+ All Categories
Home > Documents > Microbial composition of Sphagnum mosses and their ... · Sphagnum mosses and their ... mosses,...

Microbial composition of Sphagnum mosses and their ... · Sphagnum mosses and their ... mosses,...

Date post: 08-Jun-2019
Category:
Upload: truongbao
View: 244 times
Download: 0 times
Share this document with a friend
26
© Natural Resources Institute Finland © Natural Resources Institute Finland Kokkola Material Week 2017 Kokkola City Hall, 31 st October Dr. Riina Muilu-Mäkelä Microbial composition of Sphagnum mosses and their potential for applications
Transcript

© Natural Resources Institute Finland© Natural Resources Institute Finland

Kokkola Material Week 2017

Kokkola City Hall, 31st October

Dr. Riina Muilu-Mäkelä

Microbial composition of

Sphagnum mosses and their

potential for applications

© Natural Resources Institute Finland

© Natural Resources Institute Finland

© Natural Resources Institute Finland

LE

NT

OK

UV

A V

AL

LA

S O

Y

© Natural Resources Institute Finland5 22.11.2017

© Natural Resources Institute Finland6 22.11.2017

10 million hectare of mires

30 % of Finlands area

© Natural Resources Institute Finland7 22.11.2017

10 million hectare of mires

30 % of Finlands area

Main vegetative component of peat lands are

mosses, especially Sphagnum species.

© Natural Resources Institute Finland8 22.11.2017

10 million hectare of mires

30 % of Finlands area

0,5 % of mires are used for peat industry

Main vegetative component of peat lands are

mosses, especially Sphagnum species.

© Natural Resources Institute Finland9 22.11.2017

10 million hectare of mires

30 % of Finlands area

0,5 % of mires are used for peat industry

Harvested areas can be reconstructed by

Sphagnum farming

Main vegetative component of peat lands are

mosses, especially Sphagnum species.

© Natural Resources Institute Finland10 22.11.2017

10 million hectare of mires

30 % of Finlands area

0,5 % of mires are used for peat industry

Harvested areas can be reconstructed by

Sphagnum farming

Main vegetative component of peat lands are

mosses, especially Sphagnum species.

Sphagnum sp. are cultivable, renewable material

that support sustainable development

© Natural Resources Institute Finland11 22.11.2017

Sphagnum biomass has the same properties

as low humified moss peat and has been

successfully tested in horticultural trials

Sphagnum mosses have strong antifungal

properties against common greenhouse

disease

Mosses are acid, contain phenolic compounds

Host growth promoting microbes

Bragina et al 2012, The ISMEJournal 6:802-813

Opelt et al 2007 FEMS microbiol Ecol 61:38-53

© Natural Resources Institute Finland

Microbial composition of peat bog mosses

12 22.11.2017

Tampere

Parkano

© Natural Resources Institute Finland

Microbial composition of peat bog mosses

13 22.11.2017

Sphagnum magellanicum Sphagnum fallax Sphagnum fuscum

© Natural Resources Institute Finland

Localization of bacteria in hyalocytes of Sphagnum

14 22.11.2017

Sphagnum mosses harbour

highly specific bacterial

diversity during their whole

lifecycle. Bragina et al 2012,

The ISME Journal (2012) 6,

802–813

S. Fallax

S. Magellanicum

S.Fuscum

© Natural Resources Institute Finland

16s rRNA amplicon sequencing method

15 22.11.2017

NGS Ion Torrent sequencing method

Biocenter of Oulu

© Natural Resources Institute Finland

Bacterial composition evaluated by 16s rRNA

amplicon sequencing

16 22.11.2017

Num

ber

of

matc

hes

S. magellanicum S. fallax S. fuscum

Class Gammaproteobacteria

Xanthomonadales; Sinobacteraceae

Legionellales; Legionellagea

Unclassified

Class Alphaproteobacteria

Rhodospirillales; Acetobacteraceae

Rhizobiales; Xantobacteraceae

Rhizobiales; alpha_cluster

Claucobacterales; Claucobacteraceae

Class Firmicutes

Bacillales; Staphylococcaeae

Bacillales; Paenibacillaceae

Bacillales; unclassified

Class Cyanobacteria

Subsection VI unclassified

Chloroplast unclassiefied

Class Bacterioidetes

Sphingobacteriales; Chitinophagaceae

Bacterioidetes; unclassified

Class Actinobacteria

Rubrobacteridae; Solirubrobacteriales

Actinobacteridae; Actinomycetales

Actinobacteria; Unclassified

Acidobacteriales; Acidobacteriaceae

Gammaproteobacteria

Alphaproteobacteria

Actinobacteria

© Natural Resources Institute Finland

Pure culture on LB plate

17 22.11.2017

ExoSmagel_11_2_A_G4_16SrRNA926trP1.ab1 Beta proteobacteria

ExoSmagel_11_3_A_H4_16SrRNA926trP1.ab1 Paenibacillus sp.

ExoSmagel_11_4_A_A5_16SrRNA926trP1.ab1 Paenibacillus sp.

ExoSmagel_11_5_A_D1_16SrRNA519F.ab1 Mycoplasma

ExoSmagel_110_8_A_G1_16SrRNA519F.ab1 Uncultured Burkholderia

ExoSfall_11_1_A_H1_16SrRNA519F.ab1 Streptomyces cyaneousfuscatus

ExoSfall_11_2_A_A2_16SrRNA519F.ab1 uncultured bacterium

ExoSfall_11_3_A_B2_16SrRNA519F.seq Lactobacillus amylotrophicus

ExoSfall_11_4_A_C2_16SrRNA519F.ab1 Streptomyces cyanefuscatus ja albulus

ExoSfall_110_5_A_B6_16SrRNA926trP1.seq Paenibacillus sp. Taichungensis

ExoSfall_110_6_A_C6_16SrRNA926trP1.ab1 Paenibacillus tundrae/sp.

ExoSfall_110_7_A_D6_16SrRNA926trP1.ab1 Paenibacillus tundrae/sp.

ExoSfall_110_8_A_G2_16SrRNA519F.ab1 Paenibacillus sp.

ExoSfall_110_9_A_F6_16SrRNA926trP1.seq Paenibacillus xylanilyticus

ExoSfall_1100_10_A_A3_16SrRNA519F.seq Burkholderia sp. Dipogonis

ExoSfall_1100_11_A_H6_16SrRNA926trP1.seq Burkholderia sp. Phenazinium

ExoSfall_1100_12_A_A7_16SrRNA926trP1.seq Paenibacillus sp. Selenii ja amylolyticus

ExoSfus_11_1_A_B7_16SrRNA926trP1.seq Burkholderia tuberum

ExoSfus_11_2_A_E3_16SrRNA519F.seq Burkholderia tropica/sp.

ExoSfus_11_3_A_F3_16SrRNA519F.ab1 Burkholderia sp. KP236126

ExoSfus_11_5_A_E7_16SrRNA926trP1.seq Burkholderia

ExoSfus_11_6_A_F7_16SrRNA926trP1.ab1 Burkholderia sp.

ExoSfus_11_7_A_G7_16SrRNA926trP1.ab1 Burkholderia sp.

ExoSfus_11_8_A_H7_16SrRNA926trP1.ab1Pseudocercosporella, epicoleosporium, Batcheloromyces, Mycosphaerella

ExoSfus_110_9_A_A8_16SrRNA926trP1.seq Burkholderia

ExoSfus_110_15_A_C8_16SrRNA926trP1.ab1 escherichia, serratia, pantoea..

ExoSfus_110_16_A_D8_16SrRNA926trP1.seq Burkholderia fungorum

ExoSfus_11_3_A_F3_16SrRNA519F.ab1

Burkholderia sp. KP236126

ExoSfall_110_5_A_B6_16SrRNA926trP1.se

q Paenibacillus taichungensis

ExoSfus_11_3_A_F3_16SrRNA519F.ab1

Burkholderia sp. KP236126

ExoSfall_110_5_A_B6_16SrRNA926trP1.seq

Paenibacillus taichungensis

ExoSFall_11_1A_H1_16srRNA519F.ab1

Streptomyces sp.

© Natural Resources Institute Finland

Plant growth promoting rhizobacteria (RGPR)

• Direct mechanisms

– phosphate solubilization,

– nitrogen fixation,

– degradation of environmental pollutants

– hormone production.

• Indirect mechanisms

– controlling phytopathogens by competing for resources

such as iron, amino acids and sugars, as well as by

producing antibiotics or lytic enzymes.

18 22.11.2017

© Natural Resources Institute Finland

Biosensors

• Gene construct, luxCDABE

linked with rec A-gene

promoter sequence

• Genotoxic substances induce

luminescent light signal

• E.coli DPD2794

19 22.11.2017

S. fuscum

S. fallax

S. magellanicum

MSc Jenni Tienaho

© Natural Resources Institute Finland

High throughput screening methods to evaluate

antioxidativity

20 22.11.2017

• FRAP =

• ORAC = Oxygen radical absorbance capacity

• SCAV =

http://sanctumtree.com/nutritional-

support/ningxia-red-nutrient-infusion/

© Natural Resources Institute Finland

Bioactive fractions of S. magellanicum

21 22.11.2017

Datafile Name:U160516_Sm__1_B_f1.lcdSample Name:U160516_Sm__1_B_f1

0,0 1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0 9,0 10,0 11,0 12,0 13,0 14,0 min

0

10

20

30

40

50

60

70

80

90

100

110

120

130

mAU

Ch5-Max Plot-220-400nm,4nm (1,00)Ch4-220nm,4nm (1,00)Ch3-260nm,4nm (1,00)Ch2-280nm,4nm (1,00)Ch1-300nm,4nm (1,00)

S.magellanicum

Fractions F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16

FRAP - - - - - - - - - - - - - + - -

ORAC ++ ++ ++ ++ ++ ++ ++ ++ - - - - + + - -

SCAV - - - - - - - - - - - - - - - -

Resazurin - + + - + - - - - - - - - - - -

recA - + + + + - - - - - - - - - - -

S.aureus lux - + + + + - - - - - - - - - - -E.coli lux - - - - - - - - - - - - - - - -

Antibacterial

properties, biosensors

Antibacterial properties

Antioxidative properties

++ = strong activity

+ = active

- = inactive

© Natural Resources Institute Finland

Bioactive fractions of S. fuscum

22 22.11.2017

S.fuscum

Fractions F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F20

FRAP - - - - - - - - - - - - - - - - - - + -

ORAC ++ + + - - + - - + - + + + + + - + ++ + +

SCAV - - - - - - - - - - - - - - - - - - - -

Resazurin - - - - - - - - - - - - - - - - - - - -

recA - + + + +/- +/- +/- +/- +/- - - - - - -/+ -/+ -/+ - - -

S.aureus lux + + + - - - - - - - - - - - - - - - -

E.coli lux - - - - - - - - - - - - - - - - - - -

Datafile Name:U180516_Sfuscum_2B_fr1.lcdSample Name:U180516_Sfuscum_2B_fr1

0,0 1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0 9,0 10,0 11,0 12,0 13,0 14,0 min

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90mAU

Ch5-Max Plot-220-400nm,4nm (1,00)Ch4-220nm4nm (1,00)Ch3-260nm4nm (1,00)Ch2-280nm4nm (1,00)Ch1-300nm4nm (1,00)

++ = strong activity

+ = active

- = inactive

Biosensors

Antibacterial

properties

Antioxidative

properties

© Natural Resources Institute Finland

Bioactive fractions of S. fallax

23 22.11.2017

S.fallax

Fractions F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17

FRAP - + - - - - - - - - - - - - - - -

ORAC - - - ++ + + + + - - - + + - - - - +

SCAV - - - - - - - - - - - - - - - - -

resazurin - - - - - + - - - - - - - - - - -

recA - + + + + - - - - - - + + + + + +

S.aureus lux - + + + + - - - - - - - - - + + -

E.coli lux - + + + + - - - - - + - - - + + -

Datafile Name:U190506_Sfallax_3B_Fr1.lcdSample Name:U190506_Sfallax_3B_Fr1

1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0 9,0 10,0 11,0 12,0 13,0 14,0 min

0

25

50

75

100

125

150

175

200

225

250

275

300

325

350

375

400

425

450

mAU

Ch5-Max Plot-220-400nm,4nm (1,00)Ch4-220nm,4nm (1,00)Ch3-260nm,4nm (1,00)Ch2-280nm,4nm (1,00)Ch1-300nm,4nm (1,00)

++ = strong activity

+ = active

- = inactive

Biosensors

Antibacterial

properties

Antioxidative

properties

© Natural Resources Institute Finland

Potential of Sphagnum mosses for biochemical

applications

24 22.11.2017

Fractions F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16

FRAP - - - - - - - - - - - - - + - -

ORAC ++ ++ ++ ++ ++ ++ ++ ++ - - - - + + - -

SCAV - - - - - - - - - - - - - - - -

Resazurin - + + - + - - - - - - - - - - -

recA - + + + + - - - - - - - - - - -

S.aureus lux - + + + + - - - - - - - - - - -

E.coli lux - - - - - - - - - - - - - - - -

• Bioactivity tests

• Preparative HPLC bioactive

compounds

• NGS to evaluate microbial

composition

• Chemical structure of bioactive

molecules

• Potential biocontrol microbes

• Plant-pathogen-microbe

interactions

• Biotechnological applications

Renewable large biomass, bioactive

compounds, host essential microbes,

growth substrate

© Natural Resources Institute Finland

Thank you!

22.11.201725

Natural Resources Institute Finland

Principal Research Scientist,

Dos. Tytti Sarjala

Research Scientists,

Dr. Riina Muilu-MäkeläDos. Niko Silvan

Tampere University of Technology,

Chemistry and Biotechnology

Prof. Matti Karp

Assistant Prof. Ville Santala

MSc. Jenni Tienaho

© Natural Resources Institute Finland26 22.11.2017Teppo Tutkija


Recommended