+ All Categories
Home > Documents > Micro/Nanosystems Technology - Technische Fakultät · 2019. 2. 4. · Piezoelectric coefficients...

Micro/Nanosystems Technology - Technische Fakultät · 2019. 2. 4. · Piezoelectric coefficients...

Date post: 07-Feb-2021
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
41
Micro/Nanosystems Technology Wagner / Meyners 1 Micro/Nanosystems Technology Prof. Dr. Bernhard Wagner Dr. Dirk Meyners Piezoelectric MEMS
Transcript
  • Micro/Nanosystems Technology Wagner / Meyners 1

    Micro/Nanosystems Technology

    Prof. Dr. Bernhard Wagner

    Dr. Dirk Meyners

    Piezoelectric

    MEMS

  • Micro/Nanosystems Technology Wagner / Meyners 2

    Piezoelectric vs. Capacitive MEMS

    Piezo-MEMS of advantage due to:

    • Sensors

    • no power input required: Charges are generated by

    external action

    • Actuators

    • higher energy density: Large force actuation at low

    voltages

    • plus:

    • scales well with decreasing feature size

    • can be used for energy harvesting

    • less sensitive to environmental impacts:

    no hermetic packaging required

    Eom, Trolier-McKinstry, MRS Buletin, 37, 1007 (2012)

  • Micro/Nanosystems Technology Wagner / Meyners 3

    Outline

    Dielectricity and piezoelectricity

    Piezoelectric thin films

    Piezoelectric thin film materials

    Piezo-MEMS

  • Micro/Nanosystems Technology Wagner / Meyners 4

    mechanical

    energy:

    Stress, strain

    electrical

    energy:

    Charge,

    El. field

    “Piezo” from Greek meaning “to press”

    Conversion of mechanical into electrical energy and vice versa

    Direct piezoelectric effect

    sensing effect

    Converse piezoelectric effect

    actuation effect

    Dielectric, piezoelectric, pyroelectric and

    ferroelectric materials

  • Micro/Nanosystems Technology Wagner / Meyners 5

    N. Setter Electroceramic-based MEMS, 2005

    Dielectric, piezoelectric, pyroelectric and

    ferroelectric materials

    of 21 non-centrosymmetric groups

  • Micro/Nanosystems Technology Wagner / Meyners 6

    Piezoelectric materials

    - -

    -

    0

    0

    strained crystal

    VP

    Cm moment dipoleelectric

    unstrained crystal

    (change in) Polarisation

    - -

    -

    F

    01

    21

    non-pyroelectric

    pyroelectric

  • Micro/Nanosystems Technology Wagner / Meyners 7

    Ferroelectric materials

    Barium titanate crystal: BaTiO3 in general: Perovskite: ABO3

    Ti4+ Ion has 6 stable non-centric positions

    dipole moment not fixed as in pyroelectric material

    neighbouring dipols have strong interaction

    domains with aligned polarisation

    ferroelectrics have extremly high permittivity: r > 1000

    ferroelectricity vanishes above Curie temperature Sauerstoff: O2-

    Blei: Pb2+

    Zirkon: Zr4+

    Titan: Ti4+

    O2-

    Ba2+

    Ti4+

    Ferroelectric materials

  • Micro/Nanosystems Technology Wagner / Meyners 8

    favorable aligned ferroelectric domains grow in electrical fields,

    pinning during domain growth:

    ferroelectric hysteresis

    name in analogy to ferromagnetic materials

    Ferroelectric materials Ferroelectric materials

  • Micro/Nanosystems Technology Wagner / Meyners 9

    polar materials

    Dielectric, pyroelectric and ferroelectric

    materials

  • Micro/Nanosystems Technology Wagner / Meyners 10

    EP

    0electrical polarisation C/m2

    dielectric displacement C/m2

    electrical field V/m

    electrical susceptibility -

    dielectric constant, permittivity -

    linear dielectrics (small field strength), P0 = 0

    PEED r

    00

    D

    1r

    E

    contribution from

    external field

    contribution from

    polarized material

    P

    Vm

    C120 1085.8

    r

    Dielectrics: Susceptibility and permittivity

  • Micro/Nanosystems Technology Wagner / Meyners 11

    isotropic materials

    EDEP

    r

    II and II

    scalars are ,

    anisotropic materials

    parallel more no are , ,

    tensors are

    DEP

    r

    ,

    3

    2

    1

    333231

    232221

    131211

    3

    2

    1

    E

    E

    E

    D

    D

    D

    = 0 r

    Dielectrics: Susceptibility and permittivity

  • Micro/Nanosystems Technology Wagner / Meyners 12

    Piezoelectric constants: d

    EdD

    ET sEdx

    D: electrical displacement vector in C/m2

    E: electrical field vector in V/m

    : electrical permittivity matrix (3x3) in C/Vm = F/m

    : stress vector (6x1) in N/m2

    x: strain vector (6x1) in m/m

    s: elastic compliance matrix (6x6) in m2/N; s=c-1

    d: piezoelectric coupling matrix (3x6) in C/N = m/V

    coupling between electrical and mechanical parameters

    Direct effect

    Converse effect

    sE : stiffness at constant E

    upper index T: transposed matrix

    363534333231

    262524232221

    161514131211

    dddddd

    dddddd

    dddddd

    d

  • Micro/Nanosystems Technology Wagner / Meyners 13

    EexD x

    xcEe ET converse effect

    E

    jkijik cde

    direct effect

    c: elastic stiffness matrix (6x6) in N/m2; c = s-1

    e: piezoelectric coupling matrix (3x6) in C/m2

    Piezoelectric constants: e

  • Micro/Nanosystems Technology Wagner / Meyners 14

    Piezoelectric Thin-Films

    Piezoelectric bulk materials are well established:

    Quartz, PZT, LiTaO3, LiNiO3, …

    Piezoelectric thin films on silicon:

    - only niche technology for long

    - has recently emerged to highly recognized research field

    - enables sensing and actuation in MEMS

    - dominant materials: PZT, AlN, ZnO

  • Micro/Nanosystems Technology Wagner / Meyners 15

    piezoelectric thin films are polycrystalline

    in-plane directions 1 and 2 are equivalent

    cylindrical symmetry around 3-axis

    only 3 independent coefficients: d33, d31, d15

    Convention: polarization axis has index 3:

    usually normal to film surface

    notation

    P

    Piezoelectric coefficient symmetry Piezoelectric coefficient symmetry

  • Micro/Nanosystems Technology Wagner / Meyners 16

    000

    00000

    00000

    333131

    15

    15

    ddd

    d

    d

    d

    d33 longitudinal polarisation parallel to strain or stress

    d31 transverse polarisation normal to strain or stress

    d15 shear electric field normal to polarization,

    Piezoelectric coefficient symmetry

    stiffness (and compliance) for PZT, BaTiO3, AlN,…:

    E

    E

    E

    EEE

    EEE

    EEE

    E

    c

    c

    c

    ccc

    ccc

    ccc

    c

    66

    55

    44

    332313

    232212

    131211

    00000

    00000

    00000

    000

    000

    000

  • Micro/Nanosystems Technology Wagner / Meyners 17

    Piezoelectric coefficients for thin films

    Properties of piezoelectric films cannot be compared to bulk values

    In coefficient measurement thin film is clamped to rigid substrate

    in-plane strains stay zero: x1 = x2 = 0

    In coefficient measurement thin film is free to relax normal to surface

    out-off plane stress stays zero:

    In film plane, polycrystalline material is isotropic:

    0)( 331112111 Edssx

    31,31 / Ee f

    Set of effective piezoelectric

    coefficients for thin films

    which can be measured directly:

    d33,f, e31,f, 33,f

    Muralt, Integrated Ferroelectrics

    17(1997) 297-307 Ess

    03

    21

  • Micro/Nanosystems Technology Wagner / Meyners 18

    Absolute value of e31,f is always larger than bulk e31

    e31,f measurement beam bending method: E3= f(1)

    Y = Young‘s modulus

    = Poisson‘s ratio

    0)( 331112111 Edssx

    31,31 / Ee f Ess

    Piezoelectric coefficients for thin films

    33

    33

    1331

    31

    1211

    31,31

    1e

    c

    ce

    Yd

    ss

    de f

    |e31,f |> |e31|

  • Micro/Nanosystems Technology Wagner / Meyners 19

    3331133 2 Edsx

    33,33 / Exd f

    d33,f < d33 311211

    1333,33

    2d

    ss

    sdd f

    d33,f measurement:

    measure strain x3 = f(E3)

    using laser interferometer

    )(

    2

    12110

    2

    3133,33

    ss

    df

    33,33 f

    Piezoelectric coefficients for thin films

  • Micro/Nanosystems Technology Wagner / Meyners 20

    Ledermann Sensors & Actuators A105 (2003) 162-170

    Piezoelectric equations for thin films

  • Micro/Nanosystems Technology Wagner / Meyners 21

    Longitudinal effect

    3,333 fdD

    Bulk mode actuation

    El. input: E3

    Mech. output: vertical strain x3

    excitation of bulk vibrations

    E3

    Si

    x3

    D3

    Si

    3

    Charge generation

    Mech. input: 3

    El. output: D3

    3,333 Edx f

  • Micro/Nanosystems Technology Wagner / Meyners 22

    El. input: E3

    Mech. output: in-plane strain 1

    beam bending

    3,311 Ee f

    Transverse effect in actuation application

    Piezoelectric thin film E3

    Si

    1

    Bidirectional

    deflection

  • Micro/Nanosystems Technology Wagner / Meyners 23

    Transverse effect in sensing application

    Mech. input: load F

    => in-plane strain x1 El. output: el. displacement D3

    1,313 xeD f

    1

    F

    Piezoelectric

    thin film

    x1

    D3

    Si 3

  • Micro/Nanosystems Technology Wagner / Meyners 24

    330

    1,31

    33

    dxe

    A

    Qd

    C

    QV

    f

    o

    A

    QxeD f 1,313

    Voltage response coefficient:

    330

    ,31

    fe

    Signal-to-noise ratio:

    (current and voltage) tan330

    ,31 fe

    N

    S

    low power sensing principle

    high sensitivity

    static (d.c.) sensing not possible due to charge leakage: min ~1 Hz a.c

    tan: loss tangent

    Piezoelectric Sensing

    Current response coefficient: fe ,31

  • Micro/Nanosystems Technology Wagner / Meyners 25

    Properties of thinfilm piezoelectrics

    ZnO AlN PZT

    e31,f C/m2 -1.0 -1.3 -12 … -25

    d33,f pm/V 5.9 5.2 60 …150

    33 10.9 10.5 300…1300

    e31,f /033 GV/m -10.3 -11.3 -2.2 … - 4.5

    tan @1-10kHz 0.01…0.1 0.003…0.01 0.01 … 0.07

    S/N 105 Pa1/2 3…10 24 8.8…13.5

    c33 GPa 208 395 98

    PZT is optimum for piezoelectric actuation

    AlN is optimal material for piezoelectric sensing

    Properties of thin-film piezoelectrics

  • Micro/Nanosystems Technology Wagner / Meyners 26

    Piezoelectric thinfilms: PZT

    Solid solution of lead zirconate and lead titanate

    PZT shows highest piezoelectric d and e coefficients

    disadvantage: lead-containing, non-IC-compatible, stoichiometry is critical

    Lead zirconate titanate: Pb (Zrx Ti1-x) O3

    Sauerstoff: O2-

    Blei: Pb2+

    Zirkon: Zr4+

    Titan: Ti4+

    tetragonal

    phase

    Perovskite structure:

    ABO3

  • Micro/Nanosystems Technology Wagner / Meyners 27

    Cubic phase above

    Curie temperature Tc

    is not piezoelectric,

    but paraelectric,

    Zr or Ti is in cell center

    Morphotropic

    phase boundary:

    •At room temperature:

    PbTiO3-content 48%

    •competition between

    tetragonal and rhombo-

    hedral phase enhances

    number of polarizable

    directions to 14

    nomenclature:

    PZT 52/48 (PbTi0.48Zr0.52O3)

    PZT phase diagramm

  • Micro/Nanosystems Technology Wagner / Meyners 28

    Piezoelectric and dielectric coefficients strongly depend on stoichiometry

    Maximum values close to morphotropic phase boundary composition

    Coefficients are also PZT-texture dependent

    Bottom electrode as nucleation layer to tune PZT texture:

    e.g. (111) textured Platinum

    Ledermann S&A 2003

    PZT stoichiometry

  • Micro/Nanosystems Technology Wagner / Meyners 29

    sol-gel deposition (chemical solution deposition, CSD):

    multiple spin-on and curing process: ~ 0.1 µm per layer

    low-cost equipment, very good uniformity and smoothness,

    sensible to contamination

    sol

    gel

    PZT thin film deposition methods

  • Micro/Nanosystems Technology Wagner / Meyners 30

    PZT thin film deposition methods

    Sputtering from Pb(ZrTi)O3 ceramic target or Pb, Zr, Ti metallic targets

    good uniformity

    stoichiometry critical and fixed by target composition

    target composition has to account for e.g. lead loss from desorption

    low rate: ~10nm/min

    but: more promising for mass production

    different processes, different

    crystalinity

  • Micro/Nanosystems Technology Wagner / Meyners 31

    wurtzite crystal structure

    polar materials (no ferroelectric hysteresis)

    quite similar piezoelectric properties

    Sputter deposition: 1-2 µm

    AlN is preferred:

    fully IC compatible

    high thermal stability and conductivity

    chemically inert

    highly uniform sputter process available

    ZnO and AlN films

  • Micro/Nanosystems Technology Wagner / Meyners 32

    2 µm thick AlN

    on Pt-Electrode

    Sputterprocess

    Oerlikon-Clusterline 200

    small columnar grains:

    deposition in transition zone

    due to high Tmelt

    Strong c-axis orientation Ti/Pt

    SiO2

    AlN

    Aluminum nitride layer

  • Micro/Nanosystems Technology Wagner / Meyners 33

    Doping of aluminium nitride: Al1-xScxN

    Akiyama et al., APL 95, 2009

    e.g. reactive co-sputtering from pure Sc

    and Al targets or AlSc compound

    targets in N atmosphere

    Sc partially substitutes Al while

    preserving the piezoelectric wurtzite

    structure

    different preference in N-coordination

    between Sc and Al leads to flatter ionic

    potential

    softening of crystal: decrease of

    stiffness c

    larger ionic displacements by same

    electric field: increase of d31, d33

    d3

    3

  • Micro/Nanosystems Technology Wagner / Meyners 34

    High force

    High speed

    Low power consumption

    Membrane actuators

    No counter electrode needed

    Examples:

    Inkjet printer f > 80 kHz

    Micro mirror

    Electrical switch

    loudspeaker

    membrane

    piezoelectric layerelectrodes

    nozzle

    pump chamber

    Piezoelectric (PZT) microactuators

    feMeritOfFigure ,31

  • Micro/Nanosystems Technology Wagner / Meyners 35

    PZT micro mirror

    80 µm poly-Si + 2 µm PZT

    mirror size: 1 mm

    fres = 32 kHz

    deflection angle: ± 10.5° @ 7V

    feFOM ,31

  • Micro/Nanosystems Technology Wagner / Meyners 36

    PZT electrical switch

    device size e.g. 0.08mm2

    contact force up to 2mN

    PZT buckles with applied

    voltage (contact closed)

    buckling in open state

    prohibited by electrostatic

    clamping

    feFOM ,31

  • Micro/Nanosystems Technology Wagner / Meyners 37

    Silicon microphones:

    20 Hz - 20 kHz

    Single membrane or arrays

    Ultrasonic transducers:

    transmitting and receiving

    20 kHz - 1 MHz

    Phased arrays: electronic steering

    Piezoelectric micromachined

    ultrasonic transducer cell

    (pMUT)

    Piezoelectric microsensors

  • Micro/Nanosystems Technology Wagner / Meyners 38

    R. Aigner, Infineon

    AlN

    2001:

    FBAR introduction

    Agilent Technologies

    Membrane-type

    Film Bulk Acoustic Wave

    Resonator (FBAR)

    FBAR RF-filter

    D

    f

    c

    eFOM

    33330

    ,332

  • PadsPZT

    Elektrode

    Micro/Nanosystems Technology Wagner / Meyners 39

    Piezoelectric Energy Harvesting

    Idea: Turn vibration/acceleration into

    power through piezoelectric layer

    Seismic mass

    /AlN

    Application:

    energy-autonomous microsystems

    Example:

    Battery-less tire-pressure monitoring system

    330

    ,312

    feFOM

  • Micro/Nanosystems Technology Wagner / Meyners 40

    Summary

    piezoelectric coupling matrices: d and e

    effective piezoelectric coefficents for thin films: d33,f, e31,f

    dominant thinfilm materials: PZT, AlN, ZnO

    PZT optimum for microactuation

    AlN optimum for sensing

    broad range of piezoelectric MEMS applications

  • Micro/Nanosystems Technology Wagner / Meyners 41

    Literature

    Madou pp. 551-560

    Chang Liu Foundations of MEMS CH. 7

    N. Setter Electroceramic-based MEMS, 2005

    esp. Ch. 10 Thin film piezoelectrics for MEMS

    by S. Trolier-McKinstry and P. Muralt


Recommended