+ All Categories
Home > Documents > MILLIMETER WAVE FOR 5G, BACKHAUL AND ACCESS · PDF fileTraditional microwave bands Band and...

MILLIMETER WAVE FOR 5G, BACKHAUL AND ACCESS · PDF fileTraditional microwave bands Band and...

Date post: 02-Feb-2018
Category:
Upload: ngophuc
View: 217 times
Download: 3 times
Share this document with a friend
14
ETSI SUMMIT: 5G FROM MYTH TO REALITY MILLIMETERWAVE FOR 5G, BACKHAUL AND ACCESS Renato Lombardi, Chairman of ISG mWT © All rights reserved
Transcript

ETSI SUMMIT:5G FROM MYTH TO REALITY

MILLIMETER‐WAVE FOR 5G,BACKHAUL AND ACCESSRenato Lombardi, Chairman of ISG mWT 

© All rights reserved

Diversified challenges and gaps for 5G

2 © All rights reserved

Area Traffic Capacity

10 Mbps/m2

Ultra DenseTera Cell

Connections

1,000KConnections

/ Km2

Mobility

500km/hHigh-speed

railway

Throughput

10Gbps/ connection

Latency

1 msE2E

Latency

5G

100Mbps 10K 350Km/h30~50ms Small Cells

LTEGAP 30~50x 100x 100x 1.5x Densification

*Source: ITU-R M.2083-0, “IMT VisionFramework and overall objectives of the future development of IMT for 2020 and beyond”, Sept. 2015.

How to meet the demand of the capacity increase 

3 © All rights reserved

Original BW 4096QAM XPIC L2, L3 Compression

400 Mbps600Mbps

Up to 1.2Gbps

Up to 2Gbps010101010101

12 bits

010101018 bits

4096QAM PayloadID

PayloadFrame headFrame head

Compression

XPIC

Up to 4Gbps

MIMOor

Channel Aggregation

Improve spectrum efficiency Increase modulation schemes (Adaptive Coding Modulation, Adaptive bandwidth) L2, L3 Header compression Cross polarization Line of Sight MIMO

Limited benefits by increasing modulations Installation complexity for MIMO

Tradional frequency bands 7 to 23 GHz, hop length >5 km Crowded spectrum Channels max 55 MHz (less in practice especially <20 GHz)

26 to 42 GHz, hop length <5 km

ISG mWT

How to meet the demand of the capacity increase 

4 © All rights reserved

Increase channel width Traditional microwave bands Band and Carrier aggregation  (i.e. 18 or 23 GHz + e‐band) 112/224 MHz Go to millimeter‐wave E‐band (10 Gbit/s per carrier NOW) D‐Band

In order to use larger channels it is necessary to improve spectrum efficiency at geographical level for higher channel re‐usability (antenna directivity, null‐forming, ATPC, ..)

Faster and cheaper way to increase capacity, coping with hop length limitations

Technology innovation to increase distances

Source : Huawei

46%

24%

20%

10%

0‐3km 3‐5km 5‐10km >10km

90% of distances is less than 10km Network topology change Network densification RAN sharing and operators consolidation Fiber penetration from core to edge

‘’Shorter networks’’ and shorter hops wireless backhaul pushed to the periphery Star topologies from the fiber PoP

New network topology drive backhaul to the higher part of the spectrum

ISG mWT

Network DensificationMillimeter‐wave in Urban Environment

5 © All rights reserved

Small Cell Backhaul Macro to Street‐Level Form factor must be suitable for Small Cell  Traffic from a few Small Cells may be aggregated

Street‐Level to Street‐Level Links will often be almost parallel to each other LoSmay be challenging in urban environment

Macro Backhaul and Aggregation Roof‐top to Roof‐top Traditional planning, co‐located with Macro Part of Macro Backhaul

E‐band (71 to 76 ‐ 81 to 86 GHz)

V‐band (57 to 66 GHz)

ISG mWT

E‐band & V‐band Licensing Worldwide

6 © All rights reserved

V‐BAND LICENSES

Individual Licensing

Light Licensing

Block Assignment

LicenseExempt

Current

Desired

V‐band

Work in progress in ISG mWT

ISG mWT

FDD

10010 20 30 40 50 60 70 80 90

6 11 13 15 18 23 26 38 71 – 86 GHz7/8 42 GHz 50 55 57 – 66 GHz28 32 92 – 95 GHz

E‐BAND LICENSES

Individual Licensing

Light Licensing

Block Assignment

LicenseExempt

Current

Desired

Green  OpenRed     ClosedBlue    Under ReviewGrey   No info

E‐band

Above 90 GHz

7 © All rights reserved

Very high capacity backhaul / Front‐haul Fixed Wireless Access

H2O

O2

O2

H2O

6L/6U

Traditional Radio Link

10010 20 30 40 50 60 70 80 90

11 13 15 18 23 26 38 71GHz - 86GHz7/8 40 - 43 52 55 57 - 64 (TDD)

28 32

200110 120 130 140 150 160 170 180 190 300210 220 230 240 250 260 270 280 290

191.8GHz - 275GHz92 GHz – 114.5 GHz 130 GHz – 174.8 GHz

Frequency Bands

92-94

94.1-95

95-100

102-109.5

111.8-114.25

122,25 - 123

130-134

141-148.5

151.5-164

167-174.8

191.8-200

209-226

231.5-235

W‐Band

D‐Band

ISG mWT Industry prioritizing D‐Band

millimeter‐wave maturityTechnology and Industry

8 © All rights reserved

E‐band very rich technology and industry ecosystem mm‐wave components Antenna Modem, ADC/DAC System / products

<2010 2012 2013 2014 2015 2016

Only one chipset(GaAs early foundry process)

Several GaAs vendors(improved foundry processes)

GaAs performance improvementSiGe SoC introduction

Parabolic antennas Flat antennasFPGA, ADC/DAC(limited speed)

ASIC, ADC/DAC(very fast speed)

1st Generation<1Gbit/s, BPSKLow performance

2nd Generation2Gbit/s, 64 QAM4Gbit/s, 128 QAM

High performance

3rd Generation                10Gbit/s, 256 QAMimproved performance

What’s next?

V‐band benefitting from the mass volume market of HDMI Wireless and WiGig (802.11ad, ay) RFCMOS components/Antenna Baseband processing

ISG mWT

millimeter‐wave ‐What’s next?

9 © All rights reserved

Dense urban environments clear LOS conditions are not always found because of obstacles or could be time‐variable  Installation exploiting non carrier grade infrastructure (i.e. lamposts, urban furniture, ..) Easy and fast rollout(self‐alignment, self‐configuration, self‐optimization)

New Systems and new features near/Non‐Line of Sight (n/NLoS) @mmW (i.e V‐band) MultiPoint‐to‐MultiPoint Self Organized Networks Antenna, Beam‐steering/Beam‐forming Automatic beam alignment to reduce TCO Automatic beam tracking (poles swaying) n/NLoS coordinated multipoint systems in v‐band

h1

h2

h

Direct ray is oftentotally shadowed(non-LoS propagation)(Multiple ) reflectedInterferes are possible

Diffracted ‘main’ ray

Diffracted/reflectedinterferer

D1D

Potential impacts on standards and regulations Standards for active, re‐configurable antennas

Co‐existence (outdoor) between Fixed Services and Short Range Devices in the V‐band

Licensing schemes to better fit applications 

ISG mWT

Complementary Bands for 5G

10 © All rights reserved

Cell SizeMacro Small Ultra Small

WRC19

10 50403020 60 8070 90 GHz

Different channel characteristics from sub 6GHz

1 542 63

Cellular Bands

Complementary bands for additional capacityPrimary  bands 

Group 30 Group 40 Group 50 Group 80•24.25 ‐ 27.5 GHz •37.0 ‐ 40.5 GHz •45.5 ‐ 47 GHz •66 ‐ 76 GHz•31.8 ‐ 33.4 GHz •40.5 ‐ 42.5 GHz •47.0 ‐ 47.2 GHz •81 ‐ 86 GHz

•42.5 ‐ 43.5 GHz •47.2 ‐ 50.2 GHz•50.4 ‐ 52.6 GHz

Non‐standalone high frequencies assisted by low frequencies

11 © All rights reserved

Macro Site @ Sub 6GHzControl & Data: connectivity, coverage, mobility, capacity

Small Cell @ Above 6GHzData: High traffic offloading

5GMacro Cell

High Frequency Coverage High Frequency Coverage Low Frequency

Coverage

5GSmall Cell 5G

Small Cell

Above 6GHz Tuning Range: Harmonization by Implementation

12 © All rights reserved

Region ADM 37-39.5 39.5-41.5 41.5-43.5

R1

CPGGERFRAUK

R2 USA

R3CHNJPNKOR

Region ADM 24.25-25.5 25.5-27.5 27.5-29.5 31.8-33.4

R1

CPGGERFRAUK

R2 USA

R3CHNJPNKOR

Bottom‐up approaches: based on WRC‐15 conclusions, some Regions are considering ”local solutions”

Tuning range:  Ca. 15~20% bandwidth around the central 

frequency can be supported by one RF complement with reasonable complexity

24 25 26 27 28 29

24.25-29.5GHz

24.25 / 25.5 29.5

24.25/25.5 29.5

Block A

(Country A, B, C, …) or(Region A, B, C, …)

Block B

(Country D, E, F, …) or(Region D, E, F, …)

27 or 27.5

Same hardware implementation as single band

Each region/administration can choose its preferred block

25+28 GHz 28+32 GHz

38+42 GHz

5G cm/mmw Technology Challenges

13 © All rights reserved

Research challenges

Propagation channel model Architecture complexity vs performance to 

properly fit application scenarios

High Speed Mobility

Multi User‐Massive MIMO

Antenna array technologies Integrated multi‐channel mmw

components Phase‐shifters, RF filters Digital beam‐forming, channel 

estimation and tracking algorithms

Power efficient ADC/DAC

Thank you

14 © All rights reservedISG mWT


Recommended