+ All Categories
Home > Documents > Microstructure Simulation and Virtual Material Design · Wiegmann, Fraunhofer ITWM Microstructure...

Microstructure Simulation and Virtual Material Design · Wiegmann, Fraunhofer ITWM Microstructure...

Date post: 13-Aug-2019
Category:
Upload: vantram
View: 214 times
Download: 0 times
Share this document with a friend
26
Microstructure Simulation and Virtual Material Design Andreas Wiegmann Multiphysics Simulation, Bonn 23.6. 2010
Transcript
Page 1: Microstructure Simulation and Virtual Material Design · Wiegmann, Fraunhofer ITWM Microstructure Simulation and Virtual Material Design Multiphysics, Bonn, 23.6. 2010 Page 2 / 28

Microstructure Simulation andVirtual Material Design

Andreas Wiegmann

Multiphysics Simulation,Bonn 23.6. 2010

Page 2: Microstructure Simulation and Virtual Material Design · Wiegmann, Fraunhofer ITWM Microstructure Simulation and Virtual Material Design Multiphysics, Bonn, 23.6. 2010 Page 2 / 28

Wiegmann, Fraunhofer ITWM Microstructure Simulation and

Virtual Material DesignMultiphysics, Bonn, 23.6. 2010

Page 2 / 28

1. Microscopic geometry governs macroscopic properties

• Permeability depends on the pores in fibrous media

• Conductivity depends on connectivity of the fibers

2. Some times, only 3d models will do

• Flow through densely packed spheres or circles

• Supporting mesh in a filter pleat

3. Materials are random

• Under microscope , details at different locations are different

• Multiple experiments yield mean value and standard deviation

• Capture this in geometric models and property predictions

4. Computations must be fast and completely automatic

• Materials are “cheap” and no CAD data exist

• For material design, many simulation runs may be necessary

Page 3: Microstructure Simulation and Virtual Material Design · Wiegmann, Fraunhofer ITWM Microstructure Simulation and Virtual Material Design Multiphysics, Bonn, 23.6. 2010 Page 2 / 28

Wiegmann, Fraunhofer ITWM Microstructure Simulation and

Virtual Material DesignMultiphysics, Bonn, 23.6. 2010

Page 3 / 28

Packed bed of spheres and floating spheres

svf 0.64 svf 0.30

Page 4: Microstructure Simulation and Virtual Material Design · Wiegmann, Fraunhofer ITWM Microstructure Simulation and Virtual Material Design Multiphysics, Bonn, 23.6. 2010 Page 2 / 28

Wiegmann, Fraunhofer ITWM Microstructure Simulation and

Virtual Material DesignMultiphysics, Bonn, 23.6. 2010

Page 4 / 28

Option a): import 3d image of existing media

• Input: 3d gray-valued image obtained by DVI, tomography or similar 3d imaging method

• Options:• choice of threshold • filtering• edge smoothing

Typical voxel length: 1μm

Current μCT images: up to 3mm x 3mm x 3mm voxels, a 128 GB drive

Page 5: Microstructure Simulation and Virtual Material Design · Wiegmann, Fraunhofer ITWM Microstructure Simulation and Virtual Material Design Multiphysics, Bonn, 23.6. 2010 Page 2 / 28

Wiegmann, Fraunhofer ITWM Microstructure Simulation and

Virtual Material DesignMultiphysics, Bonn, 23.6. 2010

Page 5 / 28

Virtual Textile Generation

Page 6: Microstructure Simulation and Virtual Material Design · Wiegmann, Fraunhofer ITWM Microstructure Simulation and Virtual Material Design Multiphysics, Bonn, 23.6. 2010 Page 2 / 28

Wiegmann, Fraunhofer ITWM Microstructure Simulation and

Virtual Material DesignMultiphysics, Bonn, 23.6. 2010

Page 6 / 28

Option b): Virtually Generated Nonwoven: Input Parameters

• Porosity• Fiber orientation distribution (anisotropy)• Fiber diameter (distribution)• Fiber cross sectional shape• Fiber length (distribution)

In the “overlapping” model, fibers are placed at random positions with appropriately randomized orientation and without consideration of each other

It is a surprise that such a simple model works!

Page 7: Microstructure Simulation and Virtual Material Design · Wiegmann, Fraunhofer ITWM Microstructure Simulation and Virtual Material Design Multiphysics, Bonn, 23.6. 2010 Page 2 / 28

Wiegmann, Fraunhofer ITWM Microstructure Simulation and

Virtual Material DesignMultiphysics, Bonn, 23.6. 2010

Page 7 / 28

Uniform distribution of directions gets mapped to non-uniform one by picking point with uniform and on (1, 2, 1) ellipsoid and pulling it back to the unit sphere.

1 = 2 > 1

1 = 2 = 1

K. Schladitz, S. Peters, D. Reinel-Bitzer, A. Wiegmann and J. Ohser, Design of acoustic trim based on geometric modelling and flow simulation for non-woven, Computational Materials Science, Volume 38, Issue 1, 2006, pp 56-66.

Fiber anisotropy:

orientation parameter ß

Page 8: Microstructure Simulation and Virtual Material Design · Wiegmann, Fraunhofer ITWM Microstructure Simulation and Virtual Material Design Multiphysics, Bonn, 23.6. 2010 Page 2 / 28

Wiegmann, Fraunhofer ITWM Microstructure Simulation and

Virtual Material DesignMultiphysics, Bonn, 23.6. 2010

Page 8 / 28

Solving the Poisson equation on a 3d image

A. Wiegmann and A. Zemitis, EJ-HEAT: A Fast Explicit Jump Harmonic Averaging Solver for the Effective Heat Conductivity of Composite Materials, Bericht des Fraunhofer ITWM, Nr. 94, 2006.

Page 9: Microstructure Simulation and Virtual Material Design · Wiegmann, Fraunhofer ITWM Microstructure Simulation and Virtual Material Design Multiphysics, Bonn, 23.6. 2010 Page 2 / 28

Wiegmann, Fraunhofer ITWM Microstructure Simulation and

Virtual Material DesignMultiphysics, Bonn, 23.6. 2010

Page 9 / 28

Discretization by harmonic averaging

Regions of repeating coefficients create shifted identical rows in the matrix – devise implicit solvers that takes less memory than it would take to store the matrix!

Uniform Cartesian grid (mesh width h) on box domain results in “simple” discretization of :

Page 10: Microstructure Simulation and Virtual Material Design · Wiegmann, Fraunhofer ITWM Microstructure Simulation and Virtual Material Design Multiphysics, Bonn, 23.6. 2010 Page 2 / 28

Wiegmann, Fraunhofer ITWM Microstructure Simulation and

Virtual Material DesignMultiphysics, Bonn, 23.6. 2010

Page 10 / 28

Effective conductivity via homogenization

Ul has kinks where is discontinuous – must be careful evaluating Ul.

Page 11: Microstructure Simulation and Virtual Material Design · Wiegmann, Fraunhofer ITWM Microstructure Simulation and Virtual Material Design Multiphysics, Bonn, 23.6. 2010 Page 2 / 28

Wiegmann, Fraunhofer ITWM Microstructure Simulation and

Virtual Material DesignMultiphysics, Bonn, 23.6. 2010

Page 11 / 28

Influence of fiber volume fractionIsotropic orientation, ß = 1

Length to Diameter ratio is 10

Image size 200³

Page 12: Microstructure Simulation and Virtual Material Design · Wiegmann, Fraunhofer ITWM Microstructure Simulation and Virtual Material Design Multiphysics, Bonn, 23.6. 2010 Page 2 / 28

Wiegmann, Fraunhofer ITWM Microstructure Simulation and

Virtual Material DesignMultiphysics, Bonn, 23.6. 2010

Page 12 / 28

Influence of fiber volume fractionIsotropic orientation, ß = 1

Length to Diameter ratio is 10

Image size 200³

Page 13: Microstructure Simulation and Virtual Material Design · Wiegmann, Fraunhofer ITWM Microstructure Simulation and Virtual Material Design Multiphysics, Bonn, 23.6. 2010 Page 2 / 28

Wiegmann, Fraunhofer ITWM Microstructure Simulation and

Virtual Material DesignMultiphysics, Bonn, 23.6. 2010

Page 13 / 28

Pressure and velocity

Pressure (p) Velocity (u)

Page 14: Microstructure Simulation and Virtual Material Design · Wiegmann, Fraunhofer ITWM Microstructure Simulation and Virtual Material Design Multiphysics, Bonn, 23.6. 2010 Page 2 / 28

Wiegmann, Fraunhofer ITWM Microstructure Simulation and

Virtual Material DesignMultiphysics, Bonn, 23.6. 2010

Page 14 / 28

Computation of permeability

Macroscopic (creeping) flow velocity

Permeability tensor

Pressure difference

:u

:p

:K

Darcy-Law: pKu L1

The flow solver provides the microscopic

flow field for a given pressure difference,

averaging yields

L

u

u pGeneralized:

Page 15: Microstructure Simulation and Virtual Material Design · Wiegmann, Fraunhofer ITWM Microstructure Simulation and Virtual Material Design Multiphysics, Bonn, 23.6. 2010 Page 2 / 28

Wiegmann, Fraunhofer ITWM Microstructure Simulation and

Virtual Material DesignMultiphysics, Bonn, 23.6. 2010

Page 15 / 28

Computation of permeability

333232

232221

131211

kkkkkkkkk

KPermeability tensor:Find anisotropic

material behavior

Page 16: Microstructure Simulation and Virtual Material Design · Wiegmann, Fraunhofer ITWM Microstructure Simulation and Virtual Material Design Multiphysics, Bonn, 23.6. 2010 Page 2 / 28

Wiegmann, Fraunhofer ITWM Microstructure Simulation and

Virtual Material DesignMultiphysics, Bonn, 23.6. 2010

Page 16 / 28

Pressure and Velocity in Clogging Simulation

Filtration is multiple physics!

Page 17: Microstructure Simulation and Virtual Material Design · Wiegmann, Fraunhofer ITWM Microstructure Simulation and Virtual Material Design Multiphysics, Bonn, 23.6. 2010 Page 2 / 28

Wiegmann, Fraunhofer ITWM Microstructure Simulation and

Virtual Material DesignMultiphysics, Bonn, 23.6. 2010

Page 17 / 28

0,00%

1,00%

2,00%

3,00%

4,00%

5,00%

6,00%

7,00%

8,00%

9,00%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Layer of Deposition

Num

ber o

f Par

ticle

s [%

]

0

5

10

15

20

25

30

Colli

sion

s [1

]

Deposition Diagram

• Deposition locations are 20 64μm layers.

• Orange: particle numbers

• Lines: mean value and standard deviation of number of collisions

• Example: Layer 15 contains 7% of the filtered particles. Those had on average 13.15 collisions with standard deviation 1.9

• 4 layers of gradient material indicated by thick black lines:

•In

let

On 8 cores 64GB Linux desktop: 400 x 400 x 1200 filter media

Page 18: Microstructure Simulation and Virtual Material Design · Wiegmann, Fraunhofer ITWM Microstructure Simulation and Virtual Material Design Multiphysics, Bonn, 23.6. 2010 Page 2 / 28

Wiegmann, Fraunhofer ITWM Microstructure Simulation and

Virtual Material DesignMultiphysics, Bonn, 23.6. 2010

Page 18 / 28

Reconstruction of Woven

Microscopy Courtesy M. Knefel, Gebr. Kufferath AG.

Page 19: Microstructure Simulation and Virtual Material Design · Wiegmann, Fraunhofer ITWM Microstructure Simulation and Virtual Material Design Multiphysics, Bonn, 23.6. 2010 Page 2 / 28

Wiegmann, Fraunhofer ITWM Microstructure Simulation and

Virtual Material DesignMultiphysics, Bonn, 23.6. 2010

Page 19 / 28

Carbon fiber multi-filament woven

3D Visualization (generated) SEM (real) (courtesy of Jeff Gostick, Univ. of Waterloo)

V.P. Schulz, P.P. Mukherjee, J. Becker, A. Wiegmann and C.Y. Wang, Modeling of Two-phase Behavior in the Gas Diffusion Medium of Polymer Electrolyte Fuel Cells via Full Morphology Approach, Journal of the ECS, Issue 4, Vol. 154, 2007, pp B419-B426.

Page 20: Microstructure Simulation and Virtual Material Design · Wiegmann, Fraunhofer ITWM Microstructure Simulation and Virtual Material Design Multiphysics, Bonn, 23.6. 2010 Page 2 / 28

Wiegmann, Fraunhofer ITWM Microstructure Simulation and

Virtual Material DesignMultiphysics, Bonn, 23.6. 2010

Page 20 / 28

Simulated mercury Distribution at Bubble Point in tomography

pc= 10.6 kPa

(r=10.5 m)

Page 21: Microstructure Simulation and Virtual Material Design · Wiegmann, Fraunhofer ITWM Microstructure Simulation and Virtual Material Design Multiphysics, Bonn, 23.6. 2010 Page 2 / 28

Wiegmann, Fraunhofer ITWM Microstructure Simulation and

Virtual Material DesignMultiphysics, Bonn, 23.6. 2010

Page 21 / 28

Binarized SEM (top) and virtual sintered ceramics (bottom)

Page 22: Microstructure Simulation and Virtual Material Design · Wiegmann, Fraunhofer ITWM Microstructure Simulation and Virtual Material Design Multiphysics, Bonn, 23.6. 2010 Page 2 / 28

Wiegmann, Fraunhofer ITWM Microstructure Simulation and

Virtual Material DesignMultiphysics, Bonn, 23.6. 2010

Page 22 / 28

Computed vs measured porosities and permeabilities

simulation

measurement

Page 23: Microstructure Simulation and Virtual Material Design · Wiegmann, Fraunhofer ITWM Microstructure Simulation and Virtual Material Design Multiphysics, Bonn, 23.6. 2010 Page 2 / 28

Wiegmann, Fraunhofer ITWM Microstructure Simulation and

Virtual Material DesignMultiphysics, Bonn, 23.6. 2010

Page 23 / 28

CAE of Materials – Modules of the GeoDict Software

- FiberGeo, SinterGeo, WeaveGeo, GridGeo, PackGeo, PleatGeo , PaperGeo(structure generators)

- ProcessGeo (3d image processing)

- LayerGeo (layered media)

- ImportGeo (e.g. tomographie, STL, .gad)

- ExportGeo (e.g. Fluent, Abaqus)

- FlowDict (single phase flow properties)

- PleatDict (porous media flow)

- ElastoDict (effective elastic properties)

- ThermoDict (effective conductivity)

- DiffuDict (effective diffusivity)

- FilterDict (pressure drop, efficiency, life time)- SatuDict (two phase flow properties)

- PoroDict (pore size measures)

- AcoustoDict (acoustic absorption)

Target hardware:

Solver: Workstation or cluster

Pre + Post: Laptop

Page 24: Microstructure Simulation and Virtual Material Design · Wiegmann, Fraunhofer ITWM Microstructure Simulation and Virtual Material Design Multiphysics, Bonn, 23.6. 2010 Page 2 / 28

Wiegmann, Fraunhofer ITWM Microstructure Simulation and

Virtual Material DesignMultiphysics, Bonn, 23.6. 2010

Page 24 / 28

GeoDict contributors: 2001 - 2010

DiffuDict Knudsen SolverJürgen Becker

ElastoDictHeiko Andrä

Dimiter StoyanovInga Shklyaer

Andreas WiegmannVita Rutka

Donatas Elvikis

FlowDict EFV SolverAndreas Wiegmann

Liping Cheng

FiberGeoJürgen Becker

Andreas WiegmannKatja SchladitzJoachim Ohser

Hans-Karl HummelPetra Baumann

WeaveGeoErik Glatt

Andreas WiegmannRolf Westerteiger

SinterGeoJürgen BeckerNorman EttrichKilian Schmidt

PleatGeoErik Glatt

Andreas WiegmannJürgen Becker

PackGeoErik Glatt

Andreas WiegmannJoachim Seibt

GridGeoErik Glatt

Liping ChengAndreas WiegmannRolf Westerteiger

RenderGeoMatthias GroßSven Linden

Carsten LojewskiRolf Westerteiger

PaperGeoErik Glatt

FilterDictStefan RiefArnulf Latz

Andreas WiegmannKilian Schmidt

Christian WagnerRolf Westerteiger

ThermoDict EJ SolverAndreas Wiegmann

Liping Cheng

FlowDict Lattice BoltzmannPeter KleinDirk Merten

Konrad SteinerDirk KehrwaldIrina Ginzburg

Doris Reinel-Bitzer

FlowDict EJ SolverLiping Cheng

Andreas WiegmannAivars ZemitisDonatas Elvikis

Vita RutkaQing Zhang

SatuDictJürgen Becker

Andreas WiegmannVolker Schulz

Rolf Westerteiger

GeoDictAndreas Wiegmann

Jürgen BeckerErik Glatt

Stefan RiefHeiko AndräSven Linden

Kilian SchmidtAshok Kumar Vaikuntam

Rolf WesterteigerChristian WagnerMohammed Alam

Jianping Shen

UsersGuideBarbara Planas

Stefan RiefAndreas Wiegmann

PoroDictAndreas Wiegmann

Jürgen BeckerKilian Schmidt

Rolf Westerteiger

PleatDictAndreas Wiegmann

Oleg IlievStefan Rief

Page 25: Microstructure Simulation and Virtual Material Design · Wiegmann, Fraunhofer ITWM Microstructure Simulation and Virtual Material Design Multiphysics, Bonn, 23.6. 2010 Page 2 / 28

Wiegmann, Fraunhofer ITWM Microstructure Simulation and

Virtual Material DesignMultiphysics, Bonn, 23.6. 2010

Page 26 / 28

Materials random – no CAD but 3d digital images (CT) available, segment into ST

Optimize meaningful design variables, not voxels

Generators convert design variables into random realizations (ST)

Solving pde on ST avoids meshing step

Solution of pde can be

averaged for effective property

used as flow field for particle tracking

Requests repeat – developed software tool GeoDict

Must be able to solve pde on very large 3d images

Voxels do not allow boundary layers

Large contrast deteriorates performance

Conclusions and Restrictions

Page 26: Microstructure Simulation and Virtual Material Design · Wiegmann, Fraunhofer ITWM Microstructure Simulation and Virtual Material Design Multiphysics, Bonn, 23.6. 2010 Page 2 / 28

Wiegmann, Fraunhofer ITWM Microstructure Simulation and

Virtual Material DesignMultiphysics, Bonn, 23.6. 2010

Page 27 / 28

Find out more:

www.itwm.fhg.de

Demo from www.geodict.com

Thank you for your attention


Recommended