐‘โŸฉ๐‘, which represents โŸจ๐‘ฆโŸฉ๐‘.

The formula for ๐ด above, shows that it represents a unit multiple of ๐‘ฅ๐‘โˆ’1๐‘ฆ and so

we deduce from lemma 3.2.4 that ๐‘‘(๐‘โˆ’1)๐‘Ÿ๐‘ฅ๐‘โˆ’1๐‘ฆ

.= โŸจ๐‘ฆโŸฉ๐‘.

71

Page 72: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

To complete the proof of proposition 5.3.2.2 we need the following lemma.

Lemma 5.3.3.8. Let P be the primitively generated Hopf algebra F๐‘[๐œ‰]/(๐œ‰๐‘) where

the degree of ๐œ‰ is even. Let โ„Ž and ๐‘ be classes in ๐ป*(P;F๐‘) which are represented in

ฮฉ*P by [๐œ‰] and๐‘โˆ’1โˆ‘๐‘—=1

(โˆ’1)๐‘—โˆ’1

๐‘—[๐œ‰๐‘—|๐œ‰๐‘โˆ’๐‘—],

respectively. Then โŸจโ„ŽโŸฉ๐‘ .= ๐‘.

Proof. This follows from remarks 6.9 and 11.11 of [9]. Beware of the different use

of notation: our โŸจ๐‘ฆโŸฉ๐‘ is Mayโ€™s ๐›ฝ๐‘ƒ 0๐‘ฆ and May defines โŸจ๐‘ฆโŸฉ๐‘ using the โˆช1-product

associated to ฮฉ*P.

Finishing the proof of proposition 5.3.2.2. The previous lemma gives โŸจโ„Ž๐‘›,0โŸฉ๐‘.

= ๐‘๐‘›,0 in

๐ป*(F๐‘[๐œ‰๐‘›]/(๐œ‰๐‘๐‘›);F๐‘). Since ๐‘ž1 is primitive, definition 5.3.3.7 and lemma 5.3.3.4 show

that

โŸจ๐‘ž๐‘๐‘›โˆ’1(๐‘+1)

1 ๐œ–๐‘›โŸฉ๐‘ = โŸจ๐‘ž๐‘๐‘›โˆ’๐‘[๐‘›โˆ’1]

1 โ„Ž๐‘›,0โŸฉ๐‘.

= ๐‘ž๐‘๐‘›+1โˆ’๐‘ยท๐‘[๐‘›โˆ’1]

1 ๐‘๐‘›,0 = ๐‘ž๐‘๐‘›(๐‘+1)1 ๐œŒ๐‘›

in ๐ป*(F๐‘[๐œ‰๐‘›]/(๐œ‰๐‘๐‘›);F๐‘[๐‘žยฑ11 ]). We use naturality to transfer the required identity from

๐ป*(F๐‘[๐œ‰๐‘›]/(๐œ‰๐‘๐‘›);F๐‘[๐‘žยฑ11 ]) to ๐ป*(๐‘ƒ ;๐‘„/๐‘ž0). We have homomorphisms

๐ป*(F๐‘[๐œ‰๐‘›]/(๐œ‰๐‘๐‘›);F๐‘[๐‘žยฑ11 ]) // ๐ป*(๐‘ƒ โ€ฒ;F๐‘[๐‘žยฑ1

1 ]) ๐ป*(๐‘ƒ ; ๐‘žโˆ’11 ๐‘„/๐‘ž0)oo ๐ป*(๐‘ƒ ;๐‘„/๐‘ž0).oo

The first is induced by the inclusion F๐‘[๐œ‰๐‘›]/(๐œ‰๐‘๐‘›) โˆ’โ†’ ๐‘ƒ โ€ฒ. Theorem 5.1.3 tells us that

the second is an isomorphism. Lemma 5.1.8 says that ๐‘ž๐‘๐‘›โˆ’1(๐‘+1)

1 ๐œ–๐‘› and ๐‘ž๐‘๐‘›(๐‘+1)

1 ๐œŒ๐‘› have

unique lifts to ๐ป*(๐‘ƒ ;๐‘„/๐‘ž0). This completes the proof.

5.3.4 Completing the proof of proposition 5.3.1.2

We are left to show that ๐‘‘๐‘๐‘›โˆ’๐‘[๐‘›]๐‘ž๐‘๐‘›

1 ๐œ–๐‘›.

= ๐‘1,๐‘›โˆ’1 for ๐‘› โ‰ฅ 1. The ๐‘› = 1 case

๐‘‘๐‘โˆ’1๐‘ž๐‘โˆ’11 โ„Ž1,0

.= ๐‘1,0

72

Page 73: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

is given by proposition 5.3.1.1 and lemma 5.1.8 or by noting the following formula in

ฮฉ*(๐‘ƒ ;๐‘„) and using lemma 3.2.4.

๐‘‘

[๐‘โˆ’1โˆ‘๐‘—=1

(โˆ’1)๐‘—

๐‘—[๐œ‰๐‘—1]๐‘ž

๐‘—โˆ’10 ๐‘ž๐‘โˆ’๐‘—1

]=

๐‘โˆ’1โˆ‘๐‘—=1

(โˆ’1)๐‘—โˆ’1

๐‘—[๐œ‰๐‘—1|๐œ‰

๐‘โˆ’๐‘—1 ]๐‘ž๐‘โˆ’1

0

Suppose that for some ๐‘› โ‰ฅ 1 we have ๐‘Ž๐‘› โˆˆ ฮฉ1(๐‘ƒ ;๐‘„) and ๐‘๐‘› โˆˆ ฮฉ2(๐‘ƒ ;๐‘„), such that

1. ๐‘Ž๐‘› maps to (โˆ’1)๐‘›[๐œ‰๐‘›]๐‘ž๐‘๐‘›โˆ’๐‘[๐‘›]

1 in ฮฉ1(๐‘ƒ โ€ฒ;F๐‘[๐‘ž1]);

2. ๐‘๐‘› maps toโˆ‘๐‘โˆ’1

๐‘—=1(โˆ’1)๐‘—โˆ’1

๐‘—[๐œ‰๐‘—๐‘

๐‘›โˆ’1

1 |๐œ‰(๐‘โˆ’๐‘—)๐‘๐‘›โˆ’1

1 ] in ฮฉ2(๐‘ƒ ;๐‘„/๐‘ž0);

3. ๐‘‘๐‘Ž๐‘› = ๐‘ž๐‘๐‘›โˆ’๐‘[๐‘›]

0 ๐‘๐‘›.

๐‘ƒ 0๐‘Ž๐‘› lies in the injectivity range of proposition 4.2.1 and so using theorem 5.1.3

together with the diagram below we see that ฮฉ*(๐‘ƒ ;๐‘„/๐‘ž0) โˆ’โ†’ ฮฉ*(๐‘ƒ โ€ฒ;F๐‘[๐‘ž1]) induces

an injection on homology in this tridegree.

๐ป*(๐‘ƒ ;๐‘„/๐‘ž0) //

๐ป*(๐‘ƒ ; ๐‘žโˆ’11 ๐‘„/๐‘ž0)

โˆผ=

๐ป*(๐‘ƒ โ€ฒ;F๐‘[๐‘ž1]) // ๐ป*(๐‘ƒ โ€ฒ;F๐‘[๐‘žยฑ1

1 ])

We note that ๐‘ƒ 0๐‘Ž๐‘› maps to zero in ฮฉ1(๐‘ƒ โ€ฒ;F๐‘[๐‘ž1]), and so, because ฮฉ*(๐‘ƒ ;๐‘„) โˆ’โ†’

ฮฉ*(๐‘ƒ ;๐‘„/๐‘ž0) is surjective, we can find a ๐‘ค๐‘› โˆˆ ฮฉ0(๐‘ƒ ;๐‘„) such that ๐‘‘๐‘ค๐‘› = ๐‘ƒ 0๐‘Ž๐‘› in

ฮฉ1(๐‘ƒ ;๐‘„/๐‘ž0). In particular, ๐‘ƒ 0๐‘Ž๐‘› โˆ’ ๐‘‘๐‘ค๐‘› is divisible by ๐‘ž0. Let

๐‘Ž๐‘›+1 =๐‘ƒ 0๐‘Ž๐‘› โˆ’ ๐‘‘๐‘ค๐‘›

๐‘ž0.

We claim that ๐‘Ž๐‘›+1 and ๐‘๐‘›+1 = ๐‘ƒ 0๐‘๐‘› โˆˆ ฮฉ*(๐‘ƒ ;๐‘„) satisfy the following conditions.

1. ๐‘Ž๐‘›+1 maps to (โˆ’1)๐‘›+1[๐œ‰๐‘›+1]๐‘ž๐‘๐‘›+1โˆ’๐‘[๐‘›+1]

1 in ฮฉ1(๐‘ƒ โ€ฒ;F๐‘[๐‘ž1]);

2. ๐‘๐‘›+1 maps toโˆ‘๐‘โˆ’1

๐‘—=1(โˆ’1)๐‘—โˆ’1

๐‘—[๐œ‰๐‘—๐‘

๐‘›

1 |๐œ‰(๐‘โˆ’๐‘—)๐‘๐‘›1 ] in ฮฉ2(๐‘ƒ ;๐‘„/๐‘ž0);

3. ๐‘‘๐‘Ž๐‘›+1 = ๐‘ž๐‘๐‘›+1โˆ’๐‘[๐‘›+1]

0 ๐‘๐‘›+1.

73

Page 74: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

The second condition is clear. To see the last condition, note that ๐‘‘๐‘Ž๐‘› = ๐‘ž๐‘๐‘›โˆ’๐‘[๐‘›]

0 ๐‘๐‘›

implies ๐‘‘๐‘ƒ 0๐‘Ž๐‘› = ๐‘ž๐‘๐‘›+1โˆ’๐‘ยท๐‘[๐‘›]

0 ๐‘ƒ 0๐‘๐‘› = ๐‘ž๐‘๐‘›+1โˆ’๐‘[๐‘›+1]+1

0 ๐‘๐‘›+1, and so

๐‘‘๐‘Ž๐‘›+1 = ๐‘‘

(๐‘ƒ 0๐‘Ž๐‘› โˆ’ ๐‘‘๐‘ค๐‘›

๐‘ž0

)=๐‘‘๐‘ƒ 0๐‘Ž๐‘›๐‘ž0

= ๐‘ž๐‘๐‘›+1โˆ’๐‘[๐‘›+1]

0 ๐‘๐‘›+1.

For the first condition, we note that ๐‘ƒ 0๐‘Ž๐‘› will not contribute to the image of ๐‘Ž๐‘›+1 in

ฮฉ1(๐‘ƒ โ€ฒ;F๐‘[๐‘ž1]). Moreover, since

๐‘‘๐‘ค๐‘› = ๐‘ƒ 0๐‘Ž๐‘› = (โˆ’1)๐‘›[๐œ‰๐‘๐‘›]๐‘ž๐‘๐‘›+1โˆ’๐‘ยท๐‘[๐‘›]

1

in ๐‘ƒ โ€ฒโ€ฒ โŠ— F๐‘[๐‘ž1], we see, as in the proof of proposition 5.2.3.1, that the only relevant

term of ๐‘ค๐‘› is (โˆ’1)๐‘›๐‘ž๐‘๐‘›+1โˆ’๐‘[๐‘›+1]

1 ๐‘ž๐‘›+1, and that it contributes (โˆ’1)๐‘›+1[๐œ‰๐‘›+1]๐‘ž๐‘๐‘›+1โˆ’๐‘[๐‘›+1]

1

to โˆ’๐‘žโˆ’10 ๐‘‘๐‘ค๐‘›.

The proof is complete by induction and lemma 3.2.4.

5.4 The ๐ธโˆž-page of the ๐‘žโˆ’11 -BSS

In this subsection we obtain all the nontrivial differentials in the ๐‘žโˆ’11 -BSS. The main

result is simple to prove as long as one has the correct picture in mind; otherwise,

the proof may seem rather opaque. Figure 5-1 on page 77 displays some of Christian

Nassauโ€™s chart [14] for ๐ป*(๐ด) when ๐‘ = 3. His chart tells us about the object we are

trying to calculate in a range by proposition 4.2.4 and the facts that

๐ป*(๐‘ƒ ;๐‘„/๐‘žโˆž0 )/[F๐‘ [๐‘ž0]/๐‘žโˆž

]= ๐ป*(๐‘ƒ ;๐‘„)/

[F๐‘ [๐‘ž0]

]and ๐ป*(๐‘ƒ ;๐‘„) = ๐ป*(๐ด). A ๐‘ž0-tower corresponds to a differential in the ๐‘„-BSS. Labels

at the top of towers are the sources of the corresponding Bockstein differentials; labels

at the bottom of towers are the targets of the corresponding Bockstein differentials.

We note that the part of figure 5-1 in gray is not displayed in Nassauโ€™s charts and is

deduced from the results of this chapter.

Recall from corollary 5.1.7 that ๐ป*(๐‘ƒ ; ๐‘žโˆ’11 ๐‘„/๐‘ž0) is an exterior algebra tensored

74

Page 75: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

with a polynomial algebra, and so we have a convenient F๐‘-basis for it given by

monomials in ๐‘ž1, the ๐œ–๐‘›โ€™s and the ๐œŒ๐‘›โ€™s. We introduce the following notation.

Notation 5.4.1. Suppose given ๐ผ = (๐‘–1, . . . , ๐‘–๐‘Ÿ), ๐ฝ = (๐‘—1, . . . , ๐‘—๐‘ ), ๐พ = (๐‘˜1, . . . , ๐‘˜๐‘ )

such that ๐‘–1 > . . . > ๐‘–๐‘Ÿ โ‰ฅ 1, ๐‘—1 > . . . > ๐‘—๐‘  โ‰ฅ 1, and ๐‘˜๐‘Ž โ‰ฅ 0 for ๐‘Ž โˆˆ 1, . . . , ๐‘ . We

write

1. ๐œ–[๐ผ]๐œŒ[๐ฝ,๐พ] for the monomial ๐œ–๐‘–1 ยท ยท ยท ๐œ–๐‘–๐‘Ÿ๐œŒ๐‘˜1๐‘—1 ยท ยท ยท ๐œŒ๐‘˜๐‘ ๐‘—๐‘ 

;

2. ๐‘›[๐ผ] forโˆ‘

๐‘ ๐‘๐‘–๐‘โˆ’1;

3. ๐ผโˆ’ for (๐‘–1, . . . , ๐‘–๐‘Ÿโˆ’1) if ๐‘Ÿ โ‰ฅ 1;

4. ๐พโˆ’ for (๐‘˜1, . . . , ๐‘˜๐‘  โˆ’ 1) if ๐‘  โ‰ฅ 1 and ๐‘˜๐‘  โ‰ฅ 1.

Notice that the indexing of a monomial in the ๐œ–๐‘–โ€™s and ๐œŒ๐‘—โ€™s by ๐ผ, ๐ฝ and ๐พ is

unique once we impose the additional condition that ๐‘˜๐‘Ž โ‰ฅ 1 for each ๐‘Ž โˆˆ 1, . . . , ๐‘ .

Moreover,๐‘ž๐‘1 ๐œ–[๐ผ]๐œŒ[๐ฝ,๐พ]

gives a basis for ๐ป*(๐‘ƒ ; ๐‘žโˆ’1

1 ๐‘„/๐‘ž0).

We have the following corollary to proposition 5.2.1.2 and proposition 5.3.1.1 and

we shall see that it completely describes all the nontrivial differentials in the ๐‘žโˆ’11 -BSS.

Corollary 5.4.2. Suppose given ๐ผ = (๐‘–1, . . . , ๐‘–๐‘Ÿ), ๐ฝ = (๐‘—1, . . . , ๐‘—๐‘ ), ๐พ = (๐‘˜1, . . . , ๐‘˜๐‘ )

such that ๐‘–1 > . . . > ๐‘–๐‘Ÿ โ‰ฅ 1, ๐‘—1 > . . . > ๐‘—๐‘  โ‰ฅ 1, and ๐‘˜๐‘Ž โ‰ฅ 1 for ๐‘Ž โˆˆ 1, . . . , ๐‘ .

Suppose ๐‘Ÿ โ‰ฅ 1, that either ๐‘  = 0, or ๐‘  โ‰ฅ 1 and ๐‘–๐‘Ÿ โ‰ค ๐‘—๐‘ , and that ๐‘˜ โˆˆ Zโˆ’๐‘Z. Then

we have the following differential in the ๐‘žโˆ’11 -BSS.

๐‘‘๐‘[๐‘–๐‘Ÿ ]

[๐‘ž๐‘˜๐‘

๐‘–๐‘Ÿโˆ’1

1 ๐œ–[๐ผโˆ’]๐œŒ[๐ฝ,๐พ]

].

= ๐‘ž๐‘˜๐‘๐‘–๐‘Ÿโˆ’1

1 ๐œ–[๐ผ]๐œŒ[๐ฝ,๐พ] (5.4.3)

Suppose ๐‘  โ‰ฅ 1, that either ๐‘Ÿ = 0, or ๐‘Ÿ โ‰ฅ 1 and ๐‘–๐‘Ÿ > ๐‘—๐‘ , and that ๐‘˜ โˆˆ Z. Then we

have the following differential in the ๐‘žโˆ’11 -BSS.

๐‘‘๐‘๐‘—๐‘ โˆ’1

[๐‘ž๐‘˜๐‘

๐‘—๐‘ 

1 ๐œ–[๐ผ]๐œ–๐‘—๐‘ ๐œŒ[๐ฝ,๐พโˆ’]

].

= ๐‘ž๐‘˜๐‘๐‘—๐‘ 

1 ๐œ–[๐ผ]๐œŒ[๐ฝ,๐พ] (5.4.4)

Proof. By proposition 5.2.2.1, proposition 5.3.1.1, lemma 2.1.6 and lemma 3.6.4

we see that ๐‘ž๐‘›[๐ผ]1 ๐œ–[๐ผ]๐œŒ[๐ฝ,๐พ] is a permanent cycle. In the first case lemma 3.5.4

75

Page 76: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

gives ๐‘‘๐‘[๐‘–๐‘Ÿ ]๐‘žโˆ’๐‘›[๐ผโˆ’]1 = 0 and so the differential ๐‘‘๐‘[๐‘–๐‘Ÿ ]๐‘ž

๐‘˜๐‘๐‘–๐‘Ÿโˆ’1

1.

= ๐‘ž๐‘˜๐‘๐‘–๐‘Ÿโˆ’1

1 ๐œ–๐‘–๐‘Ÿ completes the

proof. In the second case lemma 3.5.4 gives ๐‘‘๐‘๐‘—๐‘ โˆ’1๐‘žโˆ’๐‘›[๐ผ]1 = 0 and so the differential

๐‘‘๐‘๐‘—๐‘ โˆ’1๐‘ž๐‘˜๐‘๐‘—๐‘ 

1 ๐œ–๐‘—๐‘ .

= ๐‘ž๐‘˜๐‘๐‘—๐‘ 

1 ๐œŒ๐‘—๐‘  completes the proof.

The content of the next proposition is that the previous corollary describes all of

the nontrivial differentials in the ๐‘žโˆ’11 -BSS.

Proposition 5.4.5. The union

1 โˆช ๐‘ฅ : ๐‘ฅ is a source of one of the differentials in corollary 5.4.2

โˆช ๐‘ฆ : ๐‘ฆ is a target of one of the differentials in corollary 5.4.2

is a basis for ๐ป*(๐‘ƒ ; ๐‘žโˆ’11 ๐‘„/๐‘ž0). Moreover, the sources and targets of the differentials

in corollary 5.4.2 are distinct and never equal to 1.

Proof. We note that for any ๐‘ = 0, ๐‘ž๐‘1 is the source of a differential like the one in

(5.4.3).

Take ๐ผ, ๐ฝ and ๐พ as in (5.4.3). We wish to show that ๐‘ž๐‘1 ๐œ–[๐ผ]๐œŒ[๐ฝ,๐พ] is the source or

target of one of the differentials in corollary 5.4.2. There are three cases (the second

case is empty if ๐‘–๐‘Ÿ = 1):

1. ๐‘ = ๐‘˜๐‘๐‘–๐‘Ÿโˆ’1 for some ๐‘˜ โˆˆ Zโˆ’ ๐‘Z.

2. ๐‘ = ๐‘˜๐‘๐‘–๐‘Ÿ+1โˆ’1 for some ๐‘˜ โˆˆ Zโˆ’ ๐‘Z and some ๐‘–๐‘Ÿ+1 โ‰ฅ 1 with ๐‘–๐‘Ÿ > ๐‘–๐‘Ÿ+1.

3. ๐‘ = ๐‘˜๐‘๐‘–๐‘Ÿ for some ๐‘˜ โˆˆ Z.

In the first case, ๐‘ž๐‘1 ๐œ–[๐ผ]๐œŒ[๐ฝ,๐พ] is the target of the differential (5.4.3). In the second

case, ๐‘ž๐‘1 ๐œ–[๐ผ]๐œŒ[๐ฝ,๐พ] is the source of a differential like the one in (5.4.3). In the third

case, ๐‘ž๐‘1 ๐œ–[๐ผ]๐œŒ[๐ฝ,๐พ] is the source of a differential like the one in (5.4.4).

These cases are highlighted in figure 5-1 when ๐‘ = 3, ๐ผ = (3), and ๐ฝ and ๐พ are

empty. The three cases are:

1. ๐‘ = 9๐‘˜ for some ๐‘˜ โˆˆ Zโˆ’ 3Z.

2. ๐‘ = 3๐‘–โˆ’1๐‘˜ for some ๐‘˜ โˆˆ Zโˆ’ 3Z and some ๐‘– with 1 โ‰ค ๐‘– < 3.

76

Page 77: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

180 185 190 195 200 205 210 215

15

20

25

30

35

40

45

50

55

๐‘กโˆ’ ๐‘ 

๐‘ 

๐‘ž0

๐‘ž451 ๐œ–1

๐‘ž451 ๐œŒ1

๐‘ž451 ๐œ–2

๐‘ž451 ๐œŒ2

๐‘ž451

๐‘ž451 ๐œ–3

๐‘ž481 ๐œ–1

๐‘ž481 ๐œŒ1

๐‘ž481

๐‘ž481 ๐œ–2

๐‘ž511

๐‘ž511 ๐œ–2

๐‘ž541 ๐œ–3

๐‘ž541 ๐œŒ3

๐‘ž541 ๐œ–1

๐‘ž541 ๐œŒ1

๐‘ž541 ๐œ–2

๐‘ž541 ๐œŒ2

๐‘ž541

๐‘ž541 ๐œ–4

๐‘ž461

๐‘ž461 ๐œ–1

๐‘ž471

๐‘ž471 ๐œ–1

๐‘ž461 ๐œŒ2

๐‘ž471 ๐œŒ2

๐‘ž481 ๐œŒ2

๐‘ž511 ๐œŒ2

๐‘ž481 ๐œ–3

๐‘ž491 ๐œ–3

๐‘ž501 ๐œ–3

๐‘ž511 ๐œ–3

๐‘ž491 ๐œŒ1

๐‘ž491 ๐œ–1๐œŒ1

๐‘ž501 ๐œŒ1

๐‘ž501 ๐œ–1๐œŒ1

๐‘ž491 ๐œ–2

๐‘ž491 ๐œ–2๐œ–1

๐‘ž501 ๐œ–2

๐‘ž501 ๐œ–2๐œ–1

๐‘ž511 ๐œ–1๐œŒ1

๐‘ž511 ๐œ–2๐œ–1

Figure 5-1: The relevant part of ๐ป๐‘ ,๐‘ก(๐ด) when ๐‘ = 3, in the range 175 < ๐‘กโˆ’ ๐‘  < 219.Vertical black lines indicate multiplication by ๐‘ž0. The top and/or bottom of selected๐‘ž0-towers are labelled by the source and/or target, respectively, of the correspondingBockstein differential.

77

Page 78: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

3. ๐‘ = 27๐‘˜ for some ๐‘˜ โˆˆ Z.

The first case is highlighted in blue when ๐‘˜ = 5; the second case is highlighted in

orange and we see both the cases ๐‘– = 1 and ๐‘– = 2 occurring; the last case is highlighted

in red when ๐‘˜ = 2.

Take ๐ผ, ๐ฝ and ๐พ as in (5.4.4). We wish to show that ๐‘ž๐‘1 ๐œ–[๐ผ]๐œŒ[๐ฝ,๐พ] is the source

or target of one of the differentials in corollary 5.4.2. There are two cases:

1. ๐‘ = ๐‘˜๐‘๐‘—๐‘  for some ๐‘˜ โˆˆ Z.

2. ๐‘ = ๐‘˜๐‘๐‘–๐‘Ÿ+1โˆ’1 for some ๐‘˜ โˆˆ Zโˆ’ ๐‘Z and some ๐‘–๐‘Ÿ+1 โ‰ฅ 1 with ๐‘–๐‘Ÿ+1 โ‰ค ๐‘—๐‘ .

In the first case, ๐‘ž๐‘1 ๐œ–[๐ผ]๐œŒ[๐ฝ,๐พ] is the target of the differential (5.4.4). In the second

case, ๐‘ž๐‘1 ๐œ–[๐ผ]๐œŒ[๐ฝ,๐พ] is the source of a differential like the one in (5.4.3).

These cases are highlighted in figure 5-1 when ๐‘ = 3, ๐ผ is empty, ๐ฝ = (2) and

๐พ = (1). The two cases are:

1. ๐‘ = 9๐‘˜ for some ๐‘˜ โˆˆ Z.

2. ๐‘ = 3๐‘–โˆ’1๐‘˜ for some ๐‘˜ โˆˆ Zโˆ’ 3Z and some ๐‘– with 1 โ‰ค ๐‘– โ‰ค 2.

The first case is highlighted in blue when ๐‘˜ = 5 and ๐‘˜ = 6; the second case is

highlighted in orange and we see both the cases ๐‘– = 1 and ๐‘– = 2 occurring.

Since the empty sequences ๐ผ, ๐ฝ and๐พ together with those satisfying the conditions

in (5.4.3) or (5.4.4) make up all choices of ๐ผ, ๐ฝ and ๐พ, and since๐‘ž๐‘1 ๐œ–[๐ผ]๐œŒ[๐ฝ,๐พ]

gives a basis for ๐ป*(๐‘ƒ ; ๐‘žโˆ’1

1 ๐‘„/๐‘ž0) (corollary 5.1.7), we have proved the first claim.

Careful inspection of the previous argument shows that this also proves the second

claim.

This proposition allows us to determine an F๐‘-basis of ๐ธโˆž(๐‘žโˆ’11 -BSS). We use the

following lemma.

Lemma 5.4.6. Suppose we have an indexing set ๐ด and an F๐‘-basis

1 โˆช ๐‘ฅ๐›ผ๐›ผโˆˆ๐ด โˆช ๐‘ฆ๐›ผ๐›ผโˆˆ๐ด

78

Page 79: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

of ๐ป*(๐‘ƒ ; ๐‘žโˆ’11 ๐‘„/๐‘ž0) such that each ๐‘ฅ๐›ผ supports a differential ๐‘‘๐‘Ÿ๐›ผ๐‘ฅ๐›ผ = ๐‘ฆ๐›ผ. Then we

have an F๐‘-basis of ๐ธโˆž(๐‘žโˆ’11 -BSS) given by the classes of

๐‘ž๐‘ฃ0 : ๐‘ฃ < 0

โˆช๐‘ž๐‘ฃ0๐‘ฅ๐›ผ : ๐›ผ โˆˆ ๐ด, โˆ’๐‘Ÿ๐›ผ โ‰ค ๐‘ฃ < 0

.

In the above statement, we intend for 1, the ๐‘ฅ๐›ผโ€™s and the ๐‘ฆ๐›ผโ€™s to be distinct as in

proposition 5.4.5.

Proof. Let ๐‘ฃ < 0. We see make some observations.

1. ๐ธ*,*,*,๐‘ฃ1 โˆฉ

โ‹ƒ๐‘ <๐‘Ÿ im ๐‘‘๐‘  has basis ๐‘ž๐‘ฃ0๐‘ฆ๐›ผ : ๐›ผ โˆˆ ๐ด, ๐‘Ÿ๐›ผ < ๐‘Ÿ.

2. ๐‘ž๐‘ฃ0๐‘ฆ๐›ผ : ๐›ผ โˆˆ ๐ด, ๐‘Ÿ๐›ผ = ๐‘Ÿ is independent in ๐ธ*,*,*,๐‘ฃ1 /

(๐ธ*,*,*,๐‘ฃ

1 โˆฉโ‹ƒ๐‘ <๐‘Ÿ im ๐‘‘๐‘ 

).

3. ๐ธ*,*,*,๐‘ฃ1 โˆฉ

โ‹‚๐‘ <๐‘Ÿ ker ๐‘‘๐‘  has basis

๐‘ž๐‘ฃ0

โˆช๐‘ž๐‘ฃ0๐‘ฅ๐›ผ : ๐›ผ โˆˆ ๐ด, ๐‘Ÿ๐›ผ โ‰ฅ min๐‘Ÿ,โˆ’๐‘ฃ

โˆช๐‘ž๐‘ฃ0๐‘ฆ๐›ผ : ๐›ผ โˆˆ ๐ด

.

4. ๐ธ*,*,*,๐‘ฃโˆž = (๐ธ*,*,*,๐‘ฃ

1 โˆฉโ‹‚๐‘  ker ๐‘‘๐‘ ) / (๐ธ*,*,*,๐‘ฃ

1 โˆฉโ‹ƒ๐‘  im ๐‘‘๐‘ ) has basis

๐‘ž๐‘ฃ0

โˆช๐‘ž๐‘ฃ0๐‘ฅ๐›ผ : ๐›ผ โˆˆ ๐ด, ๐‘Ÿ๐›ผ โ‰ฅ โˆ’๐‘ฃ

.

We see that ๐‘ž๐‘ฃ0 is a basis element for ๐ธ*,*,*,๐‘ฃโˆž for all ๐‘ฃ < 0 and that ๐‘ž๐‘ฃ0๐‘ฅ๐›ผ is a basis

element for ๐ธ*,*,*,๐‘ฃโˆž as long as โˆ’๐‘Ÿ๐›ผ โ‰ค ๐‘ฃ < 0. This completes the proof.

We state the relevant corollary, a description of the ๐ธโˆž-page in the next section.

Of course, this allows us to find a basis of ๐ป*(๐‘ƒ ; ๐‘žโˆ’11 ๐‘„/๐‘žโˆž0 ) if we wish.

5.5 Summary of main results

We have completely calculated the ๐‘žโˆ’11 -BSS.

Theorem 5.5.1. In the ๐‘žโˆ’11 -BSS we have two families of differentials. For ๐‘› โ‰ฅ 1,

1. ๐‘‘๐‘[๐‘›]๐‘ž๐‘˜๐‘๐‘›โˆ’1

1.

= ๐‘ž๐‘˜๐‘๐‘›โˆ’1

1 ๐œ–๐‘›, whenever ๐‘˜ โˆˆ Zโˆ’ ๐‘Z;

79

Page 80: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

2. ๐‘‘๐‘๐‘›โˆ’1๐‘ž๐‘˜๐‘๐‘›

1 ๐œ–๐‘›.

= ๐‘ž๐‘˜๐‘๐‘›

1 ๐œŒ๐‘›, whenever ๐‘˜ โˆˆ Z.

Together with the fact that ๐‘‘๐‘Ÿ1 = 0 for ๐‘Ÿ โ‰ฅ 1, these two families of differentials

determine the ๐‘žโˆ’11 -BSS.

Corollary 5.5.2. ๐ธโˆž(๐‘žโˆ’11 -BSS) has an F๐‘-basis given by the classes of the following

elements.

๐‘ž๐‘ฃ0 : ๐‘ฃ < 0

โˆช

๐‘ž๐‘ฃ0๐‘ž

๐‘˜๐‘๐‘–๐‘Ÿโˆ’1

1 ๐œ–[๐ผโˆ’]๐œŒ[๐ฝ,๐พ] : ๐ผ, ๐ฝ,๐พ, ๐‘˜ satisfy (5.4.3), โˆ’๐‘[๐‘–๐‘Ÿ] โ‰ค ๐‘ฃ < 0

โˆช

๐‘ž๐‘ฃ0๐‘ž

๐‘˜๐‘๐‘—๐‘ 

1 ๐œ–[๐ผ]๐œ–๐‘—๐‘ ๐œŒ[๐ฝ,๐พโˆ’] : ๐ผ, ๐ฝ,๐พ, ๐‘˜ satisfy (5.4.4), 1โˆ’ ๐‘๐‘—๐‘  โ‰ค ๐‘ฃ < 0

We have also obtained useful information about the ๐‘„-BSS.

Lemma 5.5.3. The elements

1, ๐‘ž2๐‘๐‘›โˆ’1

1 ๐œ–๐‘›, ๐‘ž2๐‘๐‘›

1 ๐œŒ๐‘› โˆˆ ๐ป*(๐‘ƒ ; ๐‘žโˆ’11 ๐‘„/๐‘ž0)

have unique lifts to ๐ป*(๐‘ƒ ;๐‘„/๐‘ž0). The same is true after multiplying by ๐‘ž๐‘›1 as long as

๐‘› โ‰ฅ 0.

We give the lifts the same name.

Theorem 5.5.4. Let ๐‘› โ‰ฅ 1. We have the following differentials in the ๐‘„-BSS.

1. ๐‘‘๐‘๐‘›โˆ’1๐‘ž๐‘๐‘›โˆ’1

1.

= โ„Ž1,๐‘›โˆ’1;

2. ๐‘‘๐‘[๐‘›]๐‘ž๐‘˜๐‘๐‘›โˆ’1

1.

= ๐‘ž๐‘˜๐‘๐‘›โˆ’1

1 ๐œ–๐‘›, whenever ๐‘˜ โˆˆ Zโˆ’ ๐‘Z and ๐‘˜ > 1;

3. ๐‘‘๐‘๐‘›โˆ’๐‘[๐‘›]๐‘ž๐‘๐‘›

1 ๐œ–๐‘›.

= ๐‘1,๐‘›โˆ’1;

4. ๐‘‘๐‘๐‘›โˆ’1๐‘ž๐‘˜๐‘๐‘›

1 ๐œ–๐‘›.

= ๐‘ž๐‘˜๐‘๐‘›

1 ๐œŒ๐‘›, whenever ๐‘˜ โˆˆ Z and ๐‘˜ > 1.

80

Page 81: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

Chapter 6

The localized algebraic Novikov

spectral sequence

In this chapter we calculate the localized algebraic Novikov spectral sequence

๐ป*(๐‘ƒ ; ๐‘žโˆ’11 ๐‘„/๐‘žโˆž0 )

๐‘ก=โ‡’ ๐ป*(๐ต๐‘ƒ*๐ต๐‘ƒ ; ๐‘ฃโˆ’1

1 ๐ต๐‘ƒ*/๐‘โˆž).

6.1 Algebraic Novikov spectral sequences

Recall that the coefficient ring of the Brown-Peterson spectrum ๐ต๐‘ƒ is the polyno-

mial algebra Z(๐‘)[๐‘ฃ1, ๐‘ฃ2, ๐‘ฃ3, . . .] on the Hazewinkel generators. Moreover, ๐ต๐‘ƒ*๐ต๐‘ƒ =

๐ต๐‘ƒ*[๐‘ก1, ๐‘ก2, ๐‘ก3, . . .] together with ๐ต๐‘ƒ* defines a Hopf algebroid [13, ยง2].

๐ต๐‘ƒ* admits a filtration by invariant ideals, powers of ๐ผ = ker (๐ต๐‘ƒ* โˆ’โ†’ F๐‘),

and we have ๐‘„ = gr*๐ต๐‘ƒ*. Moreover, this allows us to filter the cobar construction

ฮฉ*(๐ต๐‘ƒ*๐ต๐‘ƒ ) by setting ๐น ๐‘กฮฉ๐‘ (๐ต๐‘ƒ*๐ต๐‘ƒ ) = ๐ผ ๐‘กฮฉ๐‘ (๐ต๐‘ƒ*๐ต๐‘ƒ ), and we have

gr๐‘กฮฉ๐‘ (๐ต๐‘ƒ*๐ต๐‘ƒ ) = ฮฉ๐‘ (๐‘ƒ ;๐‘„๐‘ก).

In this way we obtain the algebraic Novikov spectral sequence

๐ธ๐‘ ,๐‘ก,๐‘ข1 (alg.NSS) = ๐ป๐‘ ,๐‘ข(๐‘ƒ ;๐‘„๐‘ก)

๐‘ก=โ‡’ ๐ป๐‘ ,๐‘ข(๐ต๐‘ƒ*๐ต๐‘ƒ );

81

Page 82: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

๐‘‘๐‘Ÿ has degree (1, ๐‘Ÿ, 0). This makes sense of the terminology โ€œNovikov weight.โ€

One motivation for using the algebraic Novikov spectral is to make comparisons

with the Adams spectral sequence, and so we reindex it:

๐ธ๐‘ ,๐‘ก,๐‘ข2 (alg.NSS) = ๐ป๐‘ ,๐‘ข(๐‘ƒ ;๐‘„๐‘ก)

๐‘ก=โ‡’ ๐ป๐‘ ,๐‘ข(๐ต๐‘ƒ*๐ต๐‘ƒ )

and the degree of ๐‘‘๐‘Ÿ is (1, ๐‘Ÿ โˆ’ 1, 0).

๐‘ โˆˆ ๐ต๐‘ƒ* is a ๐ต๐‘ƒ*๐ต๐‘ƒ -comodule primitive and so ๐ต๐‘ƒ*/๐‘๐‘› and ๐‘โˆ’1๐ต๐‘ƒ* are ๐ต๐‘ƒ*๐ต๐‘ƒ -

comodules; define ๐ต๐‘ƒ*/๐‘โˆž by the following exact sequence of ๐ต๐‘ƒ*๐ต๐‘ƒ -comodules.

0 // ๐ต๐‘ƒ* // ๐‘โˆ’1๐ต๐‘ƒ* // ๐ต๐‘ƒ*/๐‘โˆž // 0

We find that ๐‘ฃ๐‘๐‘›โˆ’1

1 โˆˆ ๐ต๐‘ƒ*/๐‘๐‘› is a ๐ต๐‘ƒ*๐ต๐‘ƒ -comodule primitive and so we may define

๐ต๐‘ƒ*๐ต๐‘ƒ -comodules ๐‘ฃโˆ’11 ๐ต๐‘ƒ*/๐‘

๐‘› and ๐‘ฃโˆ’11 ๐ต๐‘ƒ*/๐‘

โˆž by mimicking the constructions in

section 3.1.

By letting ๐น ๐‘กฮฉ๐‘ (๐ต๐‘ƒ*๐ต๐‘ƒ ; ๐‘ฃโˆ’11 ๐ต๐‘ƒ*/๐‘

โˆž) = ๐ผ ๐‘กฮฉ๐‘ (๐ต๐‘ƒ*๐ต๐‘ƒ ; ๐‘ฃโˆ’11 ๐ต๐‘ƒ*/๐‘

โˆž) and reindex-

ing, as above, we obtain the localized algebraic Novikov spectral sequence (loc.alg.NSS)

๐ธ๐‘ ,๐‘ก,๐‘ข2 (loc.alg.NSS) = ๐ป๐‘ ,๐‘ข(๐‘ƒ ; [๐‘žโˆ’1

1 ๐‘„/๐‘žโˆž0 ]๐‘ก)๐‘ก

=โ‡’ ๐ป๐‘ ,๐‘ข(๐ต๐‘ƒ*๐ต๐‘ƒ ; ๐‘ฃโˆ’11 ๐ต๐‘ƒ*/๐‘

โˆž).

It has a pairing with the unlocalized algebraic Novikov spectral sequence converging

to the ๐ป*(๐ต๐‘ƒ*๐ต๐‘ƒ )-module structure map of ๐ป*(๐ต๐‘ƒ*๐ต๐‘ƒ ; ๐‘ฃโˆ’11 ๐ต๐‘ƒ*/๐‘

โˆž). Moreover, it

receives a map from the ๐‘ฃ1-algebraic Novikov spectral sequence (๐‘ฃ1-alg.NSS)

๐ธ๐‘ ,๐‘ก,๐‘ข2 (๐‘ฃ1-alg.NSS) = ๐ป๐‘ ,๐‘ข(๐‘ƒ ; [๐‘žโˆ’1

1 ๐‘„/๐‘ž0]๐‘ก)

๐‘ก=โ‡’ ๐ป๐‘ ,๐‘ข(๐ต๐‘ƒ*๐ต๐‘ƒ ; ๐‘ฃโˆ’1

1 ๐ต๐‘ƒ*/๐‘).

6.2 Evidence for the main result

In the introduction, we discussed โ€œprincipal towersโ€ and their โ€œside towersโ€ but said

little about the other elements in ๐ป*(๐‘ƒ ; ๐‘žโˆ’11 ๐‘„/๐‘žโˆž0 ). Figure 6-1 is obtained from fig-

ure 5-1 by removing principal towers and their side towers. We see that the remaining

82

Page 83: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

180 185 190 195 200 205 210 215

30

35

40

45

50

55

๐‘กโˆ’ ๐‘ 

๐‘ 

๐‘ž481 ๐œŒ2

๐‘ž511 ๐œŒ2

๐‘ž481 ๐œ–3

๐‘ž511 ๐œ–3

๐‘ž491 ๐œŒ1

๐‘ž491 ๐œ–1๐œŒ1

๐‘ž501 ๐œŒ1

๐‘ž501 ๐œ–1๐œŒ1

๐‘ž491 ๐œ–2

๐‘ž491 ๐œ–2๐œ–1

๐‘ž501 ๐œ–2

๐‘ž501 ๐œ–2๐œ–1

๐‘ž511 ๐œ–1๐œŒ1

๐‘ž511 ๐œ–2๐œ–1

Figure 6-1: A part of ๐ป๐‘ ,๐‘ก(๐ด) when ๐‘ = 3, in the range 175 < ๐‘ก โˆ’ ๐‘  < 219. Verticalblack lines indicate multiplication by ๐‘ž0. The top and/or bottom of selected ๐‘ž0-towersare labelled by the source and/or target, respectively, of the corresponding Bocksteindifferential.

83

Page 84: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

๐‘ž0-towers come in pairs, arranged perfectly so that there is a chance that they form an

acyclic complex with respect to ๐‘‘2. Moreover, the labelling at the top of the towers

obeys a nice pattern with respect to this arrangement. The pattern of differentials

we hope for can be described by the following equations.

๐‘ž481 ๐œ–3 โ†ฆโˆ’โ†’ ๐‘ž481 ๐œŒ2, ๐‘ž511 ๐œ–3 โ†ฆโˆ’โ†’ ๐‘ž511 ๐œŒ2, ๐‘ž

491 ๐œ–2 โ†ฆโˆ’โ†’ ๐‘ž491 ๐œŒ1, ๐‘ž

501 ๐œ–2 โ†ฆโˆ’โ†’ ๐‘ž501 ๐œŒ1, ๐‘ž

511 ๐œ–2๐œ–1 โ†ฆโˆ’โ†’ ๐‘ž511 ๐œ–1๐œŒ1.

In each case, this comes from replacing an ๐œ–๐‘›+1 by ๐œŒ๐‘›, which resembles a theorem of

Miller.

Theorem 6.2.1 (Miller, [11, 9.19]). In the ๐‘ฃ1-alg.NSS

๐ป*(๐‘ƒ ; ๐‘žโˆ’11 ๐‘„/๐‘ž0)

๐‘ก=โ‡’ ๐ป*(๐ต๐‘ƒ*๐ต๐‘ƒ ; ๐‘ฃโˆ’1

1 ๐ต๐‘ƒ*/๐‘)

we have, for ๐‘› โ‰ฅ 1, ๐‘‘2๐œ–๐‘›+1.

= ๐œŒ๐‘›.

This is precisely the theorem enabling the calculation of this chapter, which shows

that the ๐‘‘2 differentials discussed above do occur in the loc.alg.NSS.

6.3 The filtration spectral sequence (๐‘ž0-FILT)

Corollary 5.5.2 describes the associated graded of the ๐ธ2-page of the loc.alg.NSS with

respect to the Bockstein filtration. Since

๐‘‘loc.alg.NSS2 : ๐ป๐‘ ,๐‘ข(๐‘ƒ ; [๐‘žโˆ’1

1 ๐‘„/๐‘žโˆž0 ]๐‘ก) โˆ’โ†’ ๐ป๐‘ +1,๐‘ข(๐‘ƒ ; [๐‘žโˆ’11 ๐‘„/๐‘žโˆž0 ]๐‘ก+1)

respects the Bockstein filtration, we have a filtration spectral sequence (๐‘ž0-FILT)

๐ธ๐‘ ,๐‘ก,๐‘ข,๐‘ฃ0 (๐‘ž0-FILT) = ๐ธ๐‘ ,๐‘ก,๐‘ข,๐‘ฃ

โˆž (๐‘žโˆ’11 -BSS)

๐‘ฃ=โ‡’ ๐ธ๐‘ ,๐‘ก,๐‘ข

3 (loc.alg.NSS).

The main result of this section is a calculation of the ๐ธ1-page of this spectral sequence.

Recall corollary 5.5.2.

84

Page 85: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

Theorem 6.3.1. ๐ธ1(๐‘ž0-FILT) has an F๐‘-basis given by the following elements.

๐‘ž๐‘ฃ0 : ๐‘ฃ < 0

โˆช๐‘ž๐‘ฃ0๐‘ž

๐‘˜๐‘๐‘›โˆ’1

1 : ๐‘› โ‰ฅ 1, ๐‘˜ โˆˆ Zโˆ’ ๐‘Z, โˆ’๐‘[๐‘›] โ‰ค ๐‘ฃ < 0

โˆช๐‘ž๐‘ฃ0๐‘ž

๐‘˜๐‘๐‘›

1 ๐œ–๐‘› : ๐‘› โ‰ฅ 1, ๐‘˜ โˆˆ Z, 1โˆ’ ๐‘๐‘› โ‰ค ๐‘ฃ < 0

We prove the theorem via the following proposition.

Proposition 6.3.2. Fix, ๐‘–, ๐‘— โ‰ฅ 1.

๐‘‘๐‘ž0-FILT0 : ๐ธ๐‘ ,๐‘ก,๐‘ข,๐‘ฃ

โˆž (๐‘žโˆ’11 -BSS) โˆ’โ†’ ๐ธ๐‘ +1,๐‘ก+1,๐‘ข,๐‘ฃ

โˆž (๐‘žโˆ’11 -BSS)

restricts to an operation on the subspaces with bases given by the classes of the ele-

ments ๐‘ž๐‘ฃ0 : ๐‘ฃ < 0

,

๐‘ž๐‘ฃ0๐‘ž๐‘˜๐‘๐‘–๐‘Ÿโˆ’1

1 ๐œ–[๐ผโˆ’]๐œŒ[๐ฝ,๐พ] : ๐ผ, ๐ฝ,๐พ, ๐‘˜ satisfy (5.4.3), ๐‘–๐‘Ÿ = ๐‘–, โˆ’๐‘[๐‘–] โ‰ค ๐‘ฃ < 0

,

and๐‘ž๐‘ฃ0๐‘ž

๐‘˜๐‘๐‘—๐‘ 

1 ๐œ–[๐ผ]๐œ–๐‘—๐‘ ๐œŒ[๐ฝ,๐พโˆ’] : ๐ผ, ๐ฝ,๐พ, ๐‘˜ satisfy (5.4.4), ๐‘—๐‘  = ๐‘—, 1โˆ’ ๐‘๐‘— โ‰ค ๐‘ฃ < 0

.

Moreover, the respective homology groups have bases given by the elements

๐‘ž๐‘ฃ0 : ๐‘ฃ < 0

,

๐‘ž๐‘ฃ0๐‘ž

๐‘˜๐‘๐‘–โˆ’1

1 : ๐‘˜ โˆˆ Zโˆ’ ๐‘Z, โˆ’๐‘[๐‘–] โ‰ค ๐‘ฃ < 0

,

and ๐‘ž๐‘ฃ0๐‘ž

๐‘˜๐‘๐‘—

1 ๐œ–๐‘— : ๐‘˜ โˆˆ Z, 1โˆ’ ๐‘๐‘— โ‰ค ๐‘ฃ < 0

.

Proof. Each of the maps in the exact couple defining the ๐‘žโˆ’11 -BSS comes from a map

of algebraic Novikov spectral sequences. This means that if ๐‘ฅ โˆˆ ๐ป*(๐‘ƒ ; ๐‘žโˆ’11 ๐‘„/๐‘ž0) and

๐‘ž๐‘ฃ0๐‘ฅ โˆˆ ๐ธโˆž(๐‘žโˆ’11 -BSS) then ๐‘‘๐‘ž0-FILT

0 (๐‘ž๐‘ฃ0๐‘ฅ) = ๐‘ž๐‘ฃ0๐‘‘๐‘ฃ1-alg.NSS2 ๐‘ฅ. We understand ๐‘‘๐‘ฃ1-alg.NSS

2 by

85

Page 86: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

theorem 6.2.1. For the rest of the proof we write ๐‘‘0 for ๐‘‘๐‘ž0-FILT0 .

๐‘‘0(๐‘ž๐‘ฃ0) = 0 and so the claims concerning ๐‘ž๐‘ฃ0 : ๐‘ฃ < 0 are evident.

First, fix ๐‘– โ‰ฅ 1 and consider

๐‘ฅ = ๐‘ž๐‘ฃ0๐‘ž๐‘˜๐‘๐‘–โˆ’1

1 ๐œ–[๐ผโˆ’]๐œŒ[๐ฝ,๐พ]

where ๐ผ, ๐ฝ,๐พ and ๐‘˜ satisfy (5.4.3), ๐‘–๐‘Ÿ = ๐‘–, and โˆ’๐‘[๐‘–] โ‰ค ๐‘ฃ < 0. If ๐‘Ÿ = 1 then ๐‘‘0(๐‘ฅ) = 0

so suppose that ๐‘Ÿ > 1 and let ๐‘ โˆˆ 1, . . . , ๐‘Ÿ โˆ’ 1. We wish to show that replacing ๐œ–๐‘–๐‘

by ๐œŒ๐‘–๐‘โˆ’1 in ๐‘ฅ gives an element ๐‘ฅโ€ฒ of the same form as ๐‘ฅ. This is true because

๐‘ฅโ€ฒ = ๐‘ž๐‘ฃ0๐‘ž๐‘˜๐‘๐‘–โˆ’1

1 ๐œ–[๐ผ โ€ฒโˆ’]๐œŒ[๐ฝ โ€ฒ, ๐พ โ€ฒ]

where ๐ผ โ€ฒ, ๐ฝ โ€ฒ, ๐พ โ€ฒ are determined by the following properties.

1. ๐œ–[๐ผ โ€ฒโˆ’]๐œŒ[๐ฝ โ€ฒ, ๐พ โ€ฒ] is obtained from ๐œ–[๐ผโˆ’]๐œŒ[๐ฝ,๐พ] by replacing ๐œ–๐‘–๐‘ by ๐œŒ๐‘–๐‘โˆ’1;

2. ๐‘Ÿโ€ฒ = ๐‘Ÿ โˆ’ 1, ๐‘–โ€ฒ1 > . . . > ๐‘–โ€ฒ๐‘Ÿโ€ฒ = ๐‘–;

3. ๐‘—โ€ฒ1 > . . . > ๐‘—โ€ฒ๐‘ โ€ฒ โ‰ฅ 1;

4. ๐‘˜โ€ฒ๐‘Ž โ‰ฅ 1 for all ๐‘Ž โˆˆ 1, . . . , ๐‘ โ€ฒ.

In particular, ๐‘–โ€ฒ๐‘Ÿโ€ฒ = ๐‘– and ๐ผ โ€ฒ, ๐ฝ โ€ฒ, ๐พ โ€ฒ and ๐‘˜ satisfy (5.4.3) because ๐‘ โ€ฒ โ‰ฅ 1, and ๐‘—๐‘  โ‰ฅ ๐‘–๐‘Ÿ = ๐‘–

and ๐‘–๐‘ > ๐‘–๐‘Ÿ = ๐‘– implies that ๐‘—โ€ฒ๐‘ โ€ฒ โ‰ฅ ๐‘– = ๐‘–โ€ฒ๐‘Ÿโ€ฒ . Since ๐‘‘0 is a derivation, this observation

shows that ๐‘‘0 induces an operation on the second subspace of the proposition. The

claim about the homology is true because the complex(๐ธ[๐œ–๐‘› : ๐‘› > ๐‘–]โŠ— F๐‘[๐œŒ๐‘› : ๐‘› โ‰ฅ ๐‘–] : ๐œ•๐œ–๐‘›+1 = ๐œŒ๐‘›

)

has homology F๐‘.

Second, fix ๐‘— โ‰ฅ 1 and consider

๐‘ฆ = ๐‘ž๐‘ฃ0๐‘ž๐‘˜๐‘๐‘—

1 ๐œ–[๐ผ]๐œ–๐‘—๐œŒ[๐ฝ,๐พโˆ’]

86

Page 87: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

where ๐ผ, ๐ฝ,๐พ and ๐‘˜ satisfy (5.4.4), ๐‘—๐‘  = ๐‘—, and 1โˆ’ ๐‘๐‘— โ‰ค ๐‘ฃ < 0.

First, we wish to show the term obtained from applying ๐‘‘0 to ๐œ–๐‘— is trivial. If ๐‘— = 1

then ๐‘‘0(๐œ–๐‘—) = 0 so suppose, for now, that ๐‘— > 1. Replacing ๐œ–๐‘— by ๐œŒ๐‘—โˆ’1 gives

๐‘ฆโ€ฒ = ๐‘ž๐‘ฃ0๐‘ž(๐‘˜๐‘)๐‘๐‘—โˆ’1

1 ๐œ–[๐ผ โ€ฒ]๐œŒ[๐ฝ โ€ฒ, ๐พ โ€ฒ]

where ๐ผ โ€ฒ, ๐ฝ โ€ฒ, ๐พ โ€ฒ are determined by the following properties.

1. ๐œ–[๐ผ โ€ฒ]๐œŒ[๐ฝ โ€ฒ, ๐พ โ€ฒ] = ๐œ–[๐ผ]๐œŒ[๐ฝ,๐พโˆ’]๐œŒ๐‘—โˆ’1;

2. ๐ผ โ€ฒ = ๐ผ;

3. ๐‘—โ€ฒ1 > . . . > ๐‘—โ€ฒ๐‘ โ€ฒ = ๐‘— โˆ’ 1;

4. ๐‘˜โ€ฒ๐‘Ž โ‰ฅ 1 for all ๐‘Ž โˆˆ 1, . . . , ๐‘ โ€ฒ.

๐‘ โ€ฒ โ‰ฅ 1 and either ๐‘Ÿ = ๐‘Ÿโ€ฒ = 0, or ๐‘Ÿ = ๐‘Ÿโ€ฒ โ‰ฅ 1 and ๐‘–โ€ฒ๐‘Ÿโ€ฒ = ๐‘–๐‘Ÿ > ๐‘—๐‘  = ๐‘— > ๐‘— โˆ’ 1 = ๐‘—โ€ฒ๐‘ โ€ฒ , so

we see that ๐ผ โ€ฒ, ๐ฝ โ€ฒ, ๐พ โ€ฒ and ๐‘˜โ€ฒ = ๐‘˜๐‘ satisfy (5.4.4). This shows that ๐‘ฆโ€ฒ is the source

of a (5.4.4) ๐‘žโˆ’11 -Bockstein differential, i.e. zero in ๐ธโˆž(๐‘žโˆ’1

1 -BSS) = ๐ธ0(๐‘ž0-FILT). We

deduce that when applying ๐‘‘0 the only terms of interest come from applying ๐‘‘0 to

the ๐œ–[๐ผ]๐œŒ[๐ฝ,๐พโˆ’] part of ๐‘ฆ.

If ๐‘Ÿ = 0 then ๐‘‘0(๐‘ฆ) = 0 so suppose that ๐‘Ÿ > 0 and let ๐‘ โˆˆ 1, . . . , ๐‘Ÿ. We wish to

show that replacing ๐œ–๐‘–๐‘ by ๐œŒ๐‘–๐‘โˆ’1 in ๐‘ฆ gives an element ๐‘ฆโ€ฒโ€ฒ of the same form as ๐‘ฆ.

๐‘ฆโ€ฒโ€ฒ = ๐‘ž๐‘ฃ0๐‘ž๐‘˜๐‘๐‘—

1 ๐œ–[๐ผ โ€ฒ]๐œ–๐‘—๐œŒ[๐ฝ โ€ฒ, ๐พ โ€ฒโˆ’]

where ๐ผ โ€ฒ, ๐ฝ โ€ฒ, ๐พ โ€ฒ are determined by the following properties.

1. ๐œ–[๐ผ โ€ฒ]๐œŒ[๐ฝ โ€ฒ, ๐พ โ€ฒโˆ’] is obtained from ๐œ–[๐ผ]๐œŒ[๐ฝ,๐พโˆ’] by replacing ๐œ–๐‘–๐‘ by ๐œŒ๐‘–๐‘โˆ’1;

2. ๐‘Ÿโ€ฒ = ๐‘Ÿ โˆ’ 1 and ๐‘–โ€ฒ1 > . . . > ๐‘–โ€ฒ๐‘Ÿโ€ฒ ;

3. ๐‘—โ€ฒ1 > . . . > ๐‘—โ€ฒ๐‘ โ€ฒ = ๐‘—;

4. ๐‘˜โ€ฒ๐‘Ž โ‰ฅ 1 for all ๐‘Ž โˆˆ 1, . . . , ๐‘ โ€ฒ.

87

Page 88: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

๐‘–๐‘ โ‰ฅ ๐‘–๐‘Ÿ > ๐‘—๐‘  = ๐‘— ensures that condition (3) can be met. ๐‘ โ€ฒ โ‰ฅ ๐‘  โ‰ฅ 1 and either ๐‘Ÿโ€ฒ = 0 or

๐‘Ÿโ€ฒ โ‰ฅ 1 and ๐‘–โ€ฒ๐‘Ÿโ€ฒ โ‰ฅ ๐‘–๐‘Ÿ > ๐‘—๐‘  = ๐‘— = ๐‘—โ€ฒ๐‘ โ€ฒ . Thus, ๐ผ โ€ฒ, ๐ฝ โ€ฒ, ๐พ โ€ฒ and ๐‘˜ satisfy 5.4.4 and ๐‘ฆโ€ฒโ€ฒ has the

same form as ๐‘ฆ. Since ๐‘‘0 is a derivation, this shows that ๐‘‘0 induces an operation on

the third subspace of the proposition. The claim about the homology is true because(๐ธ[๐œ–๐‘› : ๐‘› > ๐‘—]โŠ— F๐‘[๐œŒ๐‘› : ๐‘› โ‰ฅ ๐‘—] : ๐œ•๐œ–๐‘›+1 = ๐œŒ๐‘›

)

has homology F๐‘.

6.4 The ๐ธโˆž-page of the loc.alg.NSS

One knows that ๐ป*(๐ต๐‘ƒ*๐ต๐‘ƒ ; ๐‘ฃโˆ’11 ๐ต๐‘ƒ*/๐‘

โˆž) is nonzero, only in cohomological degree 0

and 1. ๐ป0(๐ต๐‘ƒ*๐ต๐‘ƒ ; ๐‘ฃโˆ’11 ๐ต๐‘ƒ*/๐‘

โˆž) is generated as an abelian group by the elements

1

๐‘๐‘›: ๐‘› โ‰ฅ 1

โˆช

๐‘ฃ๐‘˜๐‘

๐‘›โˆ’1

1

๐‘๐‘›: ๐‘› โ‰ฅ 1, ๐‘˜ โˆˆ Zโˆ’ ๐‘ Z

.

These are detected in the loc.alg.NSS by the following elements of ๐ป*(๐‘ƒ ; ๐‘žโˆ’11 ๐‘„/๐‘žโˆž0 ).

1

๐‘ž๐‘›0: ๐‘› โ‰ฅ 1

โˆช๐‘ž๐‘˜๐‘

๐‘›โˆ’1

1

๐‘ž๐‘›0: ๐‘› โ‰ฅ 1, ๐‘˜ โˆˆ Zโˆ’ ๐‘ Z

An element of order ๐‘ in ๐ป1(๐ต๐‘ƒ*๐ต๐‘ƒ ; ๐‘ฃโˆ’11 ๐ต๐‘ƒ*/๐‘

โˆž) = Z/๐‘โˆž is given by the class of

โˆ’๐‘โˆ’1๐‘ฃโˆ’11 [๐‘ก1] โˆˆ ฮฉ1(๐ต๐‘ƒ*๐ต๐‘ƒ ; ๐‘ฃโˆ’1

1 ๐ต๐‘ƒ*/๐‘โˆž)

in ๐ป1(๐ต๐‘ƒ*๐ต๐‘ƒ ; ๐‘ฃโˆ’11 ๐ต๐‘ƒ*/๐‘

โˆž), which is detected by ๐‘žโˆ’10 ๐œ–1 in the loc.alg.NSS. Theo-

rem 6.3.1, degree considerations, and the fact that each ๐‘ž๐‘ฃ0 is a permanent cycle in

the loc.alg.NSS, allow us to see that there are permanent cycles in the loc.alg.NSS,

which are not boundaries, which are detected in the ๐‘ž0-FILT spectral sequence by the

elements ๐‘ž๐‘ฃ0๐œ–๐‘› : ๐‘› โ‰ฅ 1, 1โˆ’ ๐‘๐‘› โ‰ค ๐‘ฃ < 0

.

88

Page 89: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

These elements must detect the elements of ๐ป1(๐ต๐‘ƒ*๐ต๐‘ƒ ; ๐‘ฃโˆ’11 ๐ต๐‘ƒ*/๐‘

โˆž). In summary,

we have the following proposition.

Proposition 6.4.1. ๐ธโˆž(loc.alg.NSS) has an F๐‘-basis given by the following elements.

๐‘ž๐‘ฃ0 : ๐‘ฃ < 0

โˆช๐‘ž๐‘ฃ0๐‘ž

๐‘˜๐‘๐‘›โˆ’1

1 : ๐‘› โ‰ฅ 1, ๐‘˜ โˆˆ Zโˆ’ ๐‘Z, โˆ’๐‘› โ‰ค ๐‘ฃ < 0

โˆช

๐‘ž๐‘ฃ0๐œ–๐‘› : ๐‘› โ‰ฅ 1, 1โˆ’ ๐‘๐‘› โ‰ค ๐‘ฃ < 0

Here, ๐‘ž๐‘ฃ0๐œ–๐‘› denotes the element of ๐ธ3(loc.alg.NSS) representing ๐‘ž๐‘ฃ0๐œ–๐‘› โˆˆ ๐ธ1(๐‘ž0-FILT).

Using theorem 6.3.1 together with this result, we see that the only possible pattern

for the differentials between a principal tower and its side towers, in the loc.alg.NSS,

is the one drawn in figure 1-1.

89

Page 90: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

THIS PAGE INTENTIONALLY LEFT BLANK

90

Page 91: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

Chapter 7

Some permanent cycles in the ASS

Our calculation of the ๐‘žโˆ’11 -BSS gives information about the Adams ๐ธ2-page via the

zig-zag (1.4.5). Our calculation of the loc.alg.NSS gives information about Adams ๐‘‘2

differentials in a similar way (figure 1-2). We would like to learn about higher Adams

differentials, but first, we say what we can about some permanent cycles in the Adams

spectral sequence. We show that for each ๐‘› โ‰ฅ 0, ๐‘ž๐‘๐‘›โˆ’๐‘›โˆ’1

0 โ„Ž1,๐‘› is a permanent cycle in

the Adams spectral sequence and we give a homotopy class representing it. This is

the odd primary analogue of a result of Davis and Mahowald appearing in [6].

7.1 Maps between stunted projective spaces

The maps we construct to represent the classes ๐‘ž๐‘๐‘›โˆ’๐‘›โˆ’1

0 โ„Ž1,๐‘› make use of maps we have

between skeletal subquotients of (ฮฃโˆž๐ตฮฃ๐‘)(๐‘). The analog of these spectra at ๐‘ = 2 are

the stunted projective spaces R๐‘ƒ๐‘š๐‘› and so we use the same terminology. Throughout

this thesis we write ๐ป for ๐ปF๐‘, the mod ๐‘ Eilenberg-Mac Lane spectrum.

In [1] Adams shows that there is a CW spectrum ๐ต with one cell in each positive

dimension congruent to 0 or โˆ’1 modulo ๐‘ž = 2๐‘ โˆ’ 2 such that ๐ต โ‰ƒ (ฮฃโˆž๐ตฮฃ๐‘)(๐‘). In

particular, ๐ต is built up from many copies of the mod ๐‘ Moore spectrum ๐‘†/๐‘. The

maps we construct between stunted projective spaces all come from the fact that

multiplication by ๐‘ is zero on ๐‘†/๐‘ (since ๐‘ is odd). For this reason, we emphasize the

filtration by the copies of ๐‘†/๐‘ over the skeletal filtration, and writing a superscript in

91

Page 92: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

square brackets to denote the skeletal filtration, we use the following notation.

Notation 7.1.1. Write ๐ต for the spectrum of [1, 2.2]. For ๐‘› โ‰ฅ 0 let ๐ต๐‘› = ๐ต[๐‘›๐‘ž] and

for 1 โ‰ค ๐‘› โ‰ค ๐‘š let ๐ต๐‘š๐‘› = ๐ต๐‘š/๐ต๐‘›โˆ’1. Notice that ๐ต0 = * and so ๐ต๐‘› = ๐ต๐‘›

1 . For ๐‘› > ๐‘š

let ๐ต๐‘š๐‘› = *.

We now proceed to construct compatible maps between stunted projective spaces

of Adams filtration one. All proofs will be deferred until the end of the section.

Lemma 7.1.2. For each ๐‘› โ‰ฅ 1 there exists a unique map ๐‘“ : ๐ต๐‘› โˆ’โ†’ ๐ต๐‘›โˆ’1 such that

the left diagram commutes. Moreover, the center diagram commutes so that the right

diagram commutes.

๐ต๐‘›

๐‘

""

๐‘“

๐ต๐‘›โˆ’1 ๐‘– // ๐ต๐‘›

๐ต๐‘› ๐‘– //

๐‘

""

๐ต๐‘›+1

๐‘“

๐ต๐‘›

๐ต๐‘› ๐‘– //

๐‘“

๐ต๐‘›+1

๐‘“

๐ต๐‘›โˆ’1 ๐‘– // ๐ต๐‘›

For 1 โ‰ค ๐‘› โ‰ค ๐‘š the filler for the diagram

๐ต๐‘› ๐‘– //

๐‘“

๐ต๐‘š+1 ๐‘— //

๐‘“

๐ต๐‘š+1๐‘›+1

๐ต๐‘›โˆ’1 ๐‘– // ๐ต๐‘š ๐‘— // ๐ต๐‘š

๐‘›

is unique and we call it ๐‘“ . The collection of such ๐‘“ are compatible.

For 1 โ‰ค ๐‘› โ‰ค ๐‘š the filler for the diagram

๐ต๐‘›โˆ’1 ๐‘– //

๐‘

๐ต๐‘š ๐‘— //

๐‘

๐ต๐‘š๐‘›

๐ต๐‘›โˆ’1 ๐‘– // ๐ต๐‘š ๐‘— // ๐ต๐‘š

๐‘›

is unique and so equal to ๐‘.

92

Page 93: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

The following diagrams commute for the appropriate values of ๐‘š and ๐‘›.

๐ต๐‘š+1๐‘›+1

๐‘“

๐‘

๐ต๐‘š๐‘›

๐‘–๐‘— // ๐ต๐‘š+1๐‘›+1

๐ต๐‘š๐‘›

๐‘–๐‘— //

๐‘

๐ต๐‘š+1๐‘›+1

๐‘“

๐ต๐‘š๐‘›

๐ต๐‘š๐‘›+1

๐‘–

๐‘ // ๐ต๐‘š๐‘›+1

๐ต๐‘š+1๐‘›+1

๐‘“ // ๐ต๐‘š๐‘›

๐‘—

OO๐ต๐‘š+1๐‘›+1

๐‘“ // ๐ต๐‘š๐‘›

๐‘–

๐ต๐‘š+1๐‘›

๐‘—

OO

๐‘ // ๐ต๐‘š+1๐‘›

We wish to analyze the Adams filtrations of the maps that we have just con-

structed. First, we describe spectra which are more convenient than those appearing

in the relevant ๐ป-canonical Adams towers, and for this we need to recall the structure

of ๐ป*(๐ต+) = ๐ป*(๐ตฮฃ๐‘).

Proposition 7.1.3 ([1, 2.1]). Let ๐‘– : ๐ถ๐‘ โˆ’โ†’ ฮฃ๐‘ be the inclusion of a Sylow subgroup.

1. ๐ป*(๐ต๐ถ๐‘) = ๐ธ[๐‘ฅ]โŠ— F๐‘[๐‘ฆ] where |๐‘ฅ| = 1, |๐‘ฆ| = 2 and ๐›ฝ๐‘ฅ = ๐‘ฆ.

2. ๐ป*(๐ตฮฃ๐‘) = ๐ธ[๐‘ฅ๐‘žโˆ’1]โŠ— F๐‘[๐‘ฆ๐‘ž] where (๐ต๐‘–)*(๐‘ฅ๐‘žโˆ’1) = ๐‘ฅ๐‘ฆ๐‘โˆ’2 and (๐ต๐‘–)*(๐‘ฆ๐‘ž) = ๐‘ฆ๐‘โˆ’1.

Notation 7.1.4. For ๐‘˜ โ‰ฅ 1 write ๐‘’๐‘˜ for ๐‘ฅ๐‘žโˆ’1๐‘ฆ๐‘˜โˆ’1๐‘ž โˆˆ ๐ป๐‘˜๐‘žโˆ’1(๐ต). Use the same notation

for the corresponding elements in ๐ป*(๐ต๐‘š๐‘› ).

Definition 7.1.5. For 1 โ‰ค ๐‘› โ‰ค ๐‘š define ๐ต๐‘š๐‘› โŸจ1โŸฉ by the following cofibration sequence.

๐ต๐‘š๐‘› โŸจ1โŸฉ // ๐ต๐‘š

๐‘›

(๐‘’๐‘›,...,๐‘’๐‘š) //โ‹๐‘š๐‘› ฮฃ๐‘˜๐‘žโˆ’1๐ป

Let ๐ต0โŸจ1โŸฉ = * and for ๐‘› โ‰ฅ 1 let ๐ต๐‘›โŸจ1โŸฉ = ๐ต๐‘›1 โŸจ1โŸฉ.

For 1 โ‰ค ๐‘› โ‰ค ๐‘š, we have the following square of cofibration sequences.

๐ต๐‘›โˆ’1โŸจ1โŸฉ ๐‘– //

๐ต๐‘šโŸจ1โŸฉ ๐‘— //

๐ต๐‘š๐‘› โŸจ1โŸฉ

๐ต๐‘›โˆ’1 ๐‘– //

๐ต๐‘š ๐‘— //

๐ต๐‘š๐‘›

โ‹๐‘›โˆ’11 ฮฃ๐‘˜๐‘žโˆ’1๐ป //

โ‹๐‘š1 ฮฃ๐‘˜๐‘žโˆ’1๐ป //

โ‹๐‘š๐‘› ฮฃ๐‘˜๐‘žโˆ’1๐ป

93

Page 94: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

The purpose of the spectra just defined is highlighted by the following lemma.

Lemma 7.1.6. A map to ๐ต๐‘š๐‘› can be factored through ๐ต๐‘š

๐‘› โŸจ1โŸฉ if and only if it can be

factored through ๐ป โˆง๐ต๐‘š๐‘› = fib(๐ต๐‘š

๐‘› โˆ’โ†’ ๐ป โˆง๐ต๐‘š๐‘› ).

The following lemma shows that the maps we have constructed between stunted

projective spaces have Adams filtration one.

Lemma 7.1.7. For each ๐‘› โ‰ฅ 1 there exists a unique map ๐‘” : ๐ต๐‘› โˆ’โ†’ ๐ต๐‘›โˆ’1โŸจ1โŸฉ such

that the left diagram commutes. Moreover, the right diagram commutes.

๐ต๐‘›

๐‘“

๐‘”

zz๐ต๐‘›โˆ’1โŸจ1โŸฉ // ๐ต๐‘›โˆ’1

๐ต๐‘› ๐‘– //

๐‘”

๐ต๐‘›+1

๐‘”

๐ต๐‘›โˆ’1โŸจ1โŸฉ ๐‘– // ๐ต๐‘›โŸจ1โŸฉ

For 1 โ‰ค ๐‘› โ‰ค ๐‘š the filler for the diagram

๐ต๐‘› ๐‘– //

๐‘”

๐ต๐‘š+1 ๐‘— //

๐‘”

๐ต๐‘š+1๐‘›+1

๐ต๐‘›โˆ’1โŸจ1โŸฉ ๐‘– // ๐ต๐‘šโŸจ1โŸฉ ๐‘— // ๐ต๐‘š

๐‘› โŸจ1โŸฉ

is unique and we call it ๐‘”. For 1 โ‰ค ๐‘› โ‰ค ๐‘š the following diagram commutes.

๐ต๐‘š+1๐‘›+1

๐‘”

๐‘“

๐ต๐‘š๐‘› โŸจ1โŸฉ // ๐ต๐‘š

๐‘›

Before proving all the lemmas above, we make a preliminary calculation.

Lemma 7.1.8. For ๐‘š,๐‘› โ‰ฅ 1 [ฮฃ๐ต๐‘›โˆ’1, ๐ต๐‘š๐‘› ] = 0, [ฮฃ๐ต๐‘›, ๐ต๐‘š

๐‘› ] = 0, [ฮฃ๐ต๐‘›, ๐ต๐‘š๐‘› โŸจ1โŸฉ] = 0.

Proof. The results are all obvious if ๐‘š < ๐‘› so suppose that ๐‘š โ‰ฅ ๐‘›.

The first follows from cellular approximation; the third does too, although we will

give a different proof.

94

Page 95: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

Cellular approximation gives [ฮฃ๐ต๐‘›, ๐ต๐‘š๐‘› ] = [ฮฃ๐ต๐‘›

๐‘› , ๐ต๐‘›๐‘› ] = [ฮฃ๐‘†/๐‘, ๐‘†/๐‘]. We have an

exact sequence

๐œ‹2(๐‘†/๐‘) โˆ’โ†’ [ฮฃ๐‘†/๐‘, ๐‘†/๐‘] โˆ’โ†’ ๐œ‹1(๐‘†/๐‘)

and ๐œ‹1(๐‘†/๐‘) = ๐œ‹2(๐‘†/๐‘) = 0, which gives the second identification.

Since [ฮฃ๐ต๐‘›,โ‹๐‘š๐‘› ฮฃ๐‘˜๐‘žโˆ’2๐ป] = 0, [ฮฃ๐ต๐‘›, ๐ต๐‘š

๐‘› โŸจ1โŸฉ] โˆ’โ†’ [ฮฃ๐ต๐‘›, ๐ต๐‘š๐‘› ] is injective and this

completes the proof.

Proof of lemma 7.1.2. ๐‘“ exists because the composite๐ต๐‘› ๐‘โˆ’โ†’ ๐ต๐‘› โˆ’โ†’ ๐ต๐‘›๐‘› = ฮฃ๐‘›๐‘žโˆ’1๐‘†/๐‘

is null. ๐‘“ is unique because [๐ต๐‘›,ฮฃโˆ’1๐ต๐‘›๐‘› ] = 0.

Since [๐ต๐‘›,ฮฃโˆ’1๐ต๐‘›+1๐‘›+1 ] = 0 the map ๐‘–* : [๐ต๐‘›, ๐ต๐‘›] โˆ’โ†’ [๐ต๐‘›, ๐ต๐‘›+1] is injective and so

commutativity of the following diagram gives commutativity of the second diagram

in the lemma.

๐ต๐‘› ๐‘– //

๐‘

๐ต๐‘›+1

๐‘“

๐‘

๐ต๐‘›

๐‘–

๐ต๐‘› ๐‘– // ๐ต๐‘›+1

Uniqueness of the fillers is given by the facts [ฮฃ๐ต๐‘›, ๐ต๐‘š๐‘› ] = 0 and [ฮฃ๐ต๐‘›โˆ’1, ๐ต๐‘š

๐‘› ] = 0,

respectively.

We turn to compatibility of the collection ๐‘“ : ๐ต๐‘š+1๐‘›+1 โˆ’โ†’ ๐ต๐‘š

๐‘› . We already have

compatibility of the collection ๐‘“ : ๐ต๐‘› โˆ’โ†’ ๐ต๐‘›โˆ’1, i.e. the following diagram in the

homotopy category commutes.

๐ต1 //

๐‘“

๐ต2 //

๐‘“

. . . // ๐ต๐‘› ๐‘– //

๐‘“

๐ต๐‘›+1 //

๐‘“

. . .

* // ๐ต1 // . . . // ๐ต๐‘›โˆ’1 ๐‘– // ๐ต๐‘› // . . .

For concreteness, suppose that we a have pointset level model for this diagram in

which each representative ๐‘– : ๐ต๐‘›โˆ’1 โˆ’โ†’ ๐ต๐‘› is a cofibration between cofibrant spectra.

By a spectrum, we mean an ๐‘†-module [7], and so every spectrum is fibrant. The

95

Page 96: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

โ€œhomotopy extension propertyโ€ that ๐‘†-modules satisfy says that we can make any of

the squares strictly commute at the cost of changing the right map to a homotopic

one. By proceeding inductively, starting with the left most square, we can assume

that the representative ๐‘“ โ€™s are chosen so that each square strictly commutes. Let

๐‘“ : ๐ต๐‘š+1๐‘›+1 โˆ’โ†’ ๐ต๐‘š

๐‘› be obtained by taking strict cofibers of the appropriate diagram.

The homotopy class of ๐‘“ provides a filler for the diagram in the lemma and so is equal

to ๐‘“ . It is clear that the ๐‘“ โ€™s are compatible and so the ๐‘“ โ€™s are compatible.

The deductions that each of the final four diagrams commute are similar and rely

on the uniqueness of the second filler. Weโ€™ll need the fourth diagram so we show this

in detail. We have a commuting diagram.

๐ต๐‘›โˆ’1 //

๐‘–

๐ต๐‘š+1 //

=

๐ต๐‘š+1๐‘›

๐‘—

๐ต๐‘› //

๐‘“

๐ต๐‘š+1 //

๐‘“

๐ต๐‘š+1๐‘›+1

๐‘“

๐ต๐‘›โˆ’1 //

=

๐ต๐‘š //

๐‘–

๐ต๐‘š๐‘›

๐‘–

๐ต๐‘›โˆ’1 // ๐ต๐‘š+1 // ๐ต๐‘š+1

๐‘›

The vertical composites in the first two columns are ๐‘ and so the third is too.

Proof of lemma 7.1.6. ๐ป*(๐ต๐‘š๐‘› ) is free over ๐ธ[๐›ฝ] with basis ๐‘’๐‘›, . . . , ๐‘’๐‘š. This basis

allowed us to construct the top map in the following diagram.

๐ต๐‘š๐‘›

(๐‘’๐‘›,...,๐‘’๐‘š) //

โ‹๐‘š๐‘› ฮฃ๐‘˜๐‘žโˆ’1๐ป

โ‹๐‘š๐‘› ฮฃ๐‘˜๐‘žโˆ’1(1,๐›ฝ)

๐ป โˆง๐ต๐‘š๐‘›

โ‰ƒ //โ‹๐‘š๐‘›

(ฮฃ๐‘˜๐‘žโˆ’1๐ป โˆจ ฮฃ๐‘˜๐‘ž๐ป

)

We have a map (1, ๐›ฝ) : ๐ป โˆ’โ†’ ๐ป โˆจ ฮฃ๐ป which is used to construct the map on the

96

Page 97: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

right. Since the target of this map is an ๐ป-module we obtain the bottom map and

one can check that this is an equivalence. Thus, we obtain the map of cofibration

sequences displayed at the top of the following diagram.

๐ต๐‘š๐‘› โŸจ1โŸฉ //

๐ต๐‘š๐‘›

(๐‘’๐‘›,...,๐‘’๐‘š) //

=

โ‹๐‘š๐‘› ฮฃ๐‘˜๐‘žโˆ’1๐ป

โ‰ƒโˆ˜

[โ‹๐‘š๐‘› ฮฃ๐‘˜๐‘žโˆ’1(1,๐›ฝ)

]

๐ป โˆง๐ต๐‘š๐‘›

//

๐ต๐‘š๐‘›

//

=

๐ป โˆง๐ต๐‘š๐‘›[โ‹๐‘š๐‘› ฮฃ๐‘˜๐‘žโˆ’1(1,*)

]โˆ˜โ‰ƒ

๐ต๐‘š๐‘› โŸจ1โŸฉ // ๐ต๐‘š

๐‘›

(๐‘’๐‘›,...,๐‘’๐‘š) //โ‹๐‘š๐‘› ฮฃ๐‘˜๐‘žโˆ’1๐ป

The bottom right square is checked to commute and so we obtain the map of cofibra-

tion sequences displayed at the bottom. This diagram shows that a map to ๐ต๐‘š๐‘› can

be factored through ๐ต๐‘š๐‘› โŸจ1โŸฉ if and only if it can be factoring through ๐ป โˆง๐ต๐‘š

๐‘› ; this is

also clear if one uses the more general theory of Adams resolutions discussed in [11].

[One sees that (๐‘’๐‘›, . . . , ๐‘’๐‘š) is an ๐ป*-isomorphism in dimensions which are strictly

less than (๐‘› + 1)๐‘ž โˆ’ 1 so ๐ต๐‘š๐‘› โŸจ1โŸฉ is ((๐‘› + 1)๐‘ž โˆ’ 3)-connected and hence (๐‘›๐‘ž + 1)-

connected.]

Proof of lemma 7.1.7. We have [๐ต๐‘›,ฮฃ๐‘›๐‘žโˆ’2๐ป] = 0 and so the map

[๐ต๐‘›,

๐‘›โˆ’1โ‹1

ฮฃ๐‘˜๐‘žโˆ’1๐ป

]โˆ’โ†’

[๐ต๐‘›,

๐‘›โ‹1

ฮฃ๐‘˜๐‘žโˆ’1๐ป

]

is injective. Since ๐‘–๐‘“ = ๐‘ and ๐‘ = 0 on ๐ป, the following diagram proves the existence

of ๐‘”.

๐ต๐‘›

๐‘“

๐ต๐‘›โˆ’1โŸจ1โŸฉ // ๐ต๐‘›โˆ’1 //

๐‘–

โ‹๐‘›โˆ’11 ฮฃ๐‘˜๐‘žโˆ’1๐ป

๐ต๐‘› //

โ‹๐‘›1 ฮฃ๐‘˜๐‘žโˆ’1๐ป

97

Page 98: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

Uniqueness of ๐‘” is given by the fact that [๐ต๐‘›,โ‹๐‘›โˆ’1

1 ฮฃ๐‘˜๐‘žโˆ’2๐ป] = 0.

Since [๐ต๐‘›,โ‹๐‘›

1 ฮฃ๐‘˜๐‘žโˆ’2๐ป] = 0 the map [๐ต๐‘›, ๐ต๐‘›โŸจ1โŸฉ] โˆ’โ†’ [๐ต๐‘›, ๐ต๐‘›] is injective and so

commutativity of the following diagram gives commutativity of the second diagram.

๐ต๐‘›

๐‘–

**๐‘”

๐‘“

๐ต๐‘›+1 ๐‘” //

๐‘“

๐ต๐‘›โŸจ1โŸฉ

๐ต๐‘›โˆ’1โŸจ1โŸฉ //

๐‘–

))

๐ต๐‘›โˆ’1

๐‘–

))๐ต๐‘›โŸจ1โŸฉ // ๐ต๐‘›

The filler is unique because, by lemma 7.1.8, [ฮฃ๐ต๐‘›, ๐ต๐‘š๐‘› โŸจ1โŸฉ] = 0. The final diagram

commutes because we have the following commutative diagram and a uniqueness

condition on ๐‘“ as a filler.

๐ต๐‘› ๐‘– //

๐‘”

๐‘“

๐ต๐‘š+1

๐‘”

๐‘“

~~

๐ต๐‘›โˆ’1โŸจ1โŸฉ

๐‘– // ๐ต๐‘šโŸจ1โŸฉ

๐ต๐‘›โˆ’1 ๐‘– // ๐ต๐‘š

7.2 Homotopy and cohomotopy classes in stunted

projective spaces

Throughout this thesis we write ๐ด = ๐ป*๐ป for the dual Steenrod algebra, and ๐ด* =

๐ป*๐ป for the Steenrod algebra.

To construct the homotopy class representing ๐‘ž๐‘๐‘›โˆ’๐‘›โˆ’1

0 โ„Ž1,๐‘› in the Adams spectral

98

Page 99: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

sequence we make use of a homotopy class in ๐œ‹๐‘๐‘›๐‘žโˆ’1(๐ต๐‘๐‘›

๐‘๐‘›โˆ’๐‘›). First, we analyze the

algebraic picture and identify the corresponding ๐ด-comodule primitive. Recall 7.1.4.

Notation 7.2.1. For ๐‘˜ โ‰ฅ 1 write ๐‘’๐‘˜ for the class in ๐ป๐‘˜๐‘žโˆ’1(๐ต) dual to ๐‘’๐‘˜ โˆˆ ๐ป๐‘˜๐‘žโˆ’1(๐ต).

Use the same notation for the corresponding elements in ๐ป*(๐ต๐‘š๐‘› ).

Lemma 7.2.2. For each ๐‘› โ‰ฅ 0, ๐‘’๐‘๐‘› โˆˆ ๐ป๐‘๐‘›๐‘žโˆ’1(๐ต) is an ๐ด-comodule primitive.

Proof. The result is clear when ๐‘› = 0, since ๐ป๐‘˜(๐ต) = 0 for ๐‘˜ < ๐‘ž โˆ’ 1. Assume from

now on that ๐‘› > 0.

Since the (co)homology of ๐ต is concentrated in dimensions which are 0 or โˆ’1

congruent to ๐‘ž, the dual result is that ๐‘ƒ ๐‘–๐‘’๐‘— = 0 whenever ๐‘–, ๐‘— > 0 and ๐‘–+ ๐‘— = ๐‘๐‘›.

Let ๐‘– : ๐ถ๐‘ โˆ’โ†’ ฮฃ๐‘ be the inclusion of a Sylow subgroup. Since (๐ต๐‘–)* is injective

it is enough to show that the equation is true after applying (๐ต๐‘–)*. Writing this out

explicitly, we must show that

๐‘ƒ ๐‘–(๐‘ฅ๐‘ฆ(๐‘โˆ’1)๐‘—โˆ’1) = 0 whenever ๐‘–, ๐‘— > 0 and ๐‘–+ ๐‘— = ๐‘๐‘›.

Writing ๐‘ƒ for the total reduced ๐‘-th power we have ๐‘ƒ (๐‘ฅ) = ๐‘ฅ and ๐‘ƒ (๐‘ฆ) = ๐‘ฆ + ๐‘ฆ๐‘ =

๐‘ฆ(1 + ๐‘ฆ๐‘โˆ’1). Suppose that ๐‘–, ๐‘— > 0 and that ๐‘–+ ๐‘— = ๐‘๐‘›. Then

๐‘ƒ (๐‘ฅ๐‘ฆ(๐‘โˆ’1)๐‘—โˆ’1) = ๐‘ฅ๐‘ฆ(๐‘โˆ’1)๐‘—โˆ’1(1+๐‘ฆ๐‘โˆ’1)(๐‘โˆ’1)๐‘—โˆ’1 = ๐‘ฅ๐‘ฆ(๐‘โˆ’1)๐‘—โˆ’1

(๐‘โˆ’1)๐‘—โˆ’1โˆ‘๐‘˜=0

((๐‘โˆ’ 1)๐‘— โˆ’ 1

๐‘˜

)๐‘ฆ(๐‘โˆ’1)๐‘˜

which gives

๐‘ƒ ๐‘–(๐‘ฅ๐‘ฆ(๐‘โˆ’1)๐‘—โˆ’1) =

((๐‘โˆ’ 1)๐‘— โˆ’ 1

๐‘–

)๐‘ฅ๐‘ฆ(๐‘โˆ’1)๐‘๐‘›โˆ’1

as long as ๐‘– โ‰ค (๐‘ โˆ’ 1)๐‘— โˆ’ 1 and ๐‘ƒ ๐‘–(๐‘ฅ๐‘ฆ(๐‘โˆ’1)๐‘—โˆ’1) = 0 otherwise. We just need to show

that

๐‘

((๐‘โˆ’ 1)(๐‘๐‘› โˆ’ ๐‘–)โˆ’ 1

๐‘–

)whenever 0 < ๐‘– โ‰ค (๐‘ โˆ’ 1)(๐‘๐‘› โˆ’ ๐‘–) โˆ’ 1. The largest value of ๐‘– for which we have

๐‘– โ‰ค (๐‘ โˆ’ 1)(๐‘๐‘› โˆ’ ๐‘–) โˆ’ 1 is (๐‘ โˆ’ 1)๐‘๐‘›โˆ’1 โˆ’ 1 so write ๐‘– = ๐‘ ๐‘๐‘˜ for 0 โ‰ค ๐‘˜ < ๐‘› and ๐‘  โ‰ก 0

(mod ๐‘). Let ๐‘š = (๐‘ โˆ’ 1)(๐‘๐‘› โˆ’ ๐‘–) โˆ’ 1 so that we are interested in(๐‘š๐‘–

). ๐‘š โˆ’ ๐‘– โ‰ก โˆ’1

99

Page 100: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

(mod ๐‘๐‘˜+1) and so when we add ๐‘šโˆ’ ๐‘– to ๐‘– in base ๐‘ there is a carry. An elementary

fact about binomial coefficients completes the proof.

The relevant topological result is given by the following proposition.

Proposition 7.2.3. For each ๐‘› โ‰ฅ 0, ๐‘’๐‘๐‘› โˆˆ ๐ป๐‘๐‘›๐‘žโˆ’1(๐ต๐‘๐‘›

๐‘๐‘›โˆ’๐‘›) is in the image of the

Hurewicz homomorphism.

Proof. The result is clear for ๐‘› = 0, since we have the map ๐‘†๐‘žโˆ’1 โˆ’โ†’ ฮฃ๐‘žโˆ’1๐‘†/๐‘ = ๐ต11 .

For ๐‘› โ‰ฅ 1, setting ๐œ– = 0, ๐‘– = ๐‘›+ 1, ๐‘— = ๐‘๐‘›โˆ’ ๐‘›โˆ’ 1 and ๐‘˜ = ๐‘–๐‘žโˆ’ 1 in [4, 2.9(๐‘ฃ)] shows

that

๐‘ = ๐ต[๐‘๐‘›๐‘žโˆ’1]/๐ต[(๐‘๐‘›โˆ’๐‘›โˆ’1)๐‘žโˆ’1]

has reductive top cell and we have an โ€œinclude-collapseโ€ map ๐‘ โˆ’โ†’ ๐ต๐‘๐‘›

๐‘๐‘›โˆ’๐‘›.

To construct the homotopy class representing ๐‘ž๐‘๐‘›โˆ’๐‘›โˆ’1

0 โ„Ž1,๐‘› in the Adams spectral

sequence we also make use of the transfer map.

Definition 7.2.4. Write ๐‘ก : ๐ตโˆž1 โˆ’โ†’ ๐‘†0 for the transfer map of [1, 2.3(๐‘–)] and let ๐ถ

be the cofiber of ฮฃโˆ’1๐‘ก.

We need to analyze the affect of ๐‘ก algebraically.

Notation 7.2.5. We have a cofibration sequence ๐‘†โˆ’1 โˆ’โ†’ ๐ถ โˆ’โ†’ ๐ต. Abuse notation

and write ๐‘’๐‘˜ and ๐‘’๐‘˜ for the elements in ๐ป*(๐ถ) and ๐ป*(๐ถ) which correspond to the

elements of the same name in ๐ป*(๐ต) and ๐ป*(๐ต). Write ๐‘ˆ and ๐‘ข for the dual classes

in ๐ป*(๐ถ) and ๐ป*(๐ถ) corresponding to generators of ๐ปโˆ’1(๐‘†โˆ’1) and ๐ปโˆ’1(๐‘†โˆ’1).

Lemma 7.2.6. Suppose ๐‘› โ‰ฅ 0. Then ๐‘’๐‘๐‘› โˆˆ ๐ป๐‘๐‘›๐‘žโˆ’1(๐ถ) is mapped to 1โŠ— ๐‘’๐‘๐‘›.

+ ๐œ‰๐‘๐‘›

1 โŠ—๐‘ข

under the ๐ด-coaction map.

Proof. First, letโ€™s introduce some notation which will be useful for the proof. Write

Sq๐‘˜๐‘ž๐‘ and Sq๐‘˜๐‘ž+1๐‘ for ๐‘ƒ ๐‘˜ and ๐›ฝ๐‘ƒ ๐‘˜, respectively. Recall that the Steenrod algebra ๐ด*

has a F๐‘-vector space basis given by admissible monomials

โ„ฌ = Sq๐‘–1๐‘ ยท ยท ยท Sq๐‘–๐‘Ÿ๐‘ : ๐‘–๐‘— โ‰ฅ ๐‘๐‘–๐‘—+1, ๐‘–๐‘— โ‰ก 0 or 1 (mod ๐‘ž).

100

Page 101: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

We claim that Sq๐‘๐‘›๐‘ž๐‘ ๐‘ˆ

.= ๐‘’๐‘

๐‘› , and that ๐‘๐‘ˆ = 0 for any ๐‘ โˆˆ โ„ฌ of length greater than 1.

Here, length greater than one means that ๐‘Ÿ > 1 and ๐‘–๐‘Ÿ > 0.

By lemma 7.2.2 we know that ๐‘’๐‘๐‘› is mapped, under the coaction map, to 1โŠ—๐‘’๐‘๐‘› +

๐‘Ž โŠ— ๐‘ข for some ๐‘Ž โˆˆ ๐ด. If we can prove the claim above then we will deduce that

๐‘Ž.

= ๐œ‰๐‘๐‘›

1 .

Take an element ๐‘ = Sq๐‘–1๐‘ ยท ยท ยท Sq๐‘–๐‘Ÿ๐‘ โˆˆ โ„ฌ of length greater than one. Let ๐‘˜ = โŒŠ๐‘–๐‘Ÿโˆ’1/๐‘žโŒ‹

so that either ๐‘–๐‘Ÿโˆ’1 = ๐‘˜๐‘ž or ๐‘˜๐‘ž + 1 and Sq๐‘–๐‘Ÿโˆ’1๐‘ = ๐‘ƒ ๐‘˜ or ๐›ฝ๐‘ƒ ๐‘˜. We have

๐‘–๐‘Ÿโˆ’1 โ‰ฅ ๐‘๐‘–๐‘Ÿ =โ‡’ ๐‘–๐‘Ÿโˆ’1 โˆ’ 1 โ‰ฅ ๐‘๐‘–๐‘Ÿ โˆ’ 1 > (๐‘โˆ’ 1)๐‘–๐‘Ÿ โˆ’ (๐‘โˆ’ 1) = ๐‘ž(๐‘–๐‘Ÿ โˆ’ 1)/2

and so 2๐‘˜ โ‰ฅ 2(๐‘–๐‘Ÿโˆ’1โˆ’1)/๐‘ž > ๐‘–๐‘Ÿโˆ’1 = |Sq๐‘–๐‘Ÿ๐‘ ๐‘ˆ |. Since Sq๐‘–๐‘Ÿ๐‘ ๐‘ˆ comes from the cohomology

of a space we deduce that ๐‘ƒ ๐‘˜Sq๐‘–๐‘Ÿ๐‘ ๐‘ˆ = 0. Thus, Sq๐‘–๐‘Ÿโˆ’1๐‘ Sq๐‘–๐‘Ÿ๐‘ ๐‘ˆ = 0 and ๐‘๐‘ˆ = 0, which

verifies the second part of the claim.

We are left to prove that ๐‘ƒ ๐‘๐‘›๐‘ˆ.

= ๐‘’๐‘๐‘› for each ๐‘› โ‰ฅ 0. First, we prove the ๐‘› = 0

case ๐‘ƒ 1๐‘ˆ.

= ๐‘’1. This statement is equivalent to the claim that

๐‘†๐‘žโˆ’1 = ๐ต11 โˆ’โ†’ ๐ตโˆž

1๐‘กโˆ’โ†’ ๐‘†0

is detected by a unit multiple of โ„Ž1,0 in the Adams spectral sequence. By cellular

approximation a generator of ๐œ‹๐‘žโˆ’1(๐ตโˆž1 ) is given by ๐‘†๐‘žโˆ’1 = ๐ต1

1 โˆ’โ†’ ๐ตโˆž1 . By definition

๐‘ก : ๐ตโˆž1 โˆ’โ†’ ๐‘†0 is an isomorphism on ๐œ‹๐‘žโˆ’1. By low dimensional calculations a generator

of ๐œ‹๐‘žโˆ’1(๐‘†0) is detected by โ„Ž1,0. This completes the proof of the ๐‘› = 0 case.

To prove that ๐‘ƒ ๐‘๐‘›๐‘ˆ.

= ๐‘’๐‘๐‘› it is enough to show that ๐›ฝ๐‘ƒ ๐‘๐‘›๐‘ˆ

.= ๐›ฝ๐‘’๐‘

๐‘› . Notice that

|๐›ฝ๐‘’1| = ๐‘ž and so

๐›ฝ๐‘’๐‘๐‘›

= (๐›ฝ๐‘’1)๐‘๐‘›

= ๐‘ƒ ๐‘๐‘›โˆ’1๐‘ž/2 ยท ยท ยท๐‘ƒ ๐‘๐‘ž/2๐‘ƒ ๐‘ž/2๐›ฝ๐‘’1.

= ๐‘ƒ ๐‘๐‘›โˆ’1๐‘ž/2 ยท ยท ยท๐‘ƒ ๐‘๐‘ž/2๐‘ƒ ๐‘ž/2๐›ฝ๐‘ƒ 1๐‘ˆ.

We are left with proving that ๐‘ƒ ๐‘๐‘›โˆ’1๐‘ž/2 ยท ยท ยท๐‘ƒ ๐‘ž/2๐›ฝ๐‘ƒ 1๐‘ˆ.

= ๐›ฝ๐‘ƒ ๐‘๐‘›๐‘ˆ . We induct on ๐‘›, the

101

Page 102: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

result being trivial for ๐‘› = 0. Suppose it is proven for some ๐‘› โ‰ฅ 0. Then we have

๐‘ƒ ๐‘๐‘›๐‘ž/2 ยท ยท ยท๐‘ƒ ๐‘ž/2๐›ฝ๐‘ƒ 1๐‘ˆ.

= ๐‘ƒ ๐‘๐‘›๐‘ž/2๐›ฝ๐‘ƒ ๐‘๐‘›๐‘ˆ

.= (๐›ฝ๐‘ƒ ๐‘๐‘›+๐‘๐‘›๐‘ž/2 + elements of โ„ฌ of length greater than 1)๐‘ˆ

= ๐›ฝ๐‘ƒ ๐‘๐‘›+1

๐‘ˆ,

which completes the inductive step and the proof of the lemma.

7.3 A permanent cycle in the ASS

We are now ready to prove the main result of the chapter.

Theorem 7.3.1. The element ๐‘ž๐‘๐‘›โˆ’๐‘›โˆ’1

0 โ„Ž1,๐‘›.

= [๐œ0]๐‘๐‘›โˆ’๐‘›โˆ’1[๐œ‰๐‘

๐‘›

1 ] โˆˆ ๐ป๐‘๐‘›โˆ’๐‘›,๐‘๐‘›(๐‘ž+1)โˆ’๐‘›โˆ’1(๐ด)

is a permanent cycle in the Adams spectral sequence represented by the map

๐›ผ : ๐‘†๐‘๐‘›๐‘žโˆ’1 ๐‘– // ๐ต๐‘๐‘›

๐‘๐‘›โˆ’๐‘›๐‘“ // ๐ต๐‘๐‘›โˆ’1

๐‘๐‘›โˆ’๐‘›โˆ’1// . . . // ๐ต๐‘›+2

2

๐‘“ // ๐ต๐‘›+11

๐‘ก // ๐‘†0.

Here, ๐‘– comes from proposition 7.2.3, ๐‘“ comes from lemma 7.1.2, and ๐‘ก is the restric-

tion of the transfer map.

Proof. By lemma 7.1.2 the following diagram commutes.

๐‘†๐‘๐‘›๐‘žโˆ’1

๐‘–$$

๐›ผ

++๐ต๐‘๐‘›

๐‘๐‘›โˆ’๐‘›๐‘“ // ๐ต๐‘๐‘›โˆ’1

๐‘๐‘›โˆ’๐‘›โˆ’1// . . . // ๐ต๐‘›+2

2

๐‘“ // ๐ต๐‘›+11

//

๐‘–

๐‘†0

๐ต๐‘๐‘›

1

๐‘—

OO

๐‘๐‘๐‘›โˆ’๐‘›โˆ’1

// ๐ต๐‘๐‘›

1

๐‘–

๐ตโˆž

1

๐‘ก

MM

We look at the maps induced on ๐ธ2-pages.

By definition, ๐‘– : ๐‘†๐‘๐‘›๐‘žโˆ’1 โˆ’โ†’ ๐ต๐‘๐‘›

๐‘๐‘›โˆ’๐‘› is represented in the Adams spectral sequence

102

Page 103: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

by ๐‘’๐‘๐‘› โˆˆ ๐ป0,๐‘๐‘›๐‘žโˆ’1(๐ด;๐ป*(๐ต๐‘๐‘›

๐‘๐‘›โˆ’๐‘›)), and by lemma 7.2.2, this element is the image of

๐‘’๐‘๐‘› โˆˆ ๐ป0,๐‘๐‘›๐‘žโˆ’1(๐ด;๐ป*(๐ต๐‘๐‘›

1 )). Moreover,

๐‘ž๐‘๐‘›โˆ’๐‘›โˆ’1

0 ยท ๐‘’๐‘๐‘› โˆˆ ๐ป๐‘๐‘›โˆ’๐‘›โˆ’1,๐‘๐‘›(๐‘ž+1)โˆ’๐‘›โˆ’2(๐ด;๐ป*(๐ตโˆž1 )).

๐‘ก* : ๐ธ2(๐ตโˆž1 ) โˆ’โ†’ ๐ธ2(๐‘†

0) is described by the geometric boundary theorem. The cofi-

bration sequence ๐‘†โˆ’1 โˆ’โ†’ ๐ถ โˆ’โ†’ ๐ต induces a short exact sequence of ๐ด-comodules.

The boundary map obtained by applying ๐ป*(๐ด;โˆ’) is the map induced by ๐‘ก.

0 // ฮฉ*(๐ด;๐ป*(๐‘†โˆ’1)) // ฮฉ*(๐ด;๐ป*(๐ถ)) // ฮฉ*(๐ด;๐ป*(๐ต)) // 0

[๐œ0]๐‘๐‘›โˆ’๐‘›โˆ’1๐‘’๐‘๐‘›

//_

ยท

[๐œ0]๐‘๐‘›โˆ’๐‘›โˆ’1๐‘’๐‘๐‘›

[๐œ0]๐‘๐‘›โˆ’๐‘›โˆ’1[๐œ‰๐‘

๐‘›

1 ] // [๐œ0]๐‘๐‘›โˆ’๐‘›โˆ’1[๐œ‰๐‘

๐‘›

1 ]๐‘ข

Thus, by using lemma 7.2.6, we see that

๐‘ก*(๐‘ž๐‘๐‘›โˆ’๐‘›โˆ’10 ยท ๐‘’๐‘๐‘›)

.= ๐‘ž๐‘

๐‘›โˆ’๐‘›โˆ’10 โ„Ž1,๐‘› โˆˆ ๐ป๐‘๐‘›โˆ’๐‘›,๐‘๐‘›(๐‘ž+1)โˆ’๐‘›โˆ’1(๐ด).

This almost completes the proof. There is a subtlety, however. A map of filtration

degree ๐‘˜ only gives a well-defined map on ๐ธ๐‘˜+1 pages. To complete the proof we break

the rectangle appearing in the first diagram up into (๐‘๐‘› โˆ’ ๐‘›โˆ’ 1)2 squares. We have

demonstrated this for the case when ๐‘ = 5 and ๐‘› = 1 below.

๐ต54

๐‘“ // ๐ต43

๐‘“ // ๐ต32

๐‘“ // ๐ต21

๐‘–

๐‘’5 // ? // ? // ?_

๐ต5

3

๐‘“ //

๐‘—

OO

๐ต42

๐‘“ //

๐‘—

OO

๐ต31

5 //

๐‘–

๐‘—

OO

๐ต31

๐‘–

๐‘’5 //_

OO

? //_

OO

? //_

_

OO

?_

๐ต5

2

๐‘“ //

๐‘—

OO

๐ต41

5 //

๐‘—

OO

๐‘–

๐ต41

5 //

๐‘–

๐ต41

๐‘–

๐‘’5 //_

OO

? //_

OO

_

? //_

?_

๐ต5

15 //

๐‘—

OO

๐ต51

5 // ๐ต51

5 // ๐ต51 ๐‘’5

//_

OO

๐‘ž0 ยท ๐‘’5 // ๐‘ž20 ยท ๐‘’5 // ๐‘ž30 ยท ๐‘’5

103

Page 104: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

Each square involves two maps of Adams filtration zero in the vertical direction and

two maps of Adams filtration one in the horizontal direction. Each square commutes

by lemma 7.1.2 and the maps induced on ๐ธ2-pages are well-defined. This completes

the proof.

104

Page 105: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

Chapter 8

Adams spectral sequences

In this chapter we set up and calculate the localized Adams spectral sequence for

the ๐‘ฃ1-periodic sphere. Along the way we construct Adams spectral sequences for

calculating the homotopy of the mod ๐‘๐‘› Moore spectrum ๐‘†/๐‘๐‘›, the Prรผfer sphere

๐‘†/๐‘โˆž = hocolim(๐‘†/๐‘๐‘ // ๐‘†/๐‘2

๐‘ // ๐‘†/๐‘3 // . . .),

and we prove the final theorem stated in the introduction.

8.1 Towers and their spectral sequences

In this section we introduce some essential concepts and constructions: towers (defi-

nition 8.1.4), the smash product of towers and the spectral sequences associated with

them. We provide important examples, which will be useful for the construction of

the modified Adams spectral sequence for ๐‘†/๐‘๐‘› and for verifying its properties. We

also recall the main properties of the Adams spectral sequence.

Notation 8.1.1. We write S for the stable homotopy category.

Definition 8.1.2. Write Ch(S ) for the category of non-negative cochain complexes

in S . An object ๐ถโˆ™ of this category is a diagram

๐ถ0 ๐‘‘ // ๐ถ1 // . . . // ๐ถ๐‘  ๐‘‘ // ๐ถ๐‘ +1 // . . .

105

Page 106: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

in S with ๐‘‘2 = 0. An augmentation ๐‘‹ โˆ’โ†’ ๐ถโˆ™ of a cochain complex ๐ถโˆ™ โˆˆ Ch(S ) is

a map of cochain complexes from ๐‘‹ โˆ’โ†’ * โˆ’โ†’ . . . โˆ’โ†’ * โˆ’โ†’ * โˆ’โ†’ . . . to ๐ถโˆ™.

Notation 8.1.3. Let Z denote the category with the integers as objects and hom-sets

determined by: |Z(๐‘›,๐‘š)| = 1 if ๐‘› โ‰ฅ ๐‘š, and |Z(๐‘›,๐‘š)| = 0 otherwise. Write Zโ‰ฅ0 for

the full subcategory of Z with the non-negative integers as objects.

Definition 8.1.4. An object ๐‘‹๐‘  of the diagram category S Zโ‰ฅ0 is called a sequence.

A system of interlocking cofibration sequences

๐‘‹0

. . .oo ๐‘‹๐‘ โˆ’1oo

๐‘‹๐‘ oo

๐‘‹๐‘ +1oo

. . .oo

๐ผ0

<<

๐ผ๐‘ โˆ’1

;;

๐ผ๐‘ 

;;

๐ผ๐‘ +1

;;

in S is called a tower and we use the notation ๐‘‹, ๐ผ. Notice that a tower ๐‘‹, ๐ผ has

an underlying sequence ๐‘‹๐‘  and an underlying augmented cochain complex ๐‘‹0 โˆ’โ†’

ฮฃโˆ™๐ผโˆ™.

A map of towers ๐‘‹, ๐ผ โˆ’โ†’ ๐‘Œ, ๐ฝ is a compatible collection of maps

๐‘‹๐‘  โˆ’โ†’ ๐‘Œ๐‘  โˆช ๐ผ๐‘  โˆ’โ†’ ๐ฝ๐‘ .

The following tower is important for us.

Definition 8.1.5. We write ๐‘†0, ๐‘†/๐‘ for the tower in which each of the maps in the

underlying sequence is ๐‘ : ๐‘†0 โˆ’โ†’ ๐‘†0. The underlying augmented cochain complex

is ๐‘†0 โˆ’โ†’ ฮฃโˆ™๐‘†/๐‘, where each differential is given by a suspension of the Bockstein

๐›ฝ : ๐‘†/๐‘ โˆ’โ†’ ๐‘†1 โˆ’โ†’ ฮฃ๐‘†/๐‘.

Definition 8.1.6. Suppose that ๐‘‹, ๐ผ is a tower. Then by changing ๐‘‹, ๐ผ up to an

isomorphism we can find a pointset model in which each ๐‘‹๐‘ +1 โˆ’โ†’ ๐‘‹๐‘  is a cofibration

between cofibrant ๐‘†-modules [7] and ๐ผ๐‘  is the strict cofiber of this map. We say that

such a pointset level model is cofibrant.

106

Page 107: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

By taking a cofibrant pointset level model ๐‘†0, ๐‘†/๐‘, we can construct another

tower by collapsing the ๐‘›-th copy of ๐‘†0.

Definition 8.1.7. Let ๐‘†/๐‘๐‘›โˆ’*, ๐‘†/๐‘ be the tower obtained in this way.

๐‘†/๐‘๐‘›

๐‘†/๐‘๐‘›โˆ’1๐‘oo

๐‘†/๐‘๐‘›โˆ’2๐‘oo

. . .oo ๐‘†/๐‘oo

*oo

*oo

. . .oo

๐‘†/๐‘

==

๐‘†/๐‘

<<

๐‘†/๐‘

>>

๐‘†/๐‘

AA

*

CC

*

BB

To construct the multiplicative structure on the modified Adams spectral sequence

for ๐‘†/๐‘๐‘› we need to make sense of smashing towers together. A modern version of [5,

definition 4.2] is as follows.

Definition 8.1.8. Suppose ๐‘‹, ๐ผ and ๐‘Œ, ๐ฝ are towers and that we have chosen

cofibrant models for them. Let

๐‘๐‘  = colim๐‘–+๐‘—โ‰ฅ๐‘ 0โ‰ค๐‘–,๐‘—โ‰ค๐‘ 

๐‘‹๐‘– โˆง ๐‘Œ๐‘—.

The indexing category in this colimit is a full subcategory of Zร—Z and the notation

only indicates the objects. Let

๐พ๐‘  =โ‹๐‘–+๐‘—=๐‘ 

0โ‰ค๐‘–,๐‘—โ‰ค๐‘ 

๐ผ ๐‘– โˆง ๐ฝ ๐‘—.

We have maps ๐‘๐‘ +1 โˆ’โ†’ ๐‘๐‘  and ๐‘๐‘  โˆ’โ†’ ๐พ๐‘ , which give a cofibrant model for the smash

product of towers ๐‘‹, ๐ผ โˆง ๐‘Œ, ๐ฝ = ๐‘,๐พ. Moreover, the underlying augmented

cochain complex of ๐‘‹, ๐ผโˆง๐‘Œ, ๐ฝ is the tensor product of the underlying augmented

cochain complexes of ๐‘‹, ๐ผ and ๐‘Œ, ๐ฝ.

Note that the definition of ๐‘‹, ๐ผ โˆง ๐‘Œ, ๐ฝ depends on the choice of cofibrant

models for ๐‘‹, ๐ผ and ๐‘Œ, ๐ฝ, but the following proposition shows that it is well-

defined up to isomorphism.

107

Page 108: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

Proposition 8.1.9. Suppose we have maps of towers

๐‘‹, ๐ผ โˆ’โ†’ ๐’ณ , โ„, ๐‘Œ, ๐ฝ โˆ’โ†’ ๐’ด ,๐’ฅ .

Then there exists a map of towers ๐‘‹, ๐ผโˆง ๐‘Œ, ๐ฝ โˆ’โ†’ ๐’ณ , โ„โˆง ๐’ด ,๐’ฅ such that the

underlying map on augmented cochain complexes is the tensor product[(๐‘‹0 โ†’ ฮฃโˆ™๐ผโˆ™

)โˆ’โ†’

(๐’ณ0 โ†’ ฮฃโˆ™โ„โˆ™

)]โˆง

[(๐‘Œ0 โ†’ ฮฃโˆ™๐ฝโˆ™

)โˆ’โ†’

(๐’ด0 โ†’ ฮฃโˆ™๐’ฅ โˆ™

)].

Writing down the proof of the proposition carefully is a lengthy detour. I assure

the reader that I have done this. Indeed, in the draft of my thesis all details were

included and this will remain available on my website. However, I do not want the

content of my thesis to be concerned with such technical issues. The point is that a

map of towers restricts to a map of sequences. On the cofibrant pointset level models,

we only know that each square commutes up to homotopy, but each homotopy is

determined by the map on the respective cofiber and this is part of the data of the

map of towers. Since the ๐‘๐‘  appearing in definition 8.1.8 is, in fact, a homotopy

colimit, we can define maps ๐‘๐‘  โˆ’โ†’ ๐’ต๐‘  using these homotopies. One finds that this

provides a map of sequences compatible with the tensor product of the underlying

maps of augmented cochain complexes.

As an example of a smash product of towers and a map of towers, we would like

to construct a map (recall definition 8.1.5)

๐‘†0, ๐‘†/๐‘ โˆง ๐‘†0, ๐‘†/๐‘ โˆ’โ†’ ๐‘†0, ๐‘†/๐‘ (8.1.10)

extending the multiplication ๐‘†0 โˆง ๐‘†0 โˆ’โ†’ ๐‘†0. Using the terminology of [5, 11], we

see that ๐‘†0, ๐‘†/๐‘ is the ๐‘†/๐‘-canonical resolution of ๐‘†0. Moreover, [5, 4.3(b)] tells us

that ๐‘†0, ๐‘†/๐‘ โˆง ๐‘†0, ๐‘†/๐‘ is an ๐‘†/๐‘-Adams resolution. Thus, the following lemma,

108

Page 109: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

which is given in [11], means that it is enough to construct a map

(๐‘†0 โ†’ ฮฃโˆ™๐‘†/๐‘

)โˆง(๐‘†0 โ†’ ฮฃโˆ™๐‘†/๐‘

)โˆ’โ†’

(๐‘†0 โ†’ ฮฃโˆ™๐‘†/๐‘

). (8.1.11)

Lemma 8.1.12. Suppose ๐‘‹, ๐ผ and ๐‘Œ, ๐ฝ are ๐ธ-Adams resolutions. Then any

map of augmented cochain complexes(๐‘‹0 โ†’ ฮฃโˆ™๐ผโˆ™

)โˆ’โ†’

(๐‘Œ0 โ†’ ฮฃโˆ™๐ฝโˆ™

)extends to a

map of towers.

The following lemma shows that we can construct the map (8.1.11) by using the

multiplication ๐œ‡ : ๐‘†/๐‘โˆง๐‘†/๐‘ โˆ’โ†’ ๐‘†/๐‘ on every factor appearing in the tensor product.

Lemma 8.1.13. The following diagram commutes, where ๐œ‡ : ๐‘†/๐‘ โˆง ๐‘†/๐‘ โˆ’โ†’ ๐‘†/๐‘ is

the multiplication on the ring spectrum ๐‘†/๐‘.

๐‘†/๐‘ โˆง ๐‘†/๐‘ (๐›ฝโˆง๐‘†/๐‘,๐‘†/๐‘โˆง๐›ฝ) //

๐œ‡

(ฮฃ๐‘†/๐‘ โˆง ๐‘†/๐‘) โˆจ (๐‘†/๐‘ โˆง ฮฃ๐‘†/๐‘)

ฮฃ(๐œ‡,๐œ‡)

๐‘†/๐‘

๐›ฝ // ฮฃ๐‘†/๐‘

Proof. ๐‘†/๐‘ โˆง ๐‘†/๐‘ = ๐‘†/๐‘ โˆจ ฮฃ๐‘†/๐‘ and so to check commutativity of the diagram it is

enough to restrict to each factor. We are then comparing maps in [ฮฃ๐‘†/๐‘,ฮฃ๐‘†/๐‘] =

[๐‘†/๐‘, ๐‘†/๐‘] and [๐‘†/๐‘,ฮฃ๐‘†/๐‘]. Both groups are cyclic of order ๐‘ and generated by 1 and

๐›ฝ, respectively. Since 1 and ๐›ฝ are homologically non-trivial, the lemma follows from

the fact that the diagram commutes after applying homology.

Our motivation for constructing the map (8.1.10) was, in fact, to prove the fol-

lowing lemma.

Lemma 8.1.14. The exists a map of towers

๐‘†/๐‘๐‘›โˆ’*, ๐‘†/๐‘ โˆง ๐‘†/๐‘๐‘›โˆ’*, ๐‘†/๐‘ โˆ’โ†’ ๐‘†/๐‘๐‘›โˆ’*, ๐‘†/๐‘

(recall definition 8.1.7) compatible with the map of (8.1.10).

109

Page 110: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

Proof. Take the cofibrant pointset level model for ๐‘†0, ๐‘†/๐‘ which was used to define

๐‘†/๐‘๐‘›โˆ’*, ๐‘†/๐‘ and consider the underlying map of sequences of (8.1.10). We use the

โ€œhomotopy extension propertyโ€ that ๐‘†-modules satisfy, just like in the proof of lemma

7.1.2. It says that we can make any of the squares in the map of sequences strictly

commute at the cost of changing the left map to a homotopic one. The homotopy

we extend should be the one determined by the map on cofibers. By starting at the

(2๐‘› โˆ’ 1)-st position, we can make the first (2๐‘› โˆ’ 1) squares commute strictly. One

obtains the map of the lemma by collapsing out the ๐‘›-th copy of ๐‘†0 in ๐‘†0, ๐‘†/๐‘.

For us, the purpose of a tower is to a construct spectral sequence.

Definition 8.1.15. The ๐‘‹, ๐ผ-spectral sequence is the spectral sequence obtained

from the exact couple got by applying ๐œ‹*(โˆ’) to a given tower ๐‘‹, ๐ผ. For ๐‘  โ‰ฅ 0, it

has

๐ธ๐‘ ,๐‘ก1 (๐‘‹, ๐ผ) = ๐œ‹๐‘กโˆ’๐‘ (๐ผ

๐‘ ) = ๐œ‹๐‘ก(ฮฃ๐‘ ๐ผ๐‘ )

and ๐ธโˆ™,๐‘ก1 = ๐œ‹๐‘ก(ฮฃ

โˆ™๐ผโˆ™) as chain complexes. It attempts to converge to ๐œ‹๐‘กโˆ’๐‘ (๐‘‹0).

The filtration is given by ๐น ๐‘ ๐œ‹*(๐‘‹0) = im(๐œ‹*(๐‘‹๐‘ ) โˆ’โ†’ ๐œ‹*(๐‘‹0)). Given an element

in ๐น ๐‘ ๐œ‹*(๐‘‹0) we can obtain a permanent cycle by lifting to ๐œ‹*(๐‘‹๐‘ ) and mapping this

lift down to ๐œ‹*(๐ผ๐‘ ).

Smashing together towers enables us to construct pairings of such spectral se-

quences.

Proposition 8.1.16 ([5, 4.4]). We have a pairing of spectral sequences

๐ธ๐‘ ,๐‘ก๐‘Ÿ (๐‘‹, ๐ผ)โŠ— ๐ธ๐‘ โ€ฒ,๐‘กโ€ฒ

๐‘Ÿ (๐‘Œ, ๐ฝ) โˆ’โ†’ ๐ธ๐‘ +๐‘ โ€ฒ,๐‘ก+๐‘กโ€ฒ

๐‘Ÿ (๐‘‹, ๐ผ โˆง ๐‘Œ, ๐ฝ).

At the ๐ธ1-page the pairing is given by the natural map

๐œ‹๐‘กโˆ’๐‘ (๐ผ๐‘ )โŠ— ๐œ‹๐‘กโ€ฒโˆ’๐‘ โ€ฒ(๐ฝ๐‘ 

โ€ฒ) โˆง // ๐œ‹(๐‘ก+๐‘กโ€ฒ)โˆ’(๐‘ +๐‘ โ€ฒ)(๐ผ

๐‘  โˆง ๐ฝ๐‘ โ€ฒ) // ๐œ‹(๐‘ก+๐‘กโ€ฒ)โˆ’(๐‘ +๐‘ โ€ฒ)(๐พ๐‘ +๐‘ โ€ฒ),

where ๐พ is as in definition 8.1.8. If all the spectral sequences converge then the pairing

converges to the smash product โˆง : ๐œ‹*(๐‘‹0)โŠ— ๐œ‹*(๐‘Œ0) โˆ’โ†’ ๐œ‹*(๐‘‹0 โˆง ๐‘Œ0).

110

Page 111: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

People often only talk about the Adams spectral sequence for a spectrum ๐‘‹ from

the ๐ธ2-page onwards. Our definition gives a functorial construction from the ๐ธ1-page.

Recall again, from [5, 11], the definition of the ๐ป-canonical resolution.

Notation 8.1.17. We write ๐ปโˆง*, ๐ป [*] for the ๐ป-canonical resolution of ๐‘†0. Here

we mimic the notation used in [2], and intend for ๐ป [๐‘ ] to mean ๐ป โˆง ๐ปโˆง๐‘ . The ๐ป-

canonical resolution for a spectrum ๐‘‹ is obtained by smashing with the tower whose

underlying augmented cochain complex has augmentation ๐‘‹ โˆ’โ†’ ๐ถโˆ™ given by the

identity; we write ๐ปโˆง*, ๐ป [*] โˆง๐‘‹.

Definition 8.1.18. Suppose ๐‘‹ is any spectrum. The Adams spectral sequence for ๐‘‹

is the ๐ปโˆง*, ๐ป [*] โˆง๐‘‹-spectral sequence.

The ๐ธ1-page of the Adams spectral sequence can be identified with the cobar

complex ฮฉโˆ™(๐ด;๐ป*(๐‘‹)) and there exists a map of towers

๐ปโˆง*, ๐ป [*] โˆง ๐ปโˆง*

, ๐ป [*] โˆ’โ†’ ๐ปโˆง*, ๐ป [*]

such that the induced pairing on ๐ธ1-pages is the multiplication on ฮฉโˆ™(๐ด). This gives

the following properties of the Adams spectral sequence for ๐‘‹, which we list as a

proposition.

Proposition 8.1.19. The Adams spectral sequence is functorial in ๐‘‹ and it has

๐ธ1-page given by ฮฉโˆ™(๐ด;๐ป*(๐‘‹)). We have a pairing of Adams spectral sequences

๐ธ๐‘ ,๐‘ก๐‘Ÿ (๐‘‹)โŠ— ๐ธ๐‘ โ€ฒ,๐‘กโ€ฒ

๐‘Ÿ (๐‘Œ ) โˆ’โ†’ ๐ธ๐‘ +๐‘ โ€ฒ,๐‘ก+๐‘กโ€ฒ

๐‘Ÿ (๐‘‹ โˆง ๐‘Œ )

which, at the ๐ธ1-page, agrees with the following multiplication (see [10, pg. 76]).

ฮฉโˆ™(๐ด;๐ป*(๐‘‹))โŠ— ฮฉโˆ™(๐ด;๐ป*(๐‘Œ )) โˆ’โ†’ ฮฉโˆ™(๐ด;๐ป*(๐‘‹)โŠ—ฮ” ๐ป*(๐‘Œ )) = ฮฉโˆ™(๐ด;๐ป*(๐‘‹ โˆง ๐‘Œ ))

Providing ๐‘‹ is ๐‘-complete the Adams spectral sequence for ๐‘‹ converges to ๐œ‹*(๐‘‹) in

the sense of definition 2.2.2, case 1. If each Adams spectral sequence converges then

the pairing above converges to the smash product โˆง : ๐œ‹*(๐‘‹)โŠ— ๐œ‹*(๐‘Œ ) โˆ’โ†’ ๐œ‹*(๐‘‹ โˆง ๐‘Œ ).

111

Page 112: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

8.2 The modified Adams spectral sequence for ๐‘†/๐‘๐‘›

When one starts to calculate ๐ป*(๐ด;๐ป*(๐‘†/๐‘)), the Adams ๐ธ2-page for the mod ๐‘

Moore spectrum, the first step is to describe the ๐ด-comodule ๐ป*(๐‘†/๐‘). It is the subal-

gebra of ๐ด in ๐ด-comodules given by ๐ธ[๐œ0]. In particular, it has a nontrivial ๐ด-coaction.

For ๐‘› โ‰ฅ 2, ๐ป*(๐‘†/๐‘๐‘›) has trivial ๐ด-coaction which means that ๐ป*(๐ด;๐ป*(๐‘†/๐‘

๐‘›)) is two

copies of the Adam ๐ธ2-page for the sphere. We would like the ๐ธ2-page to reflect that

fact that the multiplication by ๐‘๐‘›-map is zero on ๐‘†/๐‘๐‘›. This is the case when we set

up the modified Adams spectral sequence for ๐‘†/๐‘๐‘›.

Recall 8.1.17 and definition 8.1.7.

Definition 8.2.1. The modified Adams spectral sequence for ๐‘†/๐‘๐‘› (MASS-๐‘›) is the

๐ปโˆง*, ๐ป [*] โˆง ๐‘†/๐‘๐‘›โˆ’*, ๐‘†/๐‘-spectral sequence.

Smashing the maps of towers (recall lemma 8.1.14)

๐ปโˆง*, ๐ป [*] โˆง ๐ปโˆง*

, ๐ป [*] โˆ’โ†’ ๐ปโˆง*, ๐ป [*],

๐‘†/๐‘๐‘›โˆ’*, ๐‘†/๐‘ โˆง ๐‘†/๐‘๐‘›โˆ’*, ๐‘†/๐‘ โˆ’โ†’ ๐‘†/๐‘๐‘›โˆ’*, ๐‘†/๐‘

and composing with the swap map, we obtain a map of towers

[๐ปโˆง*

, ๐ป [*] โˆง ๐‘†/๐‘๐‘›โˆ’*, ๐‘†/๐‘]โˆง2โˆ’โ†’ ๐ปโˆง*

, ๐ป [*] โˆง ๐‘†/๐‘๐‘›โˆ’*, ๐‘†/๐‘

extending the multiplication ๐‘†/๐‘๐‘›โˆง๐‘†/๐‘๐‘› โˆ’โ†’ ๐‘†/๐‘๐‘›. By proposition 8.1.16, the MASS-

๐‘› is multiplicative.

We turn to the structure of the ๐ธ1-page. First, we note that the underlying chain

complex of ๐‘†/๐‘๐‘›โˆ’*, ๐‘†/๐‘ is a truncated version of ฮฃโˆ™๐‘†/๐‘:

๐‘†/๐‘๐›ฝ // ฮฃ๐‘†/๐‘

๐›ฝ // ฮฃ2๐‘†/๐‘ // . . . // ฮฃ๐‘›โˆ’1๐‘†/๐‘ // * // * // . . .

Definition 8.2.2. Write Bโˆ™ for ๐ป*(ฮฃโˆ™๐‘†/๐‘) and B(๐‘›)โˆ™ for the homology of the com-

plex just noted. Write 1๐‘—, ๐œ0,๐‘— for the F๐‘-basis elements of B๐‘—, and also for their images

112

Page 113: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

in B(๐‘›)๐‘—. Note that 1๐‘— and ๐œ0,๐‘— are zero in B(๐‘›) for ๐‘— โ‰ฅ ๐‘›.

Since ฮฃโˆ™๐‘†/๐‘ and its truncation are ring objects in Ch(S ) we see that Bโˆ™ and

B(๐‘›)โˆ™ are DG algebras over ๐ด. Moreover, using the same identification used for the

Adams ๐ธ1-page, we see that ๐ธโˆ™,*1 (MASS-๐‘›) = ฮฉโˆ™(๐ด;B(๐‘›)โˆ™), as DG algebras. This

cobar complex has coefficients in a DG algebra. Such a set up is described in [10].

To describe the ๐ธ2-page we need the following theorem and lemma.

Theorem 8.2.3 ([10, pg. 80]). For any differential ๐ด-comodule Mโˆ™ which is bounded

below we have a homology isomorphism

ฮฉโˆ™(๐ด;Mโˆ™) โˆ’โ†’ ฮฉโˆ™(๐‘ƒ ;๐‘„โŠ—๐œƒ Mโˆ™).

Here, ๐œƒ is a twisting homomorphism ๐ธ โˆ’โ†’ ๐‘„; ๐ธ is the exterior part of ๐ด and ๐œƒ takes

1 โ†ฆโˆ’โ†’ 0, ๐œ๐‘› โ†ฆโˆ’โ†’ ๐‘ž๐‘›, and ๐œ๐‘›1 ยท ยท ยท ๐œ๐‘›๐‘Ÿ โ†ฆโˆ’โ†’ 0 when ๐‘Ÿ > 1.

Lemma 8.2.4. We have a homology isomorphism

ฮฉโˆ™(๐‘ƒ ;๐‘„โŠ—๐œƒ B(๐‘›)โˆ™) โˆ’โ†’ ฮฉโˆ™(๐‘ƒ ;๐‘„/๐‘ž๐‘›0 ).

Moreover, this is a map of differential algebras.

Proof. A short calculation in ๐‘„โŠ—๐œƒ B(๐‘›)โˆ™ shows that

๐‘‘(๐‘ž โŠ— 1๐‘—) = 0 and ๐‘‘(๐‘ž โŠ— ๐œ0,๐‘—) = ๐‘ž0๐‘ž โŠ— 1๐‘— โˆ’ ๐‘ž โŠ— 1๐‘—+1.

[A sign might be wrong here but the end result will still be the same.] Define a map

๐‘„โŠ—๐œƒ B(๐‘›)โˆ™ โˆ’โ†’ ๐‘„/๐‘ž๐‘›0

by ๐‘ž โŠ— 1๐‘— โ†ฆโˆ’โ†’ ๐‘ž๐‘—0๐‘ž and ๐‘ž โŠ— ๐œ0,๐‘— โ†ฆโˆ’โ†’ 0. This is a map of differential algebras over ๐‘ƒ ,

where the target has a trivial differential. In addition, it is a homology isomorphism

and so the Eilenberg-Moore spectral sequence completes the proof.

113

Page 114: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

We should keeping track of the gradings under the maps we use:

๐ธ๐œŽ,๐œ†1 (MASS-๐‘›) =

โจ๐‘–+๐‘—=๐œŽ

ฮฉ๐‘–,๐œ†(๐ด;B(๐‘›)๐‘—)

โˆ’โ†’โจ๐‘–+๐‘—=๐œŽ๐‘ +ฮž=๐‘–๐‘ข+ฮž=๐œ†

ฮฉ๐‘ ,๐‘ข(๐‘ƒ ;๐‘„ฮž โŠ—๐œƒ B(๐‘›)๐‘—)

โˆ’โ†’โจ๐‘ +๐‘ก=๐œŽ๐‘ข+๐‘ก=๐œ†

ฮฉ๐‘ ,๐‘ข(๐‘ƒ ; [๐‘„/๐‘ž๐‘›0 ]๐‘ก).

We summarize what we have proved.

Proposition 8.2.5. The modified Adams spectral sequence for ๐‘†/๐‘๐‘› (MASS-๐‘›) is a

multiplicative spectral sequence with ๐ธ1-page ฮฉโˆ™(๐ด;B(๐‘›)โˆ™) and

๐ธ๐œŽ,๐œ†2 (MASS-๐‘›) =

โจ๐‘ +๐‘ก=๐œŽ๐‘ข+๐‘ก=๐œ†

๐ป๐‘ ,๐‘ข(๐‘ƒ ; [๐‘„/๐‘ž๐‘›0 ]๐‘ก).

We also make note of a modified Adams spectral sequence for ๐ต๐‘ƒ โˆง ๐‘†/๐‘๐‘›, which

receives the ๐ต๐‘ƒ -Hurewicz homomorphism from the MASS-๐‘›.

Definition 8.2.6. The modified Adams spectral sequence for ๐ต๐‘ƒ โˆง๐‘†/๐‘๐‘› (MASS-BP-

๐‘›) is the ๐ปโˆง*, ๐ป [*]โˆง๐ต๐‘ƒ โˆง๐‘†/๐‘๐‘›โˆ’*, ๐‘†/๐‘-spectral sequence, where ๐ต๐‘ƒ denotes the

tower whose underlying augmented cochain complex has augmentation ๐ต๐‘ƒ โˆ’โ†’ ๐ถโˆ™

given by the identity.

In the identification of the ๐ธ1 and ๐ธ2-page of this spectral sequence Bโˆ™ is replaced

by ๐ป*(๐ต๐‘ƒ โˆง ฮฃโˆ™๐‘†/๐‘) = ๐‘ƒ โŠ—ฮ” Bโˆ™. By using a shearing isomorphism, we obtain the

following proposition.

Proposition 8.2.7. The modified Adams spectral sequence for ๐ต๐‘ƒ โˆง ๐‘†/๐‘๐‘› (MASS-

BP-๐‘›) is a multiplicative spectral sequence with ๐ธ1-page ฮฉโˆ™(๐ด;๐‘ƒ โŠ—ฮ” B(๐‘›)โˆ™) and

๐ธ๐œŽ,๐œ†2 (MASS-BP-๐‘›) = ๐ธ๐œŽ,๐œ†

โˆž (MASS-BP-๐‘›) = [๐‘„/๐‘ž๐‘›0 ]๐œŽ,๐œ†โˆ’๐œŽ.

114

Page 115: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

8.3 The modified Adams spectral sequence for ๐‘†/๐‘โˆž

The cleanest way to define our modified Adams spectral sequence for the Prรผfer sphere

involves defining a reindexed MASS-๐‘›. To make sense of the reindexing geometrically,

we extend our definition of sequences and towers.

Definition 8.3.1. An object ๐‘‹๐‘  of the diagram category S Z is called a Z-sequence.

A system of interlocking cofibration sequences

. . . ๐‘‹๐‘ โˆ’1oo

๐‘‹๐‘ oo

๐‘‹๐‘ +1oo

. . .oo

๐ผ๐‘ โˆ’1

;;

๐ผ๐‘ 

;;

๐ผ๐‘ +1

;;

in S , where ๐‘  โˆˆ Z, is called a Z-tower and we use the notation ๐‘‹, ๐ผ. A Z-tower

is said to be bounded below if there is an ๐‘ โˆˆ Z such that ๐ผ๐‘  = * for ๐‘  < ๐‘ . Notice

that a Z-tower ๐‘‹, ๐ผ has an underlying Z-sequence ๐‘‹๐‘ .

A map of Z-towers ๐‘‹, ๐ผ โˆ’โ†’ ๐‘Œ, ๐ฝ is a compatible collection of maps

๐‘‹๐‘  โˆ’โ†’ ๐‘Œ๐‘  โˆช ๐ผ๐‘  โˆ’โ†’ ๐ฝ๐‘ .

We can still smash together bounded below Z-towers and they still give rise to a

spectral sequence.

Definition 8.3.2. Let ๐‘†/๐‘minโˆ’*,๐‘›, ๐‘†/๐‘ be the bounded below Z-tower obtained

from ๐‘†/๐‘๐‘›โˆ’*, ๐‘†/๐‘ by shifting it ๐‘› positions to the left.

Definition 8.3.3. The reindexed Adams spectral sequence for ๐‘†/๐‘๐‘› (RASS-๐‘›) is the

๐ปโˆง*, ๐ป [*] โˆง ๐‘†/๐‘minโˆ’*,๐‘›, ๐‘†/๐‘-spectral sequence.

Recall definition 3.1.4. We see immediately from proposition 8.2.5 that

๐ธ๐œŽ,๐œ†2 (RASS-๐‘›) =

โจ๐‘ +๐‘ก=๐œŽ๐‘ข+๐‘ก=๐œ†

๐ป๐‘ ,๐‘ข(๐‘ƒ ; [๐‘€๐‘›]๐‘ก).

115

Page 116: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

Moreover, there are maps of bounded below Z-towers

๐‘†/๐‘minโˆ’*,๐‘›, ๐‘†/๐‘ โˆ’โ†’ ๐‘†/๐‘minโˆ’*,๐‘›+1, ๐‘†/๐‘,

which give maps of spectral sequences from the RASS-๐‘› to the RASS-(๐‘›+1). Chasing

through the identification of the ๐ธ2-pages one see that the map at ๐ธ2-pages is induced

by the inclusion ๐‘€๐‘› โˆ’โ†’๐‘€๐‘›+1.

Definition 8.3.4. The modified Adams spectral sequence for ๐‘†/๐‘โˆž (MASS-โˆž) is the

colimit of the reindexed Adams spectral sequences for ๐‘†/๐‘๐‘›. It has

๐ธ๐œŽ,๐œ†2 (MASS-โˆž) =

โจ๐‘ +๐‘ก=๐œŽ๐‘ข+๐‘ก=๐œ†

๐ป๐‘ ,๐‘ข(๐‘ƒ ; [๐‘„/๐‘žโˆž0 ]๐‘ก).

There are some technicalities to worry about when taking the colimit of spectral

sequences. We resolve such issues in appendix B.

By definition, we have a map of spectral sequences from the RASS-๐‘› to the MASS-

โˆž. Lemma A.4 provides the following corollary to lemma 4.1.10.

Corollary 8.3.5. The map ๐ธ๐œŽ,๐œ†โˆž (RASS-(๐‘› + 1)) โˆ’โ†’ ๐ธ๐œŽ,๐œ†

โˆž (MASS-โˆž) is surjective

when ๐œ†โˆ’ ๐œŽ = ๐‘๐‘›๐‘ž and ๐œŽ โ‰ฅ ๐‘๐‘› โˆ’ ๐‘›โˆ’ 1.

8.4 A permanent cycle in the MASS-(๐‘› + 1)

In order to localize the MASS-(๐‘›+ 1) we need to find a permanent cycle detecting a

๐‘ฃ1-self map

๐‘ฃ๐‘๐‘›

1 : ๐‘†/๐‘๐‘›+1 โˆ’โ†’ ฮฃโˆ’๐‘๐‘›๐‘ž๐‘†/๐‘๐‘›+1.

The following theorem provides such a permanent cycle.

Theorem 8.4.1. The element ๐‘ž๐‘๐‘›

1 in ๐ป0,๐‘๐‘›๐‘ž(๐‘ƒ ; [๐‘„/๐‘ž๐‘›+10 ]๐‘

๐‘›) is a permanent cycle in

the MASS-(๐‘›+ 1).

Proof. By definition, the RASS-(๐‘›+1) is obtained by reindexing the MASS-(๐‘›+1) and

so it is equivalent to prove that ๐‘ž๐‘๐‘›

1 /๐‘ž๐‘›+10 โˆˆ ๐ป0,๐‘๐‘›๐‘ž(๐‘ƒ ; [๐‘€๐‘›+1]

๐‘๐‘›โˆ’๐‘›โˆ’1) is a permanent

116

Page 117: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

cycle in the RASS-(๐‘›+1). Lemmas 4.1.10 and A.4 show that it is enough to prove that

๐‘ž๐‘๐‘›

1 /๐‘ž๐‘›+10 โˆˆ ๐ป0,๐‘๐‘›๐‘ž(๐‘ƒ ; [๐‘„/๐‘žโˆž0 ]๐‘

๐‘›โˆ’๐‘›โˆ’1) is a permanent cycle in the MASS-โˆž. The map

of spectral sequences induced by ฮฃโˆ’1๐‘†/๐‘โˆž โˆ’โ†’ ๐‘†0 (proposition A.1) is an isomor-

phism in this range and so we are left with showing that ๐œ•(๐‘ž๐‘๐‘›

1 /๐‘ž๐‘›+10 ) = ๐‘ž๐‘

๐‘›โˆ’๐‘›โˆ’10 โ„Ž1,๐‘›

is a permanent cycle in the ASS, but this is the content of theorem 7.3.1.

Pick a representative for ๐‘ž๐‘๐‘›

1 in ๐œ‹๐‘๐‘›๐‘ž(๐‘†/๐‘๐‘›+1). Using the map of spectral sequences

from the MASS-(๐‘›+1) to the MASS-BP-1 and the fact that ๐‘ž๐‘๐‘›

1 in๐‘„/๐‘ž0 has the highest

monomial weight, i.e. modified Adams filtration, among elements of the same internal

degree, we see that the image of the chosen representative in ๐ต๐‘ƒ*(๐‘†/๐‘) is ๐‘ฃ๐‘๐‘›

1 . Thus,

tensoring up any representative for ๐‘ž๐‘๐‘›

1 to a self-map ๐‘ฃ๐‘๐‘›

1 : ๐‘†/๐‘๐‘›+1 โˆ’โ†’ ฮฃโˆ’๐‘๐‘›๐‘ž๐‘†/๐‘๐‘›+1

defines a ๐‘ฃ1 self-map. Corollary 8.3.5 tells us that it is possible to refine our choice of a

representative for ๐‘ž๐‘๐‘›

1 so that it maps to the ๐›ผ of theorem 7.3.1 under ฮฃโˆ’1๐‘†/๐‘๐‘›+1 โ†’ ๐‘†0.

This completes the proof of the final theorem stated in the introduction.

8.5 The localized Adams spectral sequences

Since ๐‘ž๐‘๐‘›โˆ’1

1 is a permanent cycle in the MASS-๐‘›, multiplication by ๐‘ž๐‘๐‘›โˆ’1

1 defines a

map of spectral sequences, which enables us to make the following definition.

Definition 8.5.1. The localized Adams spectral sequence for ๐‘ฃโˆ’11 ๐‘†/๐‘๐‘› (LASS-๐‘›) is

the colimit of the following diagram of spectral sequences.

๐ธ*,** (MASS-๐‘›)

๐‘ž๐‘๐‘›โˆ’1

1 // ๐ธ*,** (MASS-๐‘›)

๐‘ž๐‘๐‘›โˆ’1

1 // ๐ธ*,** (MASS-๐‘›)

๐‘ž๐‘๐‘›โˆ’1

1 // . . .

It has

๐ธ๐œŽ,๐œ†2 (LASS-๐‘›) =

โจ๐‘ +๐‘ก=๐œŽ๐‘ข+๐‘ก=๐œ†

๐ป๐‘ ,๐‘ข(๐‘ƒ ; [๐‘žโˆ’11 ๐‘„/๐‘ž๐‘›0 ]๐‘ก).

Since the MASS-๐‘› is multiplicative, the differentials in the LASS-๐‘› are derivations.

117

Page 118: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

The following diagram commutes when ๐‘Ÿ = 2.

๐ธ*,*๐‘Ÿ (RASS-๐‘›)

๐‘ž๐‘๐‘›

1 //

๐ธ*,*๐‘Ÿ (RASS-๐‘›)

๐ธ*,*๐‘Ÿ (RASS-(๐‘›+ 1))

๐‘ž๐‘๐‘›

1 // ๐ธ*,*๐‘Ÿ (RASS-(๐‘›+ 1))

Taking homology, we see, inductively, that it commutes for all ๐‘Ÿ โ‰ฅ 2. This means

that we have maps of spectral sequences between reindexed localized Adams spectral

sequences for ๐‘ฃโˆ’11 ๐‘†/๐‘๐‘› and so we can make the following definition.

Definition 8.5.2. The localized Adams spectral sequence for the ๐‘ฃ1-periodic sphere

(LASS-โˆž) is the colimit of the apparent reindexed localized Adams spectral sequences

for ๐‘ฃโˆ’11 ๐‘†/๐‘๐‘›. It has

๐ธ๐œŽ,๐œ†2 (LASS-โˆž) =

โจ๐‘ +๐‘ก=๐œŽ๐‘ข+๐‘ก=๐œ†

๐ป๐‘ ,๐‘ข(๐‘ƒ ; [๐‘žโˆ’11 ๐‘„/๐‘žโˆž0 ]๐‘ก).

8.6 Calculating the LASS-โˆž

Our calculation of the LASS-โˆž imitates that of the loc.alg.NSS. First, we note some

permanent cycles in the MASS-โˆž and LASS-โˆž.

Proposition 8.6.1. For ๐‘› โ‰ฅ 1 and ๐‘˜ โ‰ฅ 0, ๐‘ž๐‘˜๐‘๐‘›โˆ’1

1 /๐‘ž๐‘›0 is a permanent cycle in the

MASS-โˆž. For ๐‘› โ‰ฅ 1 and ๐‘˜ โˆˆ Z, ๐‘ž๐‘˜๐‘๐‘›โˆ’1

1 /๐‘ž๐‘›0 is a permanent cycle in the LASS-โˆž.

Proof. In the first case, ๐‘ž๐‘˜๐‘๐‘›โˆ’1

1 is permanent cycle in the MASS-๐‘› and so ๐‘ž๐‘˜๐‘๐‘›โˆ’1

1 /๐‘ž๐‘›0

is a permanent cycle in the RASS-๐‘› and the MASS-โˆž. In the second case, ๐‘ž๐‘˜๐‘๐‘›โˆ’1

1 is

permanent cycle in the LASS-๐‘› and the same argument gives the result.

Corollary 5.5.2 describes the associated graded of the ๐ธ2-page of the LASS-โˆž

with respect to the Bockstein filtration and we claim that

๐‘‘2 : ๐ธ๐œŽ,๐œ†2 (LASS-โˆž) โˆ’โ†’ ๐ธ๐œŽ+2,๐œ†+1

2 (LASS-โˆž)

118

Page 119: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

respects the Bockstein filtration.

Note that ๐‘ž0 โˆˆ ๐ป*(๐‘ƒ ; ๐‘žโˆ’11 ๐‘„/๐‘ž๐‘›0 ) is a permanent cycle in the LASS-๐‘›. Because ๐‘‘2

is a derivation in the LASS-๐‘›, multiplication by ๐‘ž0 commutes with ๐‘‘2. Thus, we find

the same in the reindexed localized Adams spectral sequences for ๐‘ฃโˆ’11 ๐‘†/๐‘๐‘› and hence,

in the LASS-โˆž, too. This verifies the claim.

We conclude that we have a filtration spectral sequence (๐‘ž0-FILT2)

๐ธ๐œŽ,๐œ†,๐‘ฃ0 (๐‘ž0-FILT2) =

โจ๐‘ +๐‘ก=๐œŽ๐‘ข+๐‘ก=๐œ†

๐ธ๐‘ ,๐‘ก,๐‘ข,๐‘ฃโˆž (๐‘žโˆ’1

1 -BSS)๐‘ฃ

=โ‡’ ๐ธ๐œŽ,๐œ†3 (LASS-โˆž).

Our calculation of this spectral sequence comes down to the calculation of the ๐ธ1-page

of the ๐‘ž0-FILT spectral sequence made in proposition 6.3.1.

In appendix A we show that each of the maps in the exact couple defining the

๐‘žโˆ’11 -BSS comes from a map of localized Adams spectral sequences. This means that

if ๐‘ฅ โˆˆ ๐ป*(๐‘ƒ ; ๐‘žโˆ’11 ๐‘„/๐‘ž0) and ๐‘ž๐‘ฃ0๐‘ฅ โˆˆ ๐ธโˆž(๐‘žโˆ’1

1 -BSS) then ๐‘‘๐‘ž0-FILT20 (๐‘ž๐‘ฃ0๐‘ฅ) = ๐‘ž๐‘ฃ0๐‘‘

LASS-12 ๐‘ฅ. The

๐‘†/๐‘ analog of theorem 1.4.7 therefore tells us that

๐‘‘๐‘ž0-FILT20 :

โจ๐‘ โ‰ฅ๐‘ ๐‘ +๐‘ก=๐œŽ๐‘ข+๐‘ก=๐œ†

๐ธ๐‘ ,๐‘ก,๐‘ข,๐‘ฃโˆž (๐‘žโˆ’1

1 -BSS) โˆ’โ†’โจ๐‘ โ‰ฅ๐‘ +1๐‘ +๐‘ก=๐œŽ+2๐‘ข+๐‘ก=๐œ†+1

๐ธ๐‘ ,๐‘ก,๐‘ข,๐‘ฃโˆž (๐‘žโˆ’1

1 -BSS)

and that if ๐‘ฅ lies in a single trigrading, then

๐‘‘๐‘ž0-FILT20 (๐‘ž๐‘ฃ0๐‘ฅ) โ‰ก ๐‘ž๐‘ฃ0๐‘‘

๐‘ฃ1-alg.NSS2 ๐‘ฅ = ๐‘‘๐‘ž0-FILT

0 (๐‘ž๐‘ฃ0๐‘ฅ)

up to terms with higher ๐‘ -grading. Thus, using a filtration spectral sequence with

respect to the ๐‘ -grading we deduce from proposition 6.3.1 that there is an F๐‘-vector

space isomorphism

๐ธ๐œŽ,๐œ†,๐‘ฃ1 (๐‘ž0-FILT2) โˆผ=

โจ๐‘ +๐‘ก=๐œŽ๐‘ข+๐‘ก=๐œ†

๐ธ๐‘ ,๐‘ก,๐‘ข,๐‘ฃ1 (๐‘ž0-FILT).

In appendix B the LASS-โˆž is shown to converge to ๐œ‹*(๐‘ฃโˆ’11 ๐‘†/๐‘โˆž). Moreover, since

119

Page 120: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

the localized Adams-Novikov spectral for ๐œ‹*(๐‘ฃโˆ’11 ๐‘†/๐‘โˆž) is degenerate and convergent

(the height 1 telescope conjecture is true), we know precisely what group the LASS-โˆž

converges to. From the bound on the size of the ๐ธ3-page given by our knowledge of

๐ธ1(๐‘ž0-FILT2) we can deduce the following proposition.

Proposition 8.6.2. For ๐‘Ÿ โ‰ฅ 3, there exist isomorphisms

๐ธ๐œŽ,๐œ†๐‘Ÿ (LASS-โˆž) โˆผ=

โจ๐‘ +๐‘ก=๐œŽ๐‘ข+๐‘ก=๐œ†

๐ธ๐‘ ,๐‘ก,๐‘ข๐‘Ÿ (loc.alg.NSS)

compatible with differentials.

๐ธโˆž(LASS-โˆž) has an F๐‘-basis given by the classes of the following elements.

๐‘ž๐‘ฃ0 : ๐‘ฃ < 0

โˆช๐‘ž๐‘ฃ0๐‘ž

๐‘˜๐‘๐‘›โˆ’1

1 : ๐‘› โ‰ฅ 1, ๐‘˜ โˆˆ Zโˆ’ ๐‘Z, โˆ’๐‘› โ‰ค ๐‘ฃ < 0

โˆช

๐‘ž๐‘ฃ0๐œ–๐‘› : ๐‘› โ‰ฅ 1, 1โˆ’ ๐‘๐‘› โ‰ค ๐‘ฃ < 0

Here, ๐‘ž๐‘ฃ0๐œ–๐‘› denotes an element of ๐ธ3(LASS-โˆž) corresponding to the element of the

same name in ๐ธ3(loc.alg.NSS) (see proposition 6.4.1).

8.7 The Adams spectral sequence

The following two corollaries show that our calculation of the LASS-โˆž has implica-

tions for the Adams spectral sequence.

First, lemma A.4 provides the following corollary to proposition 4.3.3.

Corollary 8.7.1. The localization map ๐ธ๐œŽ,๐œ†3 (MASS-โˆž) โˆ’โ†’ ๐ธ๐œŽ,๐œ†

3 (LASS-โˆž)

1. is a surjection if ๐œ† < ๐‘(๐‘โˆ’ 1)(๐œŽ + 1)โˆ’ 2, i.e. ๐œ†โˆ’ ๐œŽ < (๐‘2 โˆ’ ๐‘โˆ’ 1)(๐œŽ + 1)โˆ’ 1;

2. is an isomorphism if ๐œ†โˆ’ 1 < ๐‘(๐‘โˆ’ 1)(๐œŽ โˆ’ 1)โˆ’ 2,

i.e. ๐œ†โˆ’ ๐œŽ < (๐‘2 โˆ’ ๐‘โˆ’ 1)(๐œŽ โˆ’ 1)โˆ’ 2.

120

Page 121: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

Using the map of spectral sequences induced by ฮฃโˆ’1๐‘†/๐‘โˆž โˆ’โ†’ ๐‘†0 (proposition

A.1) we obtain the following corollary.

Corollary 8.7.2. ๐ธ๐œŽ,๐œ†3 (ASS) โˆผ= ๐ธ๐œŽโˆ’1,๐œ†

3 (LASS-โˆž) if ๐œ†โˆ’ ๐œŽ < (๐‘2 โˆ’ ๐‘โˆ’ 1)(๐œŽ โˆ’ 2)โˆ’ 3

and ๐œ†โˆ’ ๐œŽ > 0.

The line of the corollary just stated is drawn in green in figure 1-1.

One has to be careful when discussing higher differentials in the Adams spectral

sequence. Here is what we know:

โˆ™ There are permanent cycles at the top of each principal tower, the images of the

following elements under the map ๐œ• : ๐ป*(๐‘ƒ ;๐‘„/๐‘žโˆž0 ) โˆ’โ†’ ๐ป*(๐‘ƒ ;๐‘„) โˆผ= ๐ป*(๐ด).

๐‘ž๐‘ฃ0๐‘ž

๐‘˜๐‘๐‘›โˆ’1

1 : ๐‘› โ‰ฅ 1, ๐‘˜ โˆˆ Zโˆ’ ๐‘Z, ๐‘˜ โ‰ฅ 1, โˆ’๐‘› โ‰ค ๐‘ฃ < 0

Every other element in a principal tower supports a nontrivial differential.

โˆ™ An element of a side tower in the Adams spectral sequence cannot be hit by a

shorter differential than the corresponding element of the LASS-โˆž.

โˆ™ A non-permanent cycle in a principal tower in the Adams spectral sequence

above the line of the previous corollary supports a differential of the expected

length.

โˆ™ A non-permanent cycle in a principal tower in the Adams spectral sequence

cannot support a longer nontrivial differential than the corresponding element

of the LASS-โˆž, but perhaps it supports a shorter one than expected, leaving

an element of a side tower to detect a nontrivial homotopy class.

Looking at the charts of Nassau [14], we cannot find an example of the final

phenomenon, but the class ๐‘1,0 โˆˆ ๐ธ2,๐‘๐‘ž2 (ASS) gives a related example. [Similarly, one

could consider the potential ๐‘ = 3 Arf invariant elements.] We describe this example

presently.

121

Page 122: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

Under the isomorphism ๐ธ2,๐‘๐‘ž2 (ASS) โˆผ= ๐ธ1,๐‘๐‘ž

2 (MASS-โˆž), ๐‘1,0 is mapped to an ele-

ment detected by ๐‘žโˆ’(๐‘โˆ’1)0 ๐‘ž๐‘1๐œ–1 in the ๐‘žโˆž0 -BSS. Under the localization map this element

maps to an element of ๐ธ1,๐‘๐‘ž2 (LASS-โˆž) detected by ๐‘žโˆ’(๐‘โˆ’1)

0 ๐‘ž๐‘1๐œ–1 in the ๐‘žโˆ’11 -BSS.

The element

๐‘ฅ = ๐‘žโˆ’๐‘โˆ’10 ๐‘ž๐‘1 โˆ’ ๐‘žโˆ’1

0 ๐‘žโˆ’11 ๐‘ž2 โˆˆ ๐ป0,๐‘๐‘ž(๐‘ƒ ; [๐‘žโˆ’1

1 ๐‘„/๐‘žโˆž0 ]โˆ’1) โŠ‚ ๐ธโˆ’1,๐‘๐‘žโˆ’12 (LASS-โˆž)

is detected by ๐‘žโˆ’๐‘โˆ’10 ๐‘ž๐‘1 in the ๐‘žโˆ’1

1 -BSS. Our calculation of the LASS-โˆž shows that

๐‘‘2๐‘ฅ โˆˆ ๐ธ1,๐‘๐‘ž2 (LASS-โˆž) is nonzero. Moreover, we find that ๐ธ1,๐‘๐‘ž

2 (LASS-โˆž) = F๐‘ so

that a unit multiple of ๐‘ฅ maps via ๐‘‘2 to the localization of ๐‘1,0. This demonstrates

the well-known fact that ๐›ฝ โˆˆ ๐œ‹๐‘๐‘žโˆ’2(๐‘†0) is not ๐‘ฃ1-periodic.

122

Page 123: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

Appendix A

Maps of spectral sequences

The most difficult result of this appendix is the following proposition.

Proposition A.1. There are maps of spectral sequences

RASS-๐‘› //

ASS

=

ฮฃโˆ’1๐‘†/๐‘๐‘› //

๐‘†0

=

MASS-โˆž //

=

ASS

induced by ฮฃโˆ’1๐‘†/๐‘โˆž //

=

๐‘†0

MASS-โˆž //MASS-1 ฮฃโˆ’1๐‘†/๐‘โˆž // ๐‘†/๐‘.

At ๐ธ2-pages we get the maps by taking the connecting homomorphisms in the long

exact sequences got by applying ๐ป*(๐‘ƒ ;โˆ’) to the following short exact sequences of

๐‘ƒ -comodules (recall definition 3.1.4).

0 // ๐‘„ //

=

๐‘„โŸจ๐‘žโˆ’๐‘›0 โŸฉ //

๐‘€๐‘›//

0

0 // ๐‘„ //

๐‘žโˆ’10 ๐‘„ //

/๐‘ž0

๐‘„/๐‘žโˆž0 //

=

0

0 // ๐‘„/๐‘ž0 // ๐‘„/๐‘žโˆž0๐‘ž0 // ๐‘„/๐‘žโˆž0 // 0

123

Page 124: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

The previous proposition was required in the proof of theorem 8.4.1, which was

necessary to construct the LASS-๐‘› and the LASS-โˆž. We record, for completeness,

the following lemma.

Lemma A.2. There are maps of spectral sequences

MASS-(๐‘›+ 1) โˆ’โ†’ MASS-๐‘› induced by ๐‘†/๐‘๐‘›+1 โˆ’โ†’ ๐‘†/๐‘๐‘›

MASS-๐‘› โˆ’โ†’ MASS-BP-๐‘› induced by ๐‘†/๐‘๐‘› โˆ’โ†’ ๐ต๐‘ƒ โˆง ๐‘†/๐‘๐‘›

RASS-๐‘› โˆ’โ†’ RASS-(๐‘›+ 1) induced by ๐‘†/๐‘๐‘›๐‘โˆ’โ†’ ๐‘†/๐‘๐‘›+1

RASS-๐‘› โˆ’โ†’ MASS-โˆž induced by ๐‘†/๐‘๐‘› โˆ’โ†’ ๐‘†/๐‘โˆž

MASS-(๐‘›+ 1) โˆ’โ†’ MASS-(๐‘›+ 1) induced by ๐‘†/๐‘๐‘›+1๐‘ฃ๐‘

๐‘›

1โˆ’โ†’ ฮฃโˆ’๐‘๐‘›๐‘ž๐‘†/๐‘๐‘›+1

MASS-๐‘› โˆ’โ†’ LASS-๐‘› induced by ๐‘†/๐‘๐‘› โˆ’โ†’ ๐‘ฃโˆ’11 ๐‘†/๐‘๐‘›

RASS-(๐‘›+ 1) โˆ’โ†’ RASS-(๐‘›+ 1) induced by ๐‘†/๐‘๐‘›+1๐‘ฃ๐‘

๐‘›

1โˆ’โ†’ ฮฃโˆ’๐‘๐‘›๐‘ž๐‘†/๐‘๐‘›+1

MASS-โˆž โˆ’โ†’ LASS-โˆž induced by ๐‘†/๐‘โˆž โˆ’โ†’ ๐‘ฃโˆ’11 ๐‘†/๐‘โˆž

To calculate the LASS-โˆž we used the ๐‘ž0-FILT2 spectral sequence. To calculate

๐ธ1(๐‘ž0-FILT2) we required the following proposition.

Proposition A.3. There are maps of spectral sequences induced by the following

cofibration sequences.

๐‘†/๐‘ โˆ’โ†’ ๐‘†/๐‘โˆž โˆ’โ†’ ๐‘†/๐‘โˆž

๐‘ฃโˆ’11 ๐‘†/๐‘ โˆ’โ†’ ๐‘ฃโˆ’1

1 ๐‘†/๐‘โˆž โˆ’โ†’ ๐‘ฃโˆ’11 ๐‘†/๐‘โˆž

At ๐ธ2-pages the maps are the ones in the exact couples defining the ๐‘žโˆž0 -BSS and the

๐‘žโˆ’11 -BSS, respectively.

Often we have a map of spectral sequences and we know that on a given page,

at various bidegrees, we have surjections and injections. The following lemma tells

us that if we have a map of spectral sequences, a ๐‘‘๐‘Ÿ-differential, and that the map

on the ๐ธ๐‘Ÿ-pages is a surjection at the source of the differential and an injection at

the target of the differential, then we have a surjection and an injection at the same

positions on the ๐ธ๐‘Ÿ+1-page. The proof is a diagram chase.

124

Page 125: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

Lemma A.4. Suppose ๐ถโˆ™ โˆ’โ†’ ๐ทโˆ™ is a map of cochain complexes (in abelian groups),

that ๐ถ๐‘› โˆ’โ†’ ๐ท๐‘› is surjective and ๐ถ๐‘›+1 โˆ’โ†’ ๐ท๐‘›+1 is injective. Then ๐ป๐‘›(๐ถโˆ™) โˆ’โ†’

๐ป๐‘›(๐ทโˆ™) is surjective and ๐ป๐‘›+1(๐ถโˆ™) โˆ’โ†’ ๐ป๐‘›+1(๐ทโˆ™) is injective.

We now turn to the proofs of the two propositions.

Proof of proposition A.1. The map RASS-๐‘› โˆ’โ†’ MASS-โˆž is given by definition. The

map ASS โˆ’โ†’ MASS-1 is just a normal map of Adams spectral sequences induced by

๐‘†0 โˆ’โ†’ ๐‘†/๐‘. The difficult map to construct is the one induced by ฮฃโˆ’1๐‘†/๐‘๐‘› โˆ’โ†’ ๐‘†0.

We turn to this presently.

The idea is to start with the connecting homomorphism corresponding to the short

exact sequence of ๐‘ƒ -comodules 0 โˆ’โ†’ ๐‘„ โˆ’โ†’ ๐‘„โŸจ๐‘žโˆ’๐‘›0 โŸฉ โˆ’โ†’๐‘€๐‘› โˆ’โ†’ 0, and try to realize

it geometrically.

Consider the following short exact sequence of cochain complexes in ๐ด-comodules.

0 //

0 //

0 //

. . . // 0 //

F๐‘ //

0

0 //

ฮฃโˆ’๐‘›๐ธ[๐œ0,โˆ’๐‘›] //

ฮฃโˆ’๐‘›+1๐ธ[๐œ0,โˆ’๐‘›+1]//

. . . // ฮฃโˆ’1๐ธ[๐œ0,โˆ’1]//

F๐‘ //

0

0 // ฮฃโˆ’๐‘›๐ธ[๐œ0,โˆ’๐‘›] // ฮฃโˆ’๐‘›+1๐ธ[๐œ0,โˆ’๐‘›+1]

// . . . // ฮฃโˆ’1๐ธ[๐œ0,โˆ’1]// 0 // 0

The suspensions indicate cohomological degree. The first complex is concentrated in

cohomological degree 0 and is just F๐‘. The last complex is a shifted version of B(๐‘›)โˆ™,

which we call Bโˆ’(๐‘›)โˆ™. We call the middle complex C(๐‘›)โˆ™. We will show that the

connecting homomorphism of interest is the same as the connecting homomorphism

corresponding to the short exact sequence of differential ๐ด-comodules

0 โˆ’โ†’ F๐‘ โˆ’โ†’ C(๐‘›)โˆ™ โˆ’โ†’ Bโˆ’(๐‘›)โˆ™ โˆ’โ†’ 0.

Recall lemma 8.2.4 which helped us to identify the ๐ธ2-page of the MASS-๐‘›. We

125

Page 126: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

used a map

๐‘„โŠ—๐œƒ B(๐‘›)โˆ™ โˆ’โ†’ ๐‘„/๐‘ž๐‘›0

defined by ๐‘ž โŠ— 1๐‘— โ†ฆโˆ’โ†’ ๐‘ž๐‘—0๐‘ž and ๐‘ž โŠ— ๐œ0,๐‘— โ†ฆโˆ’โ†’ 0. Similarly, we have maps making the

following diagram commute.

0 // ๐‘„โŠ—๐œƒ F๐‘ //

๐‘„โŠ—๐œƒ C(๐‘›)โˆ™ //

๐‘„โŠ—๐œƒ Bโˆ’(๐‘›)โˆ™ //

0

0 // ๐‘„ // ๐‘„โŸจ๐‘žโˆ’๐‘›0 โŸฉ //๐‘€๐‘›// 0

Theorem 8.2.3 was also important in identifying the ๐ธ2-page of the MASS-๐‘›. Using it

again, together with the maps just defined, we find that we have a diagram of cochain

complexes.

0 // ฮฉโˆ™(๐ด;F๐‘) //

ฮฉโˆ™(๐ด;C(๐‘›)โˆ™) //

ฮฉโˆ™(๐ด;Bโˆ’(๐‘›)โˆ™) //

0

0 // ฮฉโˆ™(๐‘ƒ ;๐‘„) // ฮฉโˆ™(๐‘ƒ ;๐‘„โŸจ๐‘žโˆ’๐‘›0 โŸฉ) // ฮฉโˆ™(๐‘ƒ ;๐‘€๐‘›) // 0

Each of the vertical maps is a homology isomorphism and so we can calculate the

connecting homomorphism of interest using, instead, the connecting homomorphism

associated with 0 โˆ’โ†’ F๐‘ โˆ’โ†’ C(๐‘›)โˆ™ โˆ’โ†’ Bโˆ’(๐‘›)โˆ™ โˆ’โ†’ 0.

The connecting homomorphism for this short exact sequence can be described

even more explicitly than is usual. Lifting under the map C(๐‘›)โˆ™ Bโˆ’(๐‘›)โˆ™ can done

using the unique ๐ด-comodule splitting Bโˆ’(๐‘›)โˆ™ โ†’ห“ C(๐‘›)โˆ™, which puts a zero in the F๐‘spot. Similarly, the map F๐‘ โ†’ห“ C(๐‘›)โˆ™ has a unique ๐ด-comodule splitting C(๐‘›)โˆ™ F๐‘.

The diagram on the next page realizes the cochain complexes F๐‘, C(๐‘›)โˆ™, and

Bโˆ’(๐‘›)โˆ™ geometrically. We note that the first cochain complex comes from the tower

๐‘†0 whose underlying Z-sequence is ๐‘†0 in nonpositive degrees, * in positive degrees,

with identity structure maps where possible. The last cochain complex is the under-

lying cochain complex of ๐‘†/๐‘minโˆ’*,๐‘›, ๐‘†/๐‘, one of the towers used to construct the

126

Page 127: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

RASS-๐‘›.

* //

* //

* //

. . . // * //

๐‘†0 //

*

* //

ฮฃโˆ’๐‘›๐‘†/๐‘ //

ฮฃโˆ’๐‘›+1๐‘†/๐‘ //

. . . // ฮฃโˆ’1๐‘†/๐‘ //

๐‘†0 //

*

* // ฮฃโˆ’๐‘›๐‘†/๐‘ // ฮฃโˆ’๐‘›+1๐‘†/๐‘ // . . . // ฮฃโˆ’1๐‘†/๐‘ // * // *

Label these cochain complexes in S by the same names as the cochain complexes

obtained by applying ๐ป*(โˆ’) and recall the underlying cochain complex ฮฃโˆ™๐ป [โˆ™] of the

canonical ๐ป-resolution of ๐‘†0. The snake lemma for calculating the connecting the

homomorphism is realized geometrically by the following composite.

[ฮฃโˆ™๐ป [โˆ™] โˆงBโˆ’(๐‘›)โˆ™

]๐œŽ๐‘  //

[ฮฃโˆ™๐ป [โˆ™] โˆง C(๐‘›)โˆ™

]๐œŽ๐‘‘ //

[ฮฃโˆ™๐ป [โˆ™] โˆง C(๐‘›)โˆ™

]๐œŽ+1๐‘Ÿ //

[ฮฃโˆ™๐ป [โˆ™]

]๐œŽ+1

Here, ๐‘  and ๐‘Ÿ denote the respective splittings at the level of underlying spectra, ๐‘‘

is the differential in the cochain complex ฮฃโˆ™๐ป [โˆ™] โˆง C(๐‘›)โˆ™, and we have used that

ฮฃโˆ™๐ป [โˆ™] โˆง F๐‘ = ฮฃโˆ™๐ป [โˆ™].

To get the map of spectral sequences we just need to define a map of Z-towers

๐‘†/๐‘minโˆ’*,๐‘›, ๐‘†/๐‘ โˆ’โ†’ ๐‘†0, which pairs with ๐ปโˆง*, ๐ป [*] to give the composite above.

Such a map of Z-towers has nonzero degree: it raises cohomological degree by 1. The

underlying map of Z-sequences takes ฮฃโˆ’1๐‘†/๐‘๐‘— to ๐‘†0 via the composite

ฮฃโˆ’1๐‘†/๐‘๐‘— โˆ’โ†’ ฮฃโˆ’1๐‘†/๐‘โˆž โˆ’โ†’ ๐‘†0

and the map on underlying cochain complexes is the map Bโˆ’(๐‘›)โˆ™ โˆ’โ†’ F๐‘ which, on

homology, takes ๐œ0,โˆ’1 to 10. This completes the construction of the map of spectral

sequences RASS-๐‘› โˆ’โ†’ ASS induced by ฮฃโˆ’1๐‘†/๐‘๐‘› โˆ’โ†’ ๐‘†0.

127

Page 128: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

Since the maps of towers we use are compatible with the maps

๐‘†/๐‘minโˆ’*,๐‘›, ๐‘†/๐‘ โˆ’โ†’ ๐‘†/๐‘minโˆ’*,๐‘›+1, ๐‘†/๐‘,

the maps just constructed pass to the colimit to give the map MASS-โˆž โˆ’โ†’ ASS

induced by ฮฃโˆ’1๐‘†/๐‘โˆž โˆ’โ†’ ๐‘†0. The map MASS-โˆž โˆ’โ†’ MASS-1 can be obtained by

composition with the map ASS โˆ’โ†’ MASS-1.

Proof of proposition A.3. The map of spectral sequences induced by the connecting

map ฮฃโˆ’1๐‘†/๐‘โˆž โˆ’โ†’ ๐‘†/๐‘ was constructed in the previous proposition. The map in-

duced by ๐‘†/๐‘ โˆ’โ†’ ๐‘†/๐‘โˆž is the map MASS-1 โˆผ= RASS-1 โˆ’โ†’ MASS-โˆž.

The maps MASS-(๐‘› + 1) โˆ’โ†’ MASS-๐‘› induced by ๐‘†/๐‘๐‘›+1 โˆ’โ†’ ๐‘†/๐‘๐‘› can be rein-

dexed to give maps RASS-(๐‘› + 1) โˆ’โ†’ RASS-๐‘› of nonzero degree. Taking a colimit

we obtain the map MASS-โˆž โˆ’โ†’ MASS-โˆž induced by ๐‘ : ๐‘†/๐‘โˆž โˆ’โ†’ ๐‘†/๐‘โˆž.

We turn to the localized version. The map induced by ๐‘ฃโˆ’11 ๐‘†/๐‘ โˆ’โ†’ ๐‘ฃโˆ’1

1 ๐‘†/๐‘โˆž is

obtained in an identical manner to the unlocalized one, passing through a reindexed

localized Adams spectral sequence for ๐‘ฃโˆ’11 ๐‘†/๐‘. Similarly, for the map ๐‘ : ๐‘ฃโˆ’1

1 ๐‘†/๐‘โˆž โˆ’โ†’

๐‘ฃโˆ’11 ๐‘†/๐‘โˆž, the maps RASS-(๐‘› + 1) โˆ’โ†’ RASS-๐‘› localize to give maps of reindexed

localized Adams spectral sequences, and we can take a colimit.

Finally, for the connecting homomorphism we recall that the map RASS-๐‘› โˆ’โ†’

MASS-1 is constructed using the map of towers ๐‘†/๐‘minโˆ’*,๐‘›, ๐‘†/๐‘ โˆ’โ†’ ๐‘†0 โˆ’โ†’ ๐‘†/๐‘,

which makes use of the connecting homomorphism ฮฃโˆ’1๐‘†/๐‘โˆž โˆ’โ†’ ๐‘†/๐‘. Each of the

maps RASS-๐‘› โˆ’โ†’ MASS-1 localizes. The collection of localized maps is compatible

and so defines the requisite map LASS-โˆž โˆ’โ†’ LASS-1.

128

Page 129: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

Appendix B

Convergence of spectral sequences

In this appendix we check that each of the spectral sequences used in this thesis

converges in the sense of definition 2.2.2. In particular, we describe how to deal with

the technicalities associated with taking the colimits of spectral sequences that appear

in the definition of the MASS-โˆž, the LASS-๐‘›, and the LASS-โˆž.

In definition 8.1.15 we define the filtration of ๐œ‹*(๐‘‹0) that is relevant for the ๐‘‹, ๐ผ-

spectral sequence, and we describe a detection map

๐น ๐‘ ๐œ‹๐‘กโˆ’๐‘ (๐‘‹0)/๐น๐‘ +1๐œ‹๐‘กโˆ’๐‘ (๐‘‹0) โˆ’โ†’ ๐ธ๐‘ ,๐‘ก

โˆž (๐‘‹, ๐ผ).

This takes care of the filtration and detection map for the MASS-๐‘› and we will verify

case 1 of definition 2.2.2 to prove the following proposition.

Proposition B.1. The MASS-๐‘› converges to ๐œ‹*(๐‘†/๐‘๐‘›).

Moreover, the filtration associated with the RASS-๐‘› is obtained by reindexing the

filtration associated with the MASS-๐‘›, and our proof will verify case 3 of definition

2.2.2 to give the following corollary.

Corollary B.2. The RASS-๐‘› converges to ๐œ‹*(๐‘†/๐‘๐‘›).

Delaying the proof of these results for now, we note that we have not even defined

the filtration or detection map for the MASS-โˆž, the LASS-๐‘›, and the LASS-โˆž. We

129

Page 130: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

carefully discuss the situation for the MASS-โˆž by turning straight to the proof of

the following proposition.

Proposition B.3. The MASS-โˆž converges to ๐œ‹*(๐‘†/๐‘โˆž).

Proof. The purpose of a convergent spectral sequence is to identify the associated

graded of an abelian group with respect to some convergent filtration. Thus, the

most immediate aspects of the MASS-โˆž to address are the associated filtration, the

๐ธโˆž-page and the relationship between the two.

We have injections ๐น ๐œŽ๐œ‹*(๐‘†/๐‘๐‘›) โˆ’โ†’ ๐œ‹*(๐‘†/๐‘

๐‘›), where the ๐น denotes the filtration

associated with the RASS-๐‘›. Since, the maps ๐‘ : ๐‘†/๐‘๐‘› โˆ’โ†’ ๐‘†/๐‘๐‘›+1 used to define

๐‘†/๐‘โˆž are compatible with these filtrations, and filtered colimits preserve exactness,

we obtain an injection colim๐‘›๐น๐œŽ๐œ‹*(๐‘†/๐‘

๐‘›) โˆ’โ†’ colim๐‘›๐œ‹*(๐‘†/๐‘๐‘›) = ๐œ‹*(๐‘†/๐‘

โˆž). We define

๐น ๐œŽ๐œ‹*(๐‘†/๐‘โˆž) = im

(colim๐‘› ๐น

๐œŽ๐œ‹*(๐‘†/๐‘๐‘›) โˆ’โ†’ ๐œ‹*(๐‘†/๐‘

โˆž)

).

When we say that the MASS-โˆž is the colimit of the reindexed Adams spectral

sequences for ๐‘†/๐‘๐‘› we mean that

๐ธ๐œŽ,๐œ†๐‘Ÿ (MASS-โˆž) = colim๐‘› ๐ธ

๐œŽ,๐œ†๐‘Ÿ (MASS-๐‘›)

for each ๐‘Ÿ โ‰ฅ 2. Since filtered colimits commute with homology we have identifications

๐ป๐œŽ,๐œ†(๐ธ*,*๐‘Ÿ (MASS-โˆž), ๐‘‘๐‘Ÿ) = ๐ธ๐œŽ,๐œ†

๐‘Ÿ+1(MASS-โˆž) for each ๐‘Ÿ โ‰ฅ 2, which justifies calling the

MASS-โˆž a spectral sequence.

Staying true to definition 2.1.9, the ๐ธโˆž-page of the MASS-โˆž is given by the

permanent cycles modulo the boundaries. However, we had another choice for the

definition of the ๐ธโˆž-page:

๐ธ๐œŽ,๐œ†โˆž (MASS-โˆž) = colim๐‘› ๐ธ

๐œŽ,๐œ†โˆž (MASS-๐‘›).

We show that the two definitions coincide presently.

The vanishing line of corollary 4.1.9 ensures that, for large ๐‘Ÿ depending only on

(๐œŽ, ๐œ†), not on ๐‘›, we have maps ๐ธ๐œŽ,๐œ†๐‘Ÿ (RASS-๐‘›) โˆ’โ†’ ๐ธ๐œŽ,๐œ†

๐‘Ÿ+1(RASS-๐‘›). Moreover, ๐‘› is

130

Page 131: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

allowed to be โˆž. Thus,

๐ธ๐œŽ,๐œ†โˆž (MASS-โˆž) = colim๐‘Ÿ>>0 ๐ธ

๐œŽ,๐œ†๐‘Ÿ (MASS-โˆž)

= colim๐‘Ÿ>>0 colim๐‘› ๐ธ๐œŽ,๐œ†๐‘Ÿ (RASS-๐‘›)

= colim๐‘› colim๐‘Ÿ>>0 ๐ธ๐œŽ,๐œ†๐‘Ÿ (RASS-๐‘›)

= colim๐‘› ๐ธ๐œŽ,๐œ†โˆž (RASS-๐‘›).

The vanishing line makes sure that an element of the RASS-๐‘› cannot support longer

and longer differentials as it is mapped forward into subsequent reindexed Adams

spectral sequences, without eventually becoming a permanent cycle.

This observation is what allows us to make an identification

๐น ๐œŽ๐œ‹๐œ†โˆ’๐œŽ(๐‘†/๐‘โˆž)/๐น ๐œŽ+1๐œ‹๐œ†โˆ’๐œŽ(๐‘†/๐‘โˆž) = ๐ธ๐œŽ,๐œ†โˆž (MASS-โˆž).

Providing we have proved the previous corollary, that the RASS-๐‘› converges, we have

the following short exact sequence.

0 โˆ’โ†’ ๐น ๐œŽ+1๐œ‹๐œ†โˆ’๐œŽ(๐‘†/๐‘๐‘›) โˆ’โ†’ ๐น ๐œŽ๐œ‹๐œ†โˆ’๐œŽ(๐‘†/๐‘๐‘›+1) โˆ’โ†’ ๐ธ๐œŽ,๐œ†โˆž (MASS-๐‘›) โˆ’โ†’ 0 (B.4)

Taking colimits gives another short exact sequence. By our definition of ๐น ๐œŽ๐œ‹*(๐‘†/๐‘โˆž),

and the fact that the right term can be identified with ๐ธ๐œŽ,๐œ†โˆž (MASS-โˆž), that short

exact sequence gives the requisite identification.

We are just left with showing thatโ‹ƒ๐œŽ ๐น

๐œŽ๐œ‹*(๐‘†/๐‘โˆž) = ๐œ‹*(๐‘†/๐‘

โˆž) and that for each

๐‘ข, there exists a ๐œŽ with ๐น ๐œŽ๐œ‹๐‘ข(๐‘†/๐‘โˆž) = 0. For the first part we note that

โ‹ƒ๐œŽ๐น ๐œŽ๐œ‹*(๐‘†/๐‘

โˆž) = im

(colim๐œŽ colim๐‘› ๐น

๐œŽ๐œ‹*(๐‘†/๐‘๐‘›) โˆ’โ†’ ๐œ‹*(๐‘†/๐‘

โˆž)

)= im

(colim๐‘› colim๐œŽ ๐น

๐œŽ๐œ‹*(๐‘†/๐‘๐‘›) โˆ’โ†’ ๐œ‹*(๐‘†/๐‘

โˆž)

)= im

(colim๐‘› ๐œ‹*(๐‘†/๐‘

๐‘›) โˆ’โ†’ ๐œ‹*(๐‘†/๐‘โˆž)

)= ๐œ‹*(๐‘†/๐‘

โˆž).

131

Page 132: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

For the second part, we use both the vanishing line of corollary 4.1.9 and the con-

vergence of the RASS-๐‘› again. They tell us that ๐น ๐œŽ๐œ‹๐œ†โˆ’๐œŽ(๐‘†/๐‘๐‘›) is zero for ๐œŽ > ๐พ

where

๐พ =(๐œ†โˆ’ ๐œŽ) + 1

๐‘žโˆ’ 1.

๐พ is independent of ๐‘›, so ๐น ๐œŽ๐œ‹๐œ†โˆ’๐œŽ(๐‘†/๐‘โˆž) = 0 for ๐œŽ > ๐พ.

The vanishing line makes sure that if an element of ๐œ‹*(๐‘†/๐‘๐‘›) has infinitely many

filtration shifts as it is mapped forward into subsequent Moore spectra, then it must

map to zero in ๐œ‹*(๐‘†/๐‘โˆž).

We have proved that the MASS-โˆž convergences in accordance with definition

2.2.2, case 3.

Since the convergence of the LASS-๐‘› and LASS-โˆž are similar we address them

presently.

Proposition B.5. The LASS-(๐‘›+ 1) converges to ๐œ‹*(๐‘ฃโˆ’11 ๐‘†/๐‘๐‘›+1).

Proof. This is essentially the same proof as just given for the MASS-โˆž. We just need

to make a few remarks.

First, we have not said precisely what we mean by ๐‘ฃโˆ’11 ๐‘†/๐‘๐‘›+1. Theorem 8.4.1 tells

us that ๐‘ž๐‘๐‘›

1 is a permanent cycle in the MASS-(๐‘›+1). Thus it detects some homotopy

class, which we call

๐‘ฃ๐‘๐‘›

1 : ๐‘†0 โˆ’โ†’ ฮฃโˆ’๐‘๐‘›๐‘ž๐‘†/๐‘๐‘›+1.

Since ๐‘†/๐‘๐‘›+1 is a ring spectrum, we can โ€œtensor upโ€ to obtain a ๐‘ฃ1 self-map, which

we give the same name

๐‘ฃ๐‘๐‘›

1 : ๐‘†/๐‘๐‘›+1 โˆ’โ†’ ฮฃโˆ’๐‘๐‘›๐‘ž๐‘†/๐‘๐‘›+1.

๐‘ฃโˆ’11 ๐‘†/๐‘๐‘›+1 is the homotopy colimit of the diagram

๐‘†/๐‘๐‘›+1๐‘ฃ๐‘

๐‘›

1 // ฮฃโˆ’๐‘๐‘›๐‘ž๐‘†/๐‘๐‘›+1๐‘ฃ๐‘

๐‘›

1 // ฮฃโˆ’2๐‘๐‘›๐‘ž๐‘†/๐‘๐‘›+1๐‘ฃ๐‘

๐‘›

1 // ฮฃโˆ’3๐‘๐‘›๐‘ž๐‘†/๐‘๐‘›+1 // . . .

By construction we have ๐œ‹*(๐‘ฃโˆ’11 ๐‘†/๐‘๐‘›+1) = (๐‘ฃ๐‘

๐‘›

1 )โˆ’1๐œ‹*(๐‘†/๐‘๐‘›+1). This is what allows us

132

Page 133: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

to use the multiplicative structure of the MASS-n to localize the spectral sequence as

opposed to constructing maps of towers.

Let [๐œŽ, ๐‘˜] = ๐œŽ + ๐‘๐‘›๐‘˜ and [๐œ†, ๐‘˜] = ๐œ† + ๐‘๐‘›(๐‘ž + 1)๐‘˜. The vanishing line of corollary

4.1.9 is parallel to the multiplication-by-๐‘ž๐‘๐‘›

1 -line and this ensures that for large ๐‘Ÿ,

depending only on (๐œŽ, ๐œ†), not ๐‘˜, we have maps

๐ธ[๐œŽ,๐‘˜],[๐œ†,๐‘˜]๐‘Ÿ (MASS-(๐‘›+ 1)) โˆ’โ†’ ๐ธ

[๐œŽ,๐‘˜],[๐œ†,๐‘˜]๐‘Ÿ+1 (MASS-(๐‘›+ 1)).

Thus, just as in the previous proof we have an identification

๐ธ๐œŽ,๐œ†โˆž (LASS-(๐‘›+ 1)) = colim๐‘˜ ๐ธ

[๐œŽ,๐‘˜],[๐œ†,๐‘˜]โˆž (MASS-(๐‘›+ 1)).

where the maps in the system are multiplication by ๐‘ž๐‘๐‘›

1 .

The proof of convergence is now the same as for the MASS-โˆž. We define

๐น ๐œŽ๐œ‹๐‘ข(๐‘ฃโˆ’11 ๐‘†/๐‘๐‘›+1) = im

(colim๐‘˜ ๐น

[๐œŽ,๐‘˜]๐œ‹๐‘ข+๐‘๐‘›๐‘ž๐‘˜(๐‘†/๐‘๐‘›+1) โˆ’โ†’ ๐œ‹๐‘ข(๐‘ฃ

โˆ’11 ๐‘†/๐‘๐‘›+1)

),

where the ๐น on the right hand side of the equation denotes the MASS-(๐‘›+1) filtration.

We verify convergence in accordance with definition 2.2.2, case 3.

Proposition B.6. The LASS-โˆž converges to ๐œ‹*(๐‘ฃโˆ’11 ๐‘†/๐‘โˆž).

Proof. The proof is exactly the same as for the MASS-โˆž. We define

๐น ๐œŽ๐œ‹*(๐‘ฃโˆ’11 ๐‘†/๐‘โˆž) = im

(colim๐‘› ๐น

๐œŽ๐œ‹*(๐‘ฃโˆ’11 ๐‘†/๐‘๐‘›) โˆ’โ†’ ๐œ‹*(๐‘ฃ

โˆ’11 ๐‘†/๐‘โˆž)

),

where the ๐น on the right hand side of the equation denotes a reindexed localized

Adams filtration; we use the convergence and vanishing lines of the reindexed localized

Adams spectral sequences for ๐‘ฃโˆ’11 ๐‘†/๐‘๐‘› instead of the convergence and vanishing lines

for the RASS-๐‘›. The only subtlety is taking the colimit of the short exact sequence

analogous to (B.4). This is intertwined with the issue of defining of ๐‘ฃโˆ’11 ๐‘†/๐‘โˆž.

Corollary 3.8 of [8] tells us that there exists integers ๐‘–1, ๐‘–2, ๐‘–3, . . . such that the

133

Page 134: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

following diagrams commute.

๐‘†/๐‘๐‘›

[๐‘ฃ๐‘

๐‘›โˆ’1

1

]๐‘๐‘–๐‘›//

๐‘

ฮฃโˆ’๐‘–๐‘›๐‘๐‘›๐‘ž๐‘†/๐‘๐‘›

๐‘

๐‘†/๐‘๐‘›+1

[๐‘ฃ๐‘

๐‘›

1

]๐‘–๐‘›// ฮฃโˆ’๐‘–๐‘›๐‘๐‘›๐‘ž๐‘†/๐‘๐‘›+1

This means that ๐‘ : ๐‘†/๐‘๐‘› โˆ’โ†’ ๐‘†/๐‘๐‘›+1 induces a map ๐‘ : ๐‘ฃโˆ’11 ๐‘†/๐‘๐‘› โˆ’โ†’ ๐‘ฃโˆ’1

1 ๐‘†/๐‘๐‘›+1.

๐‘ฃโˆ’11 ๐‘†/๐‘โˆž is the homotopy colimit of the diagram

๐‘ฃโˆ’11 ๐‘†/๐‘

๐‘ // ๐‘ฃโˆ’11 ๐‘†/๐‘2 // . . . // ๐‘ฃโˆ’1

1 ๐‘†/๐‘๐‘›๐‘ // ๐‘ฃโˆ’1

1 ๐‘†/๐‘๐‘›+1 // . . .

Moreover, the diagram below commutes, where the filtrations are those of the RASS-๐‘›

and RASS-(๐‘›+ 1).

๐น ๐œŽ๐œ‹*(๐‘†/๐‘๐‘›)

[๐‘ฃ๐‘

๐‘›โˆ’1

1

]๐‘๐‘–๐‘›//

๐‘

๐น ๐œŽ+๐‘–๐‘›๐‘๐‘›๐œ‹*(๐‘†/๐‘๐‘›)

๐‘

๐น ๐œŽ๐œ‹*(๐‘†/๐‘

๐‘›+1)

[๐‘ฃ๐‘

๐‘›

1

]๐‘–๐‘›// ๐น ๐œŽ+๐‘–๐‘›๐‘๐‘›๐œ‹*(๐‘†/๐‘

๐‘›+1)

Thus, ๐‘ : ๐‘ฃโˆ’11 ๐‘†/๐‘๐‘› โˆ’โ†’ ๐‘ฃโˆ’1

1 ๐‘†/๐‘๐‘›+1 respects the reindexed localized Adams filtrations.

The proof convergence of the loc.alg.NSS follows the same chain of ideas as for

the LASS-โˆž.

Lemma B.7. The loc.alg.NSS converges to ๐ป*(๐ต๐‘ƒ*๐ต๐‘ƒ ; ๐‘ฃโˆ’11 ๐ต๐‘ƒ*/๐‘

โˆž).

Proof. This is essentially the same proof as for the LASS-โˆž. The following algebraic

Novikov spectral sequence converges in accordance with definition 2.2.2, case 1.

๐ป๐‘ ,๐‘ข(๐‘ƒ ; [๐‘„/๐‘ž๐‘›0 ]๐‘ก)๐‘ก

=โ‡’ ๐ป๐‘ ,๐‘ข(๐ต๐‘ƒ*๐ต๐‘ƒ ;๐ต๐‘ƒ*/๐‘๐‘›)

This is because the ๐ผ-adic filtration of ฮฉ*(๐ต๐‘ƒ*๐ต๐‘ƒ ;๐ต๐‘ƒ*/๐‘๐‘›) is finite in a fixed internal

134

Page 135: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

degree: ๐น โŒˆ๐‘ข/๐‘žโŒ‰+๐‘›ฮฉ*,๐‘ข(๐ต๐‘ƒ*๐ต๐‘ƒ ;๐ต๐‘ƒ*/๐‘๐‘›) = 0. Because we have a vanishing line parallel

to the multiplication-by-๐‘ž๐‘๐‘›โˆ’1

1 -line, we deduce that each

๐ป๐‘ ,๐‘ข(๐‘ƒ ; [๐‘žโˆ’11 ๐‘„/๐‘ž๐‘›0 ]๐‘ก)

๐‘ก=โ‡’ ๐ป๐‘ ,๐‘ข(๐ต๐‘ƒ*๐ต๐‘ƒ ; ๐‘ฃโˆ’1

1 ๐ต๐‘ƒ*/๐‘๐‘›)

converges in accordance with definition 2.2.2, case 3.

After the reindexing that occurs in constructing

๐ป๐‘ ,๐‘ข(๐‘ƒ ; [๐‘žโˆ’11 ๐‘„/๐‘žโˆž0 ]๐‘ก)

๐‘ก=โ‡’ ๐ป๐‘ ,๐‘ข(๐ต๐‘ƒ*๐ต๐‘ƒ ; ๐‘ฃโˆ’1

1 ๐ต๐‘ƒ*/๐‘โˆž)

the vanishing lines for these spectral sequences become independent of ๐‘› and so we

conclude convergence in accordance with definition 2.2.2, case 3.

We now go back to the proof of the first proposition.

Proof of proposition B.1. We are in case 1 of definition 2.2.2. We need to check the

following conditions.

โˆ™ The map ๐น ๐œŽ๐œ‹*(๐‘†/๐‘๐‘›)/๐น ๐œŽ+1๐œ‹*(๐‘†/๐‘

๐‘›) โˆ’โ†’ ๐ธ๐œŽ,*โˆž (MASS-๐‘›) appearing in definition

8.1.15 is an isomorphism.

โˆ™โ‹‚๐œŽ ๐น

๐œŽ๐œ‹*(๐‘†/๐‘๐‘›) = 0 and the map ๐œ‹*(๐‘†/๐‘๐‘›) โˆ’โ†’ lim๐œŽ ๐œ‹*(๐‘†/๐‘

๐‘›)/๐น ๐œŽ๐œ‹*(๐‘†/๐‘๐‘›) is an

isomorphism.

We will appeal to [15, theorem 3.6] but first we need to relate our construction of the

MASS-๐‘› to the one given there.

Suppose ๐‘‹, ๐ผ and ๐‘Œ, ๐ฝ are towers and that we have chosen cofibrant models

for them. Write ๐น (โˆ’,โˆ’) for the internal hom functor in ๐‘†-modules [7] and ๐‘„ for a

cofibrant replacement functor. Then we obtain a zig-zag

colim๐‘–+๐‘—โ‰ฅ๐œŽ0โ‰ค๐‘–,๐‘—โ‰ค๐œŽ

๐‘‹๐‘– โˆง ๐‘Œ๐‘—โˆผโ†โˆ’ hocolim๐‘–+๐‘—โ‰ฅ๐œŽ

0โ‰ค๐‘–,๐‘—โ‰ค๐œŽ๐‘‹๐‘– โˆง ๐‘Œ๐‘— โˆ’โ†’ hocolim๐‘–+๐‘—โ‰ฅ๐œŽ

0โ‰ค๐‘–,๐‘—โ‰ค๐œŽ๐น (๐‘„๐น (๐‘Œ๐‘—, ๐‘†

0), ๐‘‹๐‘–).

As long as each ๐‘Œ๐‘— is finite, this will be an equivalence. Taking ๐‘‹, ๐ผ to be ๐ปโˆง*, ๐ป [*]

and ๐‘Œ, ๐ฝ to be ๐‘†/๐‘๐‘›โˆ’*, ๐‘†/๐‘, we that our MASS-๐‘› is the same as the one in [15,

135

Page 136: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

definition 2.2] when one uses the dual of ๐‘†/๐‘๐‘›โˆ’*, ๐‘†/๐‘ in the source.

๐‘๐‘— is zero on ๐‘†/๐‘๐‘— and so [15, proposition 1.2(a)] tells us ๐‘†/๐‘๐‘— is ๐‘-adically cocom-

plete. Moreover, each ๐‘†/๐‘๐‘— is finite and connective. Thus, [15, theorem 3.6] applies

(after suspending once): the first bullet point holds andโ‹‚๐œŽ ๐น

๐œŽ๐œ‹*(๐‘†/๐‘๐‘›) = 0. More-

over, the vanishing line of corollary 4.1.9 gives a vanishing line for the MASS-๐‘›, and

so we see that for each ๐‘ข, there exists a ๐œŽ with ๐น ๐œŽ๐œ‹๐‘ข(๐‘†/๐‘๐‘›) = 0. We conclude that

the map ๐œ‹*(๐‘†/๐‘๐‘›) โˆ’โ†’ lim๐œŽ ๐œ‹*(๐‘†/๐‘๐‘›)/๐น ๐œŽ๐œ‹*(๐‘†/๐‘

๐‘›) is an isomorphism, as required.

Proof of corollary B.2. We are in case 3 of definition 2.2.2 by the previous argument.

It is far easier to show that the other spectral sequences we use converge.

Lemma B.8. The ๐‘„-BSS, the ๐‘žโˆž0 -BSS and the ๐‘žโˆ’11 -BSS converge.

Proof. The relevant filtrations are given in 3.2.1, 3.3.1 and 3.5.2, as are the identifi-

cations ๐ธ๐‘ฃโˆž = ๐น ๐‘ฃ/๐น ๐‘ฃ+1. For the ๐‘„-BSS we are in case 1 of definition 2.2.2:

๐น 0๐ป*(๐‘ƒ ;๐‘„) = ๐ป*(๐‘ƒ ;๐‘„) and ๐น ๐‘ก+1๐ป๐‘ ,๐‘ข(๐‘ƒ ;๐‘„๐‘ก) = 0

and so the requisite conditions hold. For the ๐‘žโˆž0 -BSS and the ๐‘žโˆ’11 -BSS we are in case

2 of definition 2.2.2.

Corollary B.9. The ๐‘ž0-FILT and ๐‘ž0-FILT2 spectral sequence converge to the ๐ธ3-

pages of the loc.alg.NSS and the LASS-โˆž, respectively.

Proof. Since the ๐‘žโˆ’11 -BSS converges in accordance with definition 2.2.2, case 2, one

finds that this means the ๐‘ž0-FILT and ๐‘ž0-FILT2 spectral sequences do, too.

For our final convergence proof we need the following lemma.

Lemma B.10. Fix (๐œŽ, ๐œ†). There are finitely many (๐‘ , ๐‘ก, ๐‘ข) with ๐‘ + ๐‘ก = ๐œŽ, ๐‘ข+ ๐‘ก = ๐œ†

and ๐ป๐‘ ,๐‘ข(๐‘ƒ ; [๐‘žโˆ’11 ๐‘„/๐‘ž0]

๐‘ก) nonzero.

136

Page 137: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

Proof. Multiplication by ๐‘ž1 defines an isomorphism

โจ๐‘ +๐‘ก=๐œŽ๐‘ข+๐‘ก=๐œ†

๐ป๐‘ ,๐‘ข(๐‘ƒ ; [๐‘žโˆ’11 ๐‘„/๐‘ž0]

๐‘ก) โˆ’โ†’โจ

๐‘ +๐‘ก=๐œŽ+1๐‘ข+๐‘ก=๐œ†+๐‘ž+1

๐ป๐‘ ,๐‘ข(๐‘ƒ ; [๐‘žโˆ’11 ๐‘„/๐‘ž0]

๐‘ก).

Thus, it is equivalent to ask the question for (๐œŽ+ ๐‘›, ๐œ†+ ๐‘›(๐‘ž+ 1)). By corollary 4.3.2

we can choose ๐‘› so that

โจ๐‘ +๐‘ก=๐œŽ+๐‘›

๐‘ข+๐‘ก=๐œ†+๐‘›(๐‘ž+1)

๐ป๐‘ ,๐‘ข(๐‘ƒ ; [๐‘„/๐‘ž0]๐‘ก) โˆ’โ†’

โจ๐‘ +๐‘ก=๐œŽ+๐‘›

๐‘ข+๐‘ก=๐œ†+๐‘›(๐‘ž+1)

๐ป๐‘ ,๐‘ข(๐‘ƒ ; [๐‘žโˆ’11 ๐‘„/๐‘ž0]

๐‘ก)

is an isomorphism. Nonzero elements in the left hand side have ๐‘ , ๐‘ก โ‰ฅ 0. There are

finitely many (๐‘ , ๐‘ก, ๐‘ข) with ๐‘ + ๐‘ก = ๐œŽ + ๐‘› and ๐‘ , ๐‘ก โ‰ฅ 0 and so the result follows.

This shows that the spectral sequence argument alluded to in the proof of [11,

theorem 4.8] is valid. It also allows us to prove the following lemma.

Proposition B.11. The ๐‘ -filtration spectral sequence of section 8.6 converges to

๐ธ1(๐‘ž0-FILT2).

Proof. To show that the spectral sequence converges in accordance with definition

2.2.2, case 1, we just need to show that for each (๐œŽ, ๐œ†, ๐‘ฃ), there are finitely many

(๐‘ , ๐‘ก, ๐‘ข) with ๐‘ + ๐‘ก = ๐œŽ, ๐‘ข+ ๐‘ก = ๐œ† and ๐ธ๐‘ ,๐‘ก,๐‘ข,๐‘ฃโˆž (๐‘žโˆ’1

1 -BSS) nonzero. This follows from the

fact that for each (๐œŽ, ๐œ†, ๐‘ฃ), there are finitely many (๐‘ , ๐‘ก, ๐‘ข) with ๐‘  + ๐‘ก = ๐œŽ, ๐‘ข + ๐‘ก = ๐œ†

and ๐ป๐‘ ,๐‘ข(๐‘ƒ ; [๐‘žโˆ’11 ๐‘„/๐‘ž0]

๐‘กโˆ’๐‘ฃ) nonzero.

137

Page 138: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

THIS PAGE INTENTIONALLY LEFT BLANK

138

Page 139: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

Bibliography

[1] J. F. Adams, The Kahn-Priddy theorem, Mathematical Proceedings of the Cam-bridge Philosophical Society, vol. 73, Cambridge Univ Press, 1973, pp. 45โ€“55.

[2] M. J. Andrews and H. R. Miller, Inverting the Hopf map, To appear (2015).

[3] J. M. Boardman, Conditionally convergent spectral sequences, ContemporaryMathematics 239 (1999), 49โ€“84.

[4] R. R. Bruner, The homotopy groups of ๐ปโˆž ring spectra, ๐ปโˆž ring spectra andtheir applications, Springer, 1986, pp. 129โ€“168.

[5] , The homotopy theory of ๐ปโˆž ring spectra, ๐ปโˆž ring spectra and theirapplications, Springer, 1986, pp. 88โ€“128.

[6] D. M. Davis and M. Mahowald, The image of the stable ๐ฝ-homomorphism, Topol-ogy 28 (1989), no. 1, 39โ€“58.

[7] A. D. Elmendorf, I. Kriz, M. A. Mandell, and J. P. May, Rings, modules, andalgebras in stable homotopy theory, American Mathematical Society Surveys andMonographs, American Mathematical Society, Citeseer, 1995.

[8] M. J. Hopkins and J. H. Smith, Nilpotence and stable homotopy theory II, Annalsof mathematics (1998), 1โ€“49.

[9] J. P. May, A general algebraic approach to Steenrod operations, The SteenrodAlgebra and Its Applications: A Conference to Celebrate NE Steenrodโ€™s SixtiethBirthday, Springer, 1970, pp. 153โ€“231.

[10] H. R. Miller, A localization theorem in homological algebra, Mathematical Pro-ceedings of the Cambridge Philosophical Society, vol. 84, Cambridge Univ Press,1978, pp. 73โ€“84.

[11] , On relations between Adams spectral sequences, with an application tothe stable homotopy of a Moore space, Journal of Pure and Applied Algebra 20(1981), no. 3, 287โ€“312.

[12] H. R. Miller, D. C. Ravenel, and W. S. Wilson, Periodic phenomena in theAdams-Novikov spectral sequence, Annals of Mathematics (1977), 469โ€“516.

139

Page 140: Michael Joseph Andrews - UCLA Department of Mathematicsmath.ucla.edu/~mjandr/Thesis.pdfThe 1-periodicpartoftheAdamsspectralsequence atanoddprime by Michael Joseph Andrews MMath,UniversityofOxford(2009)

[13] H. R. Miller and W. S. Wilson, On Novikovโ€™s Ext1 modulo an invariant primeideal, Topology 15 (1976), no. 2, 131โ€“141.

[14] C. Nassau, The Adams ๐ธ2-page at ๐‘ = 3, http://www.nullhomotopie.de/charts/z3ext0.pdf (2000).

[15] D. C. Ravenel, The Segal conjecture for cyclic groups and its consequences, Amer-ican Journal of Mathematics (1984), 415โ€“446.

[16] , Complex cobordism and stable homotopy groups of spheres, AmericanMathematical Soc., 2004.

140


Recommended