+ All Categories
Home > Documents > Micro Process Technology for Holistic Process …...D. M. Ratner, E. R. Murphy, M. Jhunjhunwala, D....

Micro Process Technology for Holistic Process …...D. M. Ratner, E. R. Murphy, M. Jhunjhunwala, D....

Date post: 21-Jun-2020
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
45
March 2010 V. Hessel [email protected] 1 Institut für Mikrotechnik Mainz GmbH Directorate Chemical Milli and Micro Process Technologies 2 Eindhoven University of Technology Department of Chemical Engineering and Chemistry 3 Technische Universität Darmstadt Technische Chemie / Cluster of Excellence Smart Interfaces Limburg Horhausen Mainz Eindhoven Darmstadt 22th March 2010 – CPAC Satellite Workshop, Rome Micro Process Technology for Holistic Process Intensification - From Ex-Ante Cost/Eco-Efficiency Considerations via Scaling Out to Novel Process Windows
Transcript
Page 1: Micro Process Technology for Holistic Process …...D. M. Ratner, E. R. Murphy, M. Jhunjhunwala, D. A. Snyder, K. F. Jensen, P. H. Seeberger, Chem. Commun. 2005, 578–580. BnO O BnO

March 2010

V. Hessel [email protected] Institut für Mikrotechnik Mainz GmbHDirectorate Chemical Milli and Micro Process Technologies

2 Eindhoven University of TechnologyDepartment of Chemical Engineering and Chemistry

3 Technische Universität DarmstadtTechnische Chemie / Cluster of Excellence Smart Interfaces

Limburg Horhausen Mainz Eindhoven Darmstadt

22th March 2010 – CPAC Satellite Workshop, Rome

Micro Process Technology for Holistic Process Intensification

- From Ex-Ante Cost/Eco-Efficiency Considerations via Scaling Out to Novel Process Windows

Page 2: Micro Process Technology for Holistic Process …...D. M. Ratner, E. R. Murphy, M. Jhunjhunwala, D. A. Snyder, K. F. Jensen, P. H. Seeberger, Chem. Commun. 2005, 578–580. BnO O BnO

March 2010

GATEWAYS STAND FOR OPENNESSAND ENTRANCE INTO NEW WORLDS

Miyajima Torii – Miyajima Island, next to Hiroshima

Torii is commonly found at the entrance or within a Shinto shrine, where it symbolically marks the transition from the sacred to the profane

Page 3: Micro Process Technology for Holistic Process …...D. M. Ratner, E. R. Murphy, M. Jhunjhunwala, D. A. Snyder, K. F. Jensen, P. H. Seeberger, Chem. Commun. 2005, 578–580. BnO O BnO

March 2010

‘SYNFLOW’

„Changing customer needs“

„More fast and flexible future production strategies“

„New, intensified process and plant concepts forspeeding up market penetration, for enhancing the

product life-cycle and improving sustainable production“

„Develop new production concepts, new start-up and shut-down strategies“

NEW HORIZONS – FUTURE FACTORY CONCEPTS

„Exploit the full potential of micro process technologies“

NMP Large ScaleEU Projects, started 2009-2010

NMP Quests – European Strategy

Page 4: Micro Process Technology for Holistic Process …...D. M. Ratner, E. R. Murphy, M. Jhunjhunwala, D. A. Snyder, K. F. Jensen, P. H. Seeberger, Chem. Commun. 2005, 578–580. BnO O BnO

March 2010

FIVE PRIME DEVELOPMENT ISSUES & SUCCESS FACTORS

FABRICATIONCATALYSTS

REACTORS

PLANTS

PROCESSESOH

OH

OH

OH

COOHKHCO3 (aq)

Volume: ~17 Mio €; funding: 11.0 Mio €, 30% industry15 partners – Coordinator: IMM

Container Platforms (‚Fence-to-Fence‘)Least-Cost-Investment Plants

• Sugar oxidation hydrogenation (Abo Akademi)• Epoxidation (Mythen)• Biodiesel production (Chemtex)• Ammonia production (ITI Energy)• Polymer chemistry reaction 1 (Evonik-Degussa)• Polymer chemistry reaction 2 (Evonik-Degussa)

Page 5: Micro Process Technology for Holistic Process …...D. M. Ratner, E. R. Murphy, M. Jhunjhunwala, D. A. Snyder, K. F. Jensen, P. H. Seeberger, Chem. Commun. 2005, 578–580. BnO O BnO

March 2010S. Hübschmann, D. Kralisch, V. Hessel, U. Krtschil, C. Kompter Chem. Eng. Technol. 32, 11 (2009) 1757-1765.

“Early bird" – ex-ante

EARLY BIRD MEASURING RODS –DO NOT DECIDE TOO LATE

Free

dom

of c

hoic

e, k

now

ledg

e

R & D Scale up Production

Application of decision support and optimisation tools

KnowledgeCosts & Sustainability

Degree of freedomApparatus & Processing

Stage of development

Simplified Life-Cycleand Cost Analysis(SCLA)

“Do not lock the stable door after the horse has bolted"

Process intensification: New processes & plants with step-change performance shift

Page 6: Micro Process Technology for Holistic Process …...D. M. Ratner, E. R. Murphy, M. Jhunjhunwala, D. A. Snyder, K. F. Jensen, P. H. Seeberger, Chem. Commun. 2005, 578–580. BnO O BnO

March 2010

SOME PI CRITERIA- HIERARCHICALLY GROUPED

“Be holistic"

Selectivity

ProductivityEnergy

Cost (cap/op)

Price (product)

Flexibility

Footprint –Land use

Emissions

ToxicitySafety – Plant operational time

Depreciation

Society / Environmental

Company / Economy

Plant / Process

Reaction / ReactorReactivity

Transport – use of local feedstock

Page 7: Micro Process Technology for Holistic Process …...D. M. Ratner, E. R. Murphy, M. Jhunjhunwala, D. A. Snyder, K. F. Jensen, P. H. Seeberger, Chem. Commun. 2005, 578–580. BnO O BnO

March 2010

“Be holistic"

V. Hessel Chem. Eng. Technol. 32, 11 (2009) 1655-1681.

BE HOLISTIC – HAND-IN-HAND DEVELOPMENT OF REACTOR DESIGN AND CHEMISTRY

Maximise transport

Maximise kinetics

Check ex-ante

Previous New, COPIRIDE

Page 8: Micro Process Technology for Holistic Process …...D. M. Ratner, E. R. Murphy, M. Jhunjhunwala, D. A. Snyder, K. F. Jensen, P. H. Seeberger, Chem. Commun. 2005, 578–580. BnO O BnO

March 2010

µ-Mixing

FASTNESS OF REACTIONS

µ-Heat exchange

Met

al/h

alog

en e

xcha

nge,

G

rigna

rd k

eton

ead

ditio

n

Low

-T G

rigna

rd

Nitr

atio

ns,

pept

ide

coup

lings

SN2

reac

tions

10-2 10-1 1 10 100 1000 10,000

Proc

ess

prot

ocl

times

in o

rgan

ic

text

book

s

Man

y, m

any

reac

tions

Intrinsic chemistry * Effective chemistry

* from: Schwalbe, S., Kursawe, A., Sommer, J. Chem. Eng. Tech. 28, 4 (2005) 408-419

conv-Mixing

conv-Heat exchange

MCPT: MASS & HEAT TRANSFERNPW: KINETICS

Intensified chemistry

Mos

t rea

ctio

ns

LONZA-class A (8%) LONZA-class B (9%) ‘LONZA-class D’ (81%)

Roberge, D.M., Ducry, L., et al. Chem. Eng. Tech. 28, 3 (2005) 318-323

Time [s]

Page 9: Micro Process Technology for Holistic Process …...D. M. Ratner, E. R. Murphy, M. Jhunjhunwala, D. A. Snyder, K. F. Jensen, P. H. Seeberger, Chem. Commun. 2005, 578–580. BnO O BnO

March 2010

T. Razzaq, T. N. Glasnov, C. O. Kappe, Eur. J. Org. Chem. 2009, 1321–1325.

Page 10: Micro Process Technology for Holistic Process …...D. M. Ratner, E. R. Murphy, M. Jhunjhunwala, D. A. Snyder, K. F. Jensen, P. H. Seeberger, Chem. Commun. 2005, 578–580. BnO O BnO

March 2010

V. Hessel Chem. Eng. Technol. 32, 11 (2009) 1655-1681.

NOVEL PROCESS WINDOWS

German NPW Research Cluster: 7 projects

Page 11: Micro Process Technology for Holistic Process …...D. M. Ratner, E. R. Murphy, M. Jhunjhunwala, D. A. Snyder, K. F. Jensen, P. H. Seeberger, Chem. Commun. 2005, 578–580. BnO O BnO

March 2010

EARLY LITERATURE REVIEWS

High temperature

High pressure

Supercritical fluids

Ultrasound

Plasma

Microwaves

Page 12: Micro Process Technology for Holistic Process …...D. M. Ratner, E. R. Murphy, M. Jhunjhunwala, D. A. Snyder, K. F. Jensen, P. H. Seeberger, Chem. Commun. 2005, 578–580. BnO O BnO

March 2010

Page 13: Micro Process Technology for Holistic Process …...D. M. Ratner, E. R. Murphy, M. Jhunjhunwala, D. A. Snyder, K. F. Jensen, P. H. Seeberger, Chem. Commun. 2005, 578–580. BnO O BnO

March 2010

Comparable yields were obtained for the continuous process, but with much shorter reaction times:

Reaction time reduction at best up to 2000 times; increase in space-time yield by factor 440

0

10

20

30

40

50

0 20 40 60 80 100 120 140Time (min)

Yiel

d(%

)

At reflux conditions

0

10

20

30

40

0 0.18 0.37 0.72 1Time (min)

Yiel

d(%

) Continuous process

Batch process

T= 180oCp= 40 bar

OH

OH

OH

OH

COOHKHCO3 (aq)

V. Hessel, C. Hofmann, P. Löb, J. Löhndorf, H. Löwe, A. Ziogas Org. Proc. Res. Dev. 9, 4 (2005) 479-489

KOLBE-SCHMITT SYNTHESIS: SPEED-UP OF REACTION BY HIGH-p,T PROCESSING

Page 14: Micro Process Technology for Holistic Process …...D. M. Ratner, E. R. Murphy, M. Jhunjhunwala, D. A. Snyder, K. F. Jensen, P. H. Seeberger, Chem. Commun. 2005, 578–580. BnO O BnO

March 2010

PROCESS INTENSIFICATION: INCREASE IN SPACE-TIME YIELD BY HIGH-p,T PROCESSING

160°C, previous results200°C, previous results

140°C, previous results

6532 16

12 8Residence time (s)

Total flow rate (ml/h)

Yiel

d(%

)

0

10

20

30

40

50

0 1000 2000 3000 4000 5000

Yiel

d(%

)

0

10

20

30

40

50

200°C, previous results

140°C, previous results

200°C, previous results

140°C, previous results

65 32 16 12 8

Residence time (s)

Total flow rate (ml/h)

Yiel

d(%

)

0

10

20

30

40

50

0 1000 2000 3000 4000 5000Total flow rate (ml/h)

Yiel

d(%

)

0

10

20

30

40

50

0 1000 2000 3000 4000 5000

160°C, previous results200°C, previous results

140°C, previous results160°C, previous results200°C, previous results

140°C, previous results160°C, previous results200°C, previous results

140°C, previous results160°C, previous results200°C, previous results

140°C, previous results

6532 16

12 8Residence time (s)

Total flow rate (ml/h)

Yiel

d(%

)

0

10

20

30

40

50

0 1000 2000 3000 4000 5000

Yiel

d(%

)

0

10

20

30

40

50200 C, Vorversuche140 C, Vorversuche

65 32 16 12 8

Residence time (s)

5400

4

10800

10700 15400

18300 30750

560

200 C, Projekt250 C, Projekt

160°C, previous results200°C, previous results

140°C, previous results160°C, previous results200°C, previous results

140°C, previous results160°C, previous results200°C, previous results

140°C, previous results160°C, previous results200°C, previous results

140°C, previous results

6532 16

12 8Residence time (s)

Total flow rate (ml/h)

Yiel

d(%

)

0

10

20

30

40

50

0 1000 2000 3000 4000 5000

Yiel

d(%

)

0

10

20

30

40

50

200°C, previous results

140°C, previous results

200°C, previous results

140°C, previous results

65 32 16 12 8

Residence time (s)

Total flow rate (ml/h)

Yiel

d(%

)

0

10

20

30

40

50

0 1000 2000 3000 4000 5000Total flow rate (ml/h)

Yiel

d(%

)

0

10

20

30

40

50

0 1000 2000 3000 4000 5000

160°C, previous results200°C, previous results

140°C, previous results160°C, previous results200°C, previous results

140°C, previous results160°C, previous results200°C, previous results

140°C, previous results160°C, previous results200°C, previous results

140°C, previous results160°C, previous results200°C, previous results

140°C, previous results160°C, previous results200°C, previous results

140°C, previous results160°C, previous results200°C, previous results

140°C, previous results

6532 16

12 8Residence time (s)

Total flow rate (ml/h)

Yiel

d(%

)

0

10

20

30

40

50

0 1000 2000 3000 4000 5000

Yiel

d(%

)

0

10

20

30

40

50200 °C, Vorversuche140 °C, Vorversuche

65 32 16 12 8

Residence time (s)

5400

4

10800

10700 15400

18300 30750

560

200 °C, Ölbad, wässrig250 °C,

6064200

Ölbad, wässrigÖlbad, BMIM-HC200 °C,

160°C, previous results200°C, previous results

140°C, previous results160°C, previous results200°C, previous results

140°C, previous results160°C, previous results200°C, previous results

140°C, previous results160°C, previous results200°C, previous results

140°C, previous results

6532 16

12 8Residence time (s)

Total flow rate (ml/h)

Yiel

d(%

)

0

10

20

30

40

50

0 1000 2000 3000 4000 5000

Yiel

d(%

)

0

10

20

30

40

50

200°C, previous results

140°C, previous results

200°C, previous results

140°C, previous results

65 32 16 12 8

Residence time (s)

Total flow rate (ml/h)

Yiel

d(%

)

0

10

20

30

40

50

0 1000 2000 3000 4000 5000Total flow rate (ml/h)

Yiel

d(%

)

0

10

20

30

40

50

0 1000 2000 3000 4000 5000

160°C, previous results200°C, previous results

140°C, previous results160°C, previous results200°C, previous results

140°C, previous results160°C, previous results200°C, previous results

140°C, previous results160°C, previous results200°C, previous results

140°C, previous results160°C, previous results200°C, previous results

140°C, previous results160°C, previous results200°C, previous results

140°C, previous results160°C, previous results200°C, previous results

140°C, previous results

6532 16

12 8Residence time (s)

Total flow rate (ml/h)

Yiel

d(%

)

0

10

20

30

40

50

0 1000 2000 3000 4000 5000

Yiel

d(%

)

0

10

20

30

40

50200 C, Vorversuche140 C, Vorversuche

65 32 16 12 8

Residence time (s)

5400

4

10800

10700 15400

18300 30750

560

200 C, Projekt250 C, Projekt

160°C, previous results200°C, previous results

140°C, previous results160°C, previous results200°C, previous results

140°C, previous results160°C, previous results200°C, previous results

140°C, previous results160°C, previous results200°C, previous results

140°C, previous results160°C, previous results200°C, previous results

140°C, previous results160°C, previous results200°C, previous results

140°C, previous results160°C, previous results200°C, previous results

140°C, previous results

6532 16

12 8Residence time (s)

Total flow rate (ml/h)

Yiel

d(%

)

0

10

20

30

40

50

0 1000 2000 3000 4000 5000

Yiel

d(%

)

0

10

20

30

40

50

200°C, previous results

140°C, previous results

200°C, previous results

140°C, previous results

65 32 16 12 8

Residence time (s)

Total flow rate (ml/h)

Yiel

d(%

)

0

10

20

30

40

50

0 1000 2000 3000 4000 5000Total flow rate (ml/h)

Yiel

d(%

)

0

10

20

30

40

50

0 1000 2000 3000 4000 5000

160°C, previous results200°C, previous results

140°C, previous results160°C, previous results200°C, previous results

140°C, previous results160°C, previous results200°C, previous results

140°C, previous results160°C, previous results200°C, previous results

140°C, previous results160°C, previous results200°C, previous results

140°C, previous results160°C, previous results200°C, previous results

140°C, previous results160°C, previous results200°C, previous results

140°C, previous results160°C, previous results200°C, previous results

140°C, previous results

6532 16

12 8Residence time (s)

Total flow rate (ml/h)

Yiel

d(%

)

0

10

20

30

40

50

0 1000 2000 3000 4000 5000

Yiel

d(%

)

0

10

20

30

40

50200 °C, Vorversuche140 °C, Vorversuche

65 32 16 12 8

Residence time (s)

5400

4

10800

10700 15400

18300 30750

560

200 °C, Ölbad, wässrig250 °C,

6064200

Ölbad, wässrigÖlbad, BMIM-HC200 °C,

OH

OH

OH

OH

COOHKHCO3 (aq)

V. Hessel, C. Hofmann, P. Löb, J. Löhndorf, et al. Org. Proc. Res. Dev. 9, 4 (2005) 479-489.V. Hessel, U. Krtschil, P. Löb, A. Stark, et al. Org. Proc. Res. Dev. 13, 5 (2009) 970-982.U. Krtschil, V. Hessel, A. Stark, D. Reinhard Chem. Eng. Technol. 32, 11 (2009) 1774-1789.

Reaction time reduction at best up to 2000 times; increase in space-time yield by factor 3200

4 t / a64200 kg/(m³ h)

4 sFlow chem (9 ml)

Batch (1 l)2 h – 7200 s20 kg/(m³ h)

1 t / a

140°C, (initial)200°C, aq (initial)200°C, aq250°C, aq200°C, IL BMIM-HC

Elevated temperature

Page 15: Micro Process Technology for Holistic Process …...D. M. Ratner, E. R. Murphy, M. Jhunjhunwala, D. A. Snyder, K. F. Jensen, P. H. Seeberger, Chem. Commun. 2005, 578–580. BnO O BnO

March 2010IMM Presentation 15

0

5

10

15

20

25

30

35

40

45

0,0000 0,0500 0,1000 0,1500 0,2500 0,3000

Residence time [s] (reciprocal)

Yiel

d2,

4-D

HB

A [%

]

1/16 in. capillary, 200 °C, 35 bardedicated µ-reactor, 206-219 °C, 35 bardedicated µ-reactor, 200 °C, 70 bardedicated µ-reactor, 220 °C, 70 barnondedicated µ-reactor, 220 °C, 35 bar

46.5811163265130

196

34450

STY[kg/m³h]15500

200 g/h

9 g/h

20300

90 g/h

productivity

38250

225 g/h

29800

175 g/hgas formation,

intermittent flowgas formation,

intermittent flow

25-fold productivity25-fold productivity

GOOD MICROREACTORS STILL NEEDED … FOR SCALE-OUT

Page 16: Micro Process Technology for Holistic Process …...D. M. Ratner, E. R. Murphy, M. Jhunjhunwala, D. A. Snyder, K. F. Jensen, P. H. Seeberger, Chem. Commun. 2005, 578–580. BnO O BnO

March 2010

INCREASE IN REACTIVITY VS. SELECTIVITY

at high temperatures and for longer residence times:

minor variation in yield

at high temperatures and for longer residence times:

minor variation in yield

substantial increase in selectivity substantial increase in selectivity

Capillary reactor, O.D. 1/8 inch 35 bar

0

5

10

15

20

25

30

35

40

45

0,0000 0,0100 0,0200 0,0300 0,0400 0,0500 0,0600 0,0700 0,0800 0,0900

Residence time [s] (reciprocal)

Yiel

d2,

4-D

HB

A a

nd 2

,6-D

HB

A [

%]

((

2,4-DHBA, 160°C2,4-DHBA, 180°C2,4-DHBA, 200°C

2,6-DHBA, 160°C2,6-DHBA, 180°C2,6-DHBA, 200°C

130385 33 25 20 17 1113

1

65

O OH

OH

OH

rearrangement

ΔT

O

OHOH

OHΔT

OH

OH

+ CO2

2,4-Dihydroxybenzoic acid 2,6-Dihydroxybenzoic acid Resorcinol

Page 17: Micro Process Technology for Holistic Process …...D. M. Ratner, E. R. Murphy, M. Jhunjhunwala, D. A. Snyder, K. F. Jensen, P. H. Seeberger, Chem. Commun. 2005, 578–580. BnO O BnO

March 2010

HCO3- donating ionic liquids

M-IL-KSM-A-KSMicrowave

CH-IL-KSCH-A-KSConventional

Ionic liquidAqueousHeating

Solvent

BRIDGING PI TECHNOLOGIES

Faysal Benaskar (TUe)Internship at IMM

V. Hessel, U. Krtschil, P. Löb, A. Stark, et al. Org. Proc. Res. Dev. 13, 5 (2009) 970-982.

V. Hessel, D. Kralisch, U. Krtschil Energy Environ. Sci. 1, 4 (2008) 467- 478.

Page 18: Micro Process Technology for Holistic Process …...D. M. Ratner, E. R. Murphy, M. Jhunjhunwala, D. A. Snyder, K. F. Jensen, P. H. Seeberger, Chem. Commun. 2005, 578–580. BnO O BnO

March 2010

‚Footprint‘ - distinct LCA (and costing) patterns; determining factors: here, energy and raw materials

Linear extrapolation to productivity 100 g 2,4-dihydroxy benzoic acid

GLOBAL WARMING POTENTIAL

Standard

IL Supercritical

S. Hübschmann, D. Kralisch, V. Hessel, U. Krtschil, C. Kompter Chem. Eng. Technol. 32, 11 (2009) 1757-1765.

Global warming potential [kg CO2/FE]

Page 19: Micro Process Technology for Holistic Process …...D. M. Ratner, E. R. Murphy, M. Jhunjhunwala, D. A. Snyder, K. F. Jensen, P. H. Seeberger, Chem. Commun. 2005, 578–580. BnO O BnO

March 2010

REACTION TIME IS DETERMINING FACTOR NO. 1

Fast reaction processing has much better global warming potentialEfficient use of reactor capacities is prime issue for eco-efficient processing

Glo

bal w

arm

ing

pote

ntia

l[k

g C

O2

/ FE;

0.1

kg

prod

uct]

V. Hessel, D. Kralisch, U. Krtschil Energy Environ. Sci. 1, 4 (2008) 467- 478.

Waste waterElectrical energySolvent / ILKHCO3

Resorcinol

Reaction timereduction

Reaction timereduction

Page 20: Micro Process Technology for Holistic Process …...D. M. Ratner, E. R. Murphy, M. Jhunjhunwala, D. A. Snyder, K. F. Jensen, P. H. Seeberger, Chem. Commun. 2005, 578–580. BnO O BnO

March 2010

Multi Criteria Decision Support

A. Azapagic, R. Clift, Computers and Chemical Engineering 23 (1999) 1509–1526.

Multiobjective Optimisation (MO)

BUNDLING OF PI CRITERIA INTO ONE DECISION – GREEN OR STOP LIGHT

Page 21: Micro Process Technology for Holistic Process …...D. M. Ratner, E. R. Murphy, M. Jhunjhunwala, D. A. Snyder, K. F. Jensen, P. H. Seeberger, Chem. Commun. 2005, 578–580. BnO O BnO

March 2010

‘Lukewarm’ ex-cryogenico processes –MOFFAT-SWERN OXIDATION

T. Kawaguchi, H. Miyata, K. Ataka, K. Mae, J.-i. Yoshida, Angew. Chem. Int. Ed. 44 (2005) 2413 –2416.

S O + (CF3CO2)2O S+ OCOCF3

HOR'

RS+ O

R

R'

OR'

RS+

1st Step

2nd Step

3rd Stepbase

• Batch: very low temperatures (<-50°C)• Microreactor: temperatures between -20 and 20°C

• Microreactor yields >> batch yields (e.g. 95% opposed to 20%) at very short residence times of 0.01 s

Elevated temperature

Page 22: Micro Process Technology for Holistic Process …...D. M. Ratner, E. R. Murphy, M. Jhunjhunwala, D. A. Snyder, K. F. Jensen, P. H. Seeberger, Chem. Commun. 2005, 578–580. BnO O BnO

March 2010

GLYCOSYLATIONS

D. M. Ratner, E. R. Murphy, M. Jhunjhunwala, D. A. Snyder, K. F. Jensen, P. H. Seeberger, Chem. Commun. 2005, 578–580.

OBnOBnO OAc

OBn

O

CCl3

NHO

OBn

OOBnO

OOO

O

OO

OBn

+OO

O OH

OO

OO

O O

OO

OOAcBnOBnO

OBn

+TMSOTfCH2Cl2

• Batch: good yields at -60°C and 213 s• Microreactor: same yield at -35°C and 25.7 s

Mannosylation of diisopropylidene galactosewith mannosyl trichloroacetimidate

Elevated temperature

Page 23: Micro Process Technology for Holistic Process …...D. M. Ratner, E. R. Murphy, M. Jhunjhunwala, D. A. Snyder, K. F. Jensen, P. H. Seeberger, Chem. Commun. 2005, 578–580. BnO O BnO

March 2010

‘Scalding hot’ pressurized ex-reflux processes –BROMINATIONS

P. Löb, H. Löwe, V. Hessel, J. Fluorine Chem. 125, 11 (2004) 1677-1694.

CH3 CH3

Br

CH3

Br

CH2BrBr2

+ +

CH2

NO2

CH2Br

NO2

Br2

• High temperature: core-substitution

• 0°C: 20% side-chain bromination

•190°C: side-chain bromination• Higher conversion (40% to 95%)

with temperature and pressure

Elevated temperature

Page 24: Micro Process Technology for Holistic Process …...D. M. Ratner, E. R. Murphy, M. Jhunjhunwala, D. A. Snyder, K. F. Jensen, P. H. Seeberger, Chem. Commun. 2005, 578–580. BnO O BnO

March 2010

COPPER-FREE SONOGASHIRA COUPLING

H. Kawanami, K. Matsushima, M. Sato, Y. Ikushima, Angew. Chem. Int. Ed. 46 (2007) 5129 –5132.

H

+I

RR

cat., base

rapid mixing andheating in HPHT-time: 0.012 - 4 s

H2O

• Green process: water-mediated, without organic solvents

• Copper-free process without specific ligands for Pd catalyst

• Nearly quantitative yield at 0.1–4.0 s, 250°C and 16 MPa

• Even at 0.035 s: yield was >96% yield, but decreased to 1.5% at 0.012 s

Elevated temperature

Page 25: Micro Process Technology for Holistic Process …...D. M. Ratner, E. R. Murphy, M. Jhunjhunwala, D. A. Snyder, K. F. Jensen, P. H. Seeberger, Chem. Commun. 2005, 578–580. BnO O BnO

March 2010

NEWMAN-KUART REARRANGEMENT

X. Zhang, S. Stefanick, F.J. Villani, Org. Process Res. Dev. 8, 3 (2004) 455.

NO2

O

NMe2S

NO2

S

NMe2O

170°C90 %

• Scale-up prohibited in multi-purpose plants > 140°C

• Safe operation in microreactors > 200°C

• Yield near 100% at 170°C > yield by laboratory equipment (90%)

O-(2-nitrophenyl)-N,N-dimethylthiocarbamate to S-(2-nitrophenyl)- N,N-dimethylthiocarbamothioate

Elevated temperature

Page 26: Micro Process Technology for Holistic Process …...D. M. Ratner, E. R. Murphy, M. Jhunjhunwala, D. A. Snyder, K. F. Jensen, P. H. Seeberger, Chem. Commun. 2005, 578–580. BnO O BnO

March 2010

Alternative solvents

Elevated temperature

Page 27: Micro Process Technology for Holistic Process …...D. M. Ratner, E. R. Murphy, M. Jhunjhunwala, D. A. Snyder, K. F. Jensen, P. H. Seeberger, Chem. Commun. 2005, 578–580. BnO O BnO

March 2010

HYDROSILYLATION

A. Odedra, K. Geyer, T. Gustafsson, R. Gilmour, P. H. Seeberger, Chem. Commun. 2008, 3025–3027.

• Reduction of deoxy sugars at excellent yield (>90%)

• No toxic or chlorinated solvents such as CCl4• Process simplicity as compared to literature procedure

• Enhanced reactivity and changes in stereochemistry / cis/trans selectivities

Reduction with TTMSS, tris(trimethylsilyl)silane of various alcohol-derived thiocarbonyl derivatives in superheated toluene at 130°C with 5 min

Ph + H Si(TMS)3Ph

H Si(TMS)3

Elevated temperature

Page 28: Micro Process Technology for Holistic Process …...D. M. Ratner, E. R. Murphy, M. Jhunjhunwala, D. A. Snyder, K. F. Jensen, P. H. Seeberger, Chem. Commun. 2005, 578–580. BnO O BnO

March 2010

NUCLEOPHILIC AMINATION

T. Razzaq, T. N. Glasnov, C. O. Kappe, Eur. J. Org. Chem. 2009, 1321–1325.

N Cl N

O

H

N NO

+NMP (0.04 M)

270 °C, 70 bar0.4 mL/min

Full conversion and 82% yield within 8 min at 270 °C and 70 bar as opposed to reaction times of several days in conventional equipment

Elevated temperature

Page 29: Micro Process Technology for Holistic Process …...D. M. Ratner, E. R. Murphy, M. Jhunjhunwala, D. A. Snyder, K. F. Jensen, P. H. Seeberger, Chem. Commun. 2005, 578–580. BnO O BnO

March 2010

toluene thiophene

Br2 [ml/h] / Educt [ml/min]:

meta-nitrotoluene

18.6 / 42.824.5 / 49.8

18.4 / 28.4

reaction speed

formation of gaseous hydrogen bromide

CORE AND SIDE-CHAIN BROMINATIONS WITH ELEMENTAL BROMINE

Solvent-free

Page 30: Micro Process Technology for Holistic Process …...D. M. Ratner, E. R. Murphy, M. Jhunjhunwala, D. A. Snyder, K. F. Jensen, P. H. Seeberger, Chem. Commun. 2005, 578–580. BnO O BnO

March 2010

S Br S Br

BrBr

BrS Br

Br

BrS BrBr

0

10

20

30

40

50

60

70

80

90

0 1 2 3 4 5Molar ratio bromine : thiophene

sele

ctiv

ity [%

]

2-BrT2,5-DiBrT2,3,5-TriBrT2,3,4,5-TetraBrT

• T = 0°C• Pure bromine

Löb, P.; Löwe, H.; Hessel, V.; Letters of Organic Chemistry 2, 8 (2005) 767-779

Löb, P.; Löwe, H.; Hessel, V. J. FluorineChem. 125, 11 (2004) 1677-16946

100

Solvent-free

THIOPHENE BROMINATION

• Figure of merit: optimum for formation of 2,5-dibromothiophenetherefore processing at molar ratios of 2

Page 31: Micro Process Technology for Holistic Process …...D. M. Ratner, E. R. Murphy, M. Jhunjhunwala, D. A. Snyder, K. F. Jensen, P. H. Seeberger, Chem. Commun. 2005, 578–580. BnO O BnO

March 2010

• Large heat releases – in batch addition of reactants drop per drop over 24h – micro-reactor operation needs only some minutes (1.6 – 29 min)

S. Hubbard Master thesis, Fresenius Europa Fachhochschule Idstein/Germany (2005).

H. Löwe, V. Hessel, S. Hubbard, P. Löb Org. Proc. Res. Dev. 10, 6 (2006) 1144-1152.

• Large increases in space-time yield by micro-flow processing (8 – 652 x, based on g /ml h)-1)

Solvent-free

MICHAEL ADDITION

Page 32: Micro Process Technology for Holistic Process …...D. M. Ratner, E. R. Murphy, M. Jhunjhunwala, D. A. Snyder, K. F. Jensen, P. H. Seeberger, Chem. Commun. 2005, 578–580. BnO O BnO

March 2010

Alternative solventsN

OH

scH 2O ONH

no catalyst

Sulfuric acid 383 0.1 5400 72Zeolites 623 0.1 3600 95H2O 523 40 180 0scH2O 673 40 0.63 83scH2O-HCl 648 40 0.73 99

Process T [K] p [MPa] t [s] Y [%]

Y. Ikushima, K. Hatakeda, O. Sato, M. Sato, oral presentation, ACHEMA Congress (2003)

BECKMANN REARRANGEMENT – NYLON 6 INTERMEDIATE

Process simplification: elimination of need for acid at increased reaction speed

Page 33: Micro Process Technology for Holistic Process …...D. M. Ratner, E. R. Murphy, M. Jhunjhunwala, D. A. Snyder, K. F. Jensen, P. H. Seeberger, Chem. Commun. 2005, 578–580. BnO O BnO

March 2010

T. Razzaq, T. Glasnov, C. Kappe, Eur. J. Org. Chem. (2009) 1321.

Ph

O

OEtscMeOH

350°C, 180 barPh

O

OMe

Ph

O

OHscEtOH

330°C, 180 barPh

O

OEt

G. Socher et al., Fresenius J. Anal. Chem. 371 (2001) 369.

Transesterification

Esterification

Tc = 268°C; pc = 61 bar.

Tc = 239°C; pc = 81 bar.

ESTERIFICATIONS IN SUPERCRITICAL ALCOHOLS

Process simplification: no catalyst used – high ionic product of SCFs

18 min

12 min

Alternative solvents

Page 34: Micro Process Technology for Holistic Process …...D. M. Ratner, E. R. Murphy, M. Jhunjhunwala, D. A. Snyder, K. F. Jensen, P. H. Seeberger, Chem. Commun. 2005, 578–580. BnO O BnO

March 2010

HAZARDOUS REACTIONSFLUORINATIONS WITH REACTIVE AGENTS

M. Baumann, I.R. Baxendale, L.J. Martin, S.V. Ley, Tetrahedron 65 2009, 6611–6625.

O

N

N

OCN

OO

O

O

N

N

OCN

O

O

FF

DAST

• DAST: volatile, reacts violently with water and readily undergoesdismutation to SF4 and (Et2N)2SF2

• Nucleophilic fluorination, electrophilic fluorination and trifluoromethylation• Purities >95% & yields up to 95%, eliminating purification• Superheated processing with rate acceleration

Dedicated fluorinations with diethyl-amino-sulfur trifluoride (DAST), (1-chloro-methyl-4-fluoro-1,4-diazo-niabicyclo-[2.2.2]octane), bis(tetra-fluoroborate) (Selectfluor®), and trimethylsilyl trifluoromethane(TMS-CF3, Ruppert’s reagent)

Hazardous reagents

Page 35: Micro Process Technology for Holistic Process …...D. M. Ratner, E. R. Murphy, M. Jhunjhunwala, D. A. Snyder, K. F. Jensen, P. H. Seeberger, Chem. Commun. 2005, 578–580. BnO O BnO

March 2010

TRIMETHYLALUMINIUM MEDIATED AMIDE FORMATION

T. Gustafsson, F. Pontén, P.H. Seeberger, Chem. Commun. 2008, 1100–1102.

Cl

O

+Cl

O

CO2Et

OOEt

OEtO

O

Cl

NNCO2Et

ClCl

Cl

NN

ClCl

NH

O

N

a

b

c

• Al-catalyst highly pyrophoric and difficult to handle in larger volumes• Aluminium–amide intermediate is unstable at elevated temperatures • Batch: 16 h; combined microwave and microreactor operation at 2 min• Applied for the synthesis of rimonabant and efaproxiral at 49% yield• Rimonabant is anti-obesity drug & central cannabinoid receptor antagonist

Hazardous reagents

Page 36: Micro Process Technology for Holistic Process …...D. M. Ratner, E. R. Murphy, M. Jhunjhunwala, D. A. Snyder, K. F. Jensen, P. H. Seeberger, Chem. Commun. 2005, 578–580. BnO O BnO

March 2010

AUTOCATALYTIC NITRATION OF PHENOL

L. Ducry, D. M. Roberge, Angew. Chem. 117 (2005) 8186–8189.

OHOH

NO2

OHNO2

OH

OH

OH

NO2

NO2OH

O2N NO2HNO3 + + + +

• Even at small batch scale (1 l) thermal runaway with 55 K increase• Hot-spot in microreactor only 5 K• Micro processing with largely increased purities (batch: up to 25%, micro-

flow: up to 79%), and higher yields (batch: up to 32%, micro flow: up to 77%)• Micro processing at concentrated conditions, almost solvent-free and

without H2SO4 or CH3CO2H

• Nitration of phenol: catalyzed by nitrous acid and not by the nitronium ion• Autocatalytic behaviour Hazardous reagents

Page 37: Micro Process Technology for Holistic Process …...D. M. Ratner, E. R. Murphy, M. Jhunjhunwala, D. A. Snyder, K. F. Jensen, P. H. Seeberger, Chem. Commun. 2005, 578–580. BnO O BnO

March 2010

IMPROVEMENT OF PRODUCT QUALITY - IONIC LIQUID SYNTHESIS

Conventional, discontinuous manufacture• Unsufficient heat transfer in vessel -> undesired

temperature increase -> product coloration, slowing down of processing

• Large volumina of hazardous reactants

© Solvent Innovation GmbH

Conventional productionprocess

N NEtMe

Et2SO4+N NMe EtSO4

Continuous microreactor processing

Microreactor plant IMM (Laboratory scale)

• Much improved heat transfer -> faster process, no coloration

• Reduction of reactor volume(= safety gains)

Page 38: Micro Process Technology for Holistic Process …...D. M. Ratner, E. R. Murphy, M. Jhunjhunwala, D. A. Snyder, K. F. Jensen, P. H. Seeberger, Chem. Commun. 2005, 578–580. BnO O BnO

March 2010

• Continuous processing• Reduction of reaction time down to minutes

Reactor tube segments with in total 7.5 ml inner volume

Mixer

Thermostated bath withembedded reactor parts

Temperature recordingsystemPumps

0

20

40

60

80

100

0 5 10 15 20

Residence time [min]

Con

vers

ion

[%]

30°C

40°C50°C

0

20

40

60

80

100

0 5 10 15 20

Residence time [min]

Con

vers

ion

[%]

30°C

40°C50°C

Initial lab rigMicromixer/tube set-up

• Optimised reactor parameters

50

60

70

80

90

100

110

0 20 40 60 80 100

in frontof mixer

50°C, 210 ml/h

1/8´´1/16´´

Flow axis [vol.-%]

Tem

pera

ture

[°C

]

1/8´´

50

60

70

80

90

100

110

0 20 40 60 80 100

in frontof mixer

50°C, 210 ml/h

1/8´´1/16´´

Flow axis [vol.-%]

Tem

pera

ture

[°C

]

1/8´´

PROCESS INTENSIFICATION BY CONTINUOUS PROCESSING

Page 39: Micro Process Technology for Holistic Process …...D. M. Ratner, E. R. Murphy, M. Jhunjhunwala, D. A. Snyder, K. F. Jensen, P. H. Seeberger, Chem. Commun. 2005, 578–580. BnO O BnO

March 2010

Modular microreactor Multitubular reactorwith switchable tubes

The reactor set-up has been implemented in thedemonstration facility errected at and by RWTH Aachen

Continuous 36 h operationperformed successfully.

REACTOR SETUP FOR 100 kg/d IONIC LIQUID SYNTHESIS

Page 40: Micro Process Technology for Holistic Process …...D. M. Ratner, E. R. Murphy, M. Jhunjhunwala, D. A. Snyder, K. F. Jensen, P. H. Seeberger, Chem. Commun. 2005, 578–580. BnO O BnO

March 2010

Zunächst war der 20 kg/d Reaktor des IMM integriert, späterwurde dieser und der folgende RWTH-Reaktor durch den 100 kg/d Gesamtreaktoraufbau des IMM ersetzt.

FABRICATIONCATALYSTS

REACTORS

PLANTS

PROCESSESOH

OH

OH

OH

COOHKHCO3 (aq)OH

OH

OH

OH

COOHKHCO3 (aq)

REACTORS

PILOT PLANT AT RWTH AACHEN FOR 20 AND 100 kg/d IONIC LIQUID SYNTHESIS

Page 41: Micro Process Technology for Holistic Process …...D. M. Ratner, E. R. Murphy, M. Jhunjhunwala, D. A. Snyder, K. F. Jensen, P. H. Seeberger, Chem. Commun. 2005, 578–580. BnO O BnO

March 2010

x 10Labor

Pilot

Pilot

x 10Produktion

B. K. Vankayala, P. Löb, V. Hessel, G. Menges, C. Hofmann, D. Metzke, U. Krtschil, H.-J. Kost Int. J. Chem. Reactor Eng. 5 (2007) A 91

SCALE-OUT CONCEPTS FORFALLING FILM MICROREACTORS

Page 42: Micro Process Technology for Holistic Process …...D. M. Ratner, E. R. Murphy, M. Jhunjhunwala, D. A. Snyder, K. F. Jensen, P. H. Seeberger, Chem. Commun. 2005, 578–580. BnO O BnO

March 2010

• Performance kept from FFMR-LARGE to STACK-1x-FFMR-LARGE• Basic reactor design thereby proved

Operation conditions: 1 M NaOH 0.5 – 1.6 (5 – 16) ml/min; CO2: 6.22 (62.2) ml/min diluted with N2 35 (350) ml/min; co-current operation mode

DO SCALED-OUT FFMRs BEHAVE THE SAME? TEST BY CO2 ABSORPTION IN ALKALINE SOLUTION

3035404550556065707580

0.02 0.04 0.06 0.08 0.1 0.12NaOH flow rate/structured area [cm/min]

NaO

Hre

acte

d[%

] StandardCylindricalLarge1-stack

Page 43: Micro Process Technology for Holistic Process …...D. M. Ratner, E. R. Murphy, M. Jhunjhunwala, D. A. Snyder, K. F. Jensen, P. H. Seeberger, Chem. Commun. 2005, 578–580. BnO O BnO

March 2010

PILOT FALLING FILM MICROREACTORS IN PILOT PLANTS AT EVONIK-DEGUSSA

Ozone generator

Falling film microreactorof IMM for pilot scale

Ozone decomposition unit

Franke, R., Jucys, M., Löb, P., Rehfinger, A., Elements –Evonik Science Newsletter 2007, 22, 20.

BMBF-Projektµ.Pro.Chem

Page 44: Micro Process Technology for Holistic Process …...D. M. Ratner, E. R. Murphy, M. Jhunjhunwala, D. A. Snyder, K. F. Jensen, P. H. Seeberger, Chem. Commun. 2005, 578–580. BnO O BnO

March 2010

100 xValidatednumbering-up concept

Outlook: first stepstowards even larger scalereactors have been done

ACHIEVED: THROUGHPUT INCREASE BY FACTOR 100x; FACTOR 1000 UNDERWAY

Page 45: Micro Process Technology for Holistic Process …...D. M. Ratner, E. R. Murphy, M. Jhunjhunwala, D. A. Snyder, K. F. Jensen, P. H. Seeberger, Chem. Commun. 2005, 578–580. BnO O BnO

March 2010

• Be holistic – complete process development view

• Exploit fast kinetics – chemistry is not slow, but is slow made

• Process intensification - new processing – evaluation tools

• Flow chemistry: micro and milli processing tools in cascaded manner

• Scaling-out: numbering-up at micro and smart scaling-up at milli level

• Production flow chemistry is there – future factories need to be developed

CONCLUSIONS


Recommended