+ All Categories
Home > Documents > Mineral Resources for Future Technologies17 mio. t ( 1.4%) Copper 450,000 t ( 2.3%) Tin 46,300 t (...

Mineral Resources for Future Technologies17 mio. t ( 1.4%) Copper 450,000 t ( 2.3%) Tin 46,300 t (...

Date post: 24-May-2020
Category:
Upload: others
View: 3 times
Download: 0 times
Share this document with a friend
32
The Federal Institute for Geosciences and Natural Resources is the central geoscientific authority providing advice to the German Federal Government in all geo-relevant questions. It is subordinate to the Federal Ministry for Economic Affairs and Energy (BMWi). Mineral Resources for Future Technologies IV. Deutsch-Peruanisches Rohstoffforum „Mining 4.0.“, Lima, Peru Dr. Peter Buchholz Head, German Mineral Resources Agency (DERA) Federal Institute for Geosciences and Natural Resources (BGR)
Transcript

The Federal Institute for Geosciences and Natural Resources is the central geoscientific authority providing advice to the German Federal Government in all geo-relevant questions. It is subordinate to the Federal Ministry for Economic Affairs and Energy (BMWi).

Mineral Resources for Future Technologies

IV. Deutsch-Peruanisches Rohstoffforum „Mining 4.0.“, Lima, Peru

Dr. Peter Buchholz

Head, German Mineral Resources Agency (DERA)

Federal Institute for Geosciences and Natural Resources (BGR)

The Federal Institute for Geosciences and Natural Resources is the central geoscientific authority providing advice to the German Federal Government in all geo-relevant questions. It is subordinate to the Federal Ministry for Economic Affairs and Energy (BMWi).

2

Modern products contain thewhole periodic system of

elements!

A secure and sustainalblesupply of minerals is

essential!

DigitalizationCu, Ge, Ga, Ag, Au, Ta ….

© Fotolia.com

4Rio Tinto foto library©jamesteohart - Fotolia.com

Smart Cities – 5GCu, Ge, Ga, As, Ag, Au, Ta ….

Smart CitiesCu, Ge, Ga, Ag, Au, Ta ….

5 ©Gorodenkoff - Fotolia.com

Industry 4.0 – Virtual RealityCu, Ge, Ga, Ag, Au, Ta ….

Scalmalloy – Scandium-Magnesium-Aluminium-Legierung

www.3dhubs.com

3D PrintingLightweight constructionAl, Sc (ScAlmalloy)

7

©metamorworks - Fotolia.com

Next Generation: Autonomous vehiclesCu, Ge, Ga, Ag, Au, Ta ….

8

©malp - Fotolia.com

Next Generation: Hyperloop?Carbon fibre, composites, steel, cement, Cu, Zn …

9

source: fotalia

E-mobilityLi, Co, Ni, Mn, Graphite

Ne

w v

eh

icle

reg

istr

atio

ns

[mill

ion

]

2018: 97 Mio. vehicles incl. ≈ 2,1 Mio. Electric Vehicles ≈ 125 GWh

Raw material demand forbatteries in electric vehicles2017

Lithium 11,700 t(� 24.5%)

Cobalt 14,500 t(� 12.2%)

Manganese 12,900 t(� 6.1%)

Nickel 32,900 t(� 1.6%)

Due to the different types of batteries in electric vehicles and the lack of data, the data on demand are only rough estimates.

E-mobility

New electric vehicle registration 2017 (1,3 Mio. Units) Estimated raw material demand for batteries:

Share of total raw material demand 2017

Graphit 37.000 t(� 3.2%)

New E-Vehicles Registrations

http://www.ev-volumes.com/country/total-world-plug-in-vehicle-volumes/

https://www.acea.be/statistics/tag/category/key-figures

LIB-Growth Scenario 2025 – E-Mobility will Change Raw Material Demand

69101

148

213

298

400

496

600

585548 514542403735655544

374

3146

2022

383

1318

2021

289

12 14

2020

216

1011

+54

+37

+29

2025

716

720

2024

600

1726

2023

494

1521

+116

+106

+110

+94

+73

2019

162

98

2018

125

86

2017

96

7

ESS

Portable Equipment

Aftermarket

Power devices

EV

GWh

Cobalt

Lithium

Nickel

Graphite

so

urc

es: C

o, L

i (BG

R), N

i (©w

oe

-Fo

tolia

.com

), C (©

M.D

örr

&

M.F

rom

mh

erz-F

oto

lia.c

om

DERA Drive Case:~12 Mio. EV Registrations in 2025 (600 GWh)

t L

i-c

on

t.

Expected demand in 2025 (152kt Li; 600 GW/h; 12 Mio. vehicles)

2025

12,8%

Expected capacity

Total capacity16,4%

Demand: CAGR 12,8 %

Additional mine production

until 2025 (Expansion)

Mine production until 2015

Demand 2000 – 2015

(Roskill)

Expected additional

capacity until 2025

(70 % of total capacity)

Additional mine production

until 2025 (Projects)

Demand: CAGR 16,4 %

Mine production

2018

2015

Expected demand in 2025 (110kt Li; 370 GW/h; 7.4 Mio. vehicles)

Lithium supply and demand szenario 2025

13

Lithium supply

Source: S&P SNL database

Lithium production 2018, total cash costs, US$/t LCE

Australia

Chile

5,000 US$/LCE

European Developments

Source: Infinity Lithium 2019

European Developments

Source: Infinity Lithium 2019

European Lithium-Ion Battery Supply Chain

Source: Infinity Lithium 2019

17

Renewable energy

18

Wind power

Quelle: fotolia

0

100.000

200.000

300.000

400.000

500.000

600.000Raw material demand for wind turbines 2017

Iron6.8 mio. t(� 0.6%)

Copper 150,000 t(� 0.8%)

Aluminium 150,000 t(� 0.3%)

Chrome 71,500 t(� 0.2%)

Nickel 52,500 t(� 2.4%)

Tin 11,700 t(� 3.2%)

Rare Earth 6,200 t(� 4.8%)

Global installed wind power capacity

Molybdenum 10,200 t(� 3.6%)

Due to the different types of windturbines and the lack of data, thedata on demand are only roughestimates.

Estimated raw material demand (50 GW) in 2017:

[MW]

Share of total raw material demand 2017

Wind energy

World Wind Energy Association 2019, Ren21 2019

1,200 to >2,000 GW expected for 2030

GWEC, Greenpeace International, German Aerospace Centre (DLR)

2018 = 591 GW

Permanent magnetic motors for direct drive wind turbines in the offshore sector:

Use of NdFeB magnets, which may contain neodymium, dysprosium, terbium, or praseodymium…

Magnetic mass significantly higher than in other drive technologies

Average Content in Kg/MW

Technology Neodymium DysprosiumPraseodymium/

Terbium

Gear (high speed) 18.9 – 24.8 1.8 – 4.5 6.6

Gear (middle speed) 18.9 – 49.6 3.7 – 4.5 6.6

Direct Drive 101 – 211.4 13.2 – 30 35 – 44

REEProduction [t]

2013 Demand [t]

2013Estimated Demand [t]

2035

Neodymium/Praseodymium 36,600# low10,100

(3,800 – 17,600)

Dysprosium/Terbium 2,330# low500

(130 – 1,170)# Metal production calculated from REO; Fraunhofer ISI/DERA, 2016

Rare earths in (offshore) wind turbines

5-10 MW

Permanent magnetic motors for direct drive wind turbines in the offshore sector:

Use of NdFeB magnets, which may contain neodymium, dysprosium, terbium, or praseodymium…

Magnetic mass significantly higher than in other drive technologies

Average Content in Kg/MW

Technology Neodymium DysprosiumPraseodymium/

Terbium

Gear (high speed) 18.9 – 24.8 1.8 – 4.5 6.6

Gear (middle speed) 18.9 – 49.6 3.7 – 4.5 6.6

Direct Drive 101 – 211.4 13.2 – 30 35 – 44

REEProduction [t]

2013 Demand [t]

2013Estimated Demand [t]

2035

Neodymium/Praseodymium 36,600# low10,100

(3,800 – 17,600)

Dysprosium/Terbium 2,330# low500

(130 – 1,170)

Rare earths in (offshore) wind turbines

5-10 MW

# Metal production calculated from REO; Fraunhofer ISI/DERA, 2016

Permanent magnetic motors for direct drive wind turbines in the offshore sector:

Use of NdFeB magnets, which may contain neodymium, dysprosium, terbium, or praseodymium…

Magnetic mass significantly higher than in other drive technologies

Average Content in Kg/MW

Technology Neodymium DysprosiumPraseodymium/

Terbium

Gear (high speed) 18.9 – 24.8 1.8 – 4.5 6.6

Gear (middle speed) 18.9 – 49.6 3.7 – 4.5 6.6

Direct Drive 101 – 211.4 13.2 – 30 35 – 44

REEProduction [t]

2013 Demand [t]

2013Estimated Demand [t]

2035

Neodymium/Praseodymium 36,600# low10,100

(3,800 – 17,600)

Dysprosium/Terbium 2,330# low500

(130 – 1,170)

Rare earths in (offshore) wind turbines

5-10 MW

# Metal production calculated from REO; Fraunhofer ISI/DERA, 2016

Brazil600 t REO

Russia2,600 t REO

Australia18,500 t REO

China~120,000 t REO

+ unofficial mining

Vietnam5,000 t REO

Malaysia? t SEO

Thailand1,000 t SEO

India~2,000 t SEO

Burundi700 t SEO

Myanmar15,000 t SEO

USA11,000 t REO

Mine production 2018: 175,000 t REO (without unofficial mining in China)China: 68%, Australia: 10.5%, Myanmar 9%, USA: 6%, Vietnam 2,7%, Russia: 1.5%

Rare earth production 2018 and trade

Matikhal/Odisha

India: Aluva/Kerala

China

Malaysia: Kuantan

Japan

Russia: Solikamsk

Kazakhstan: Irtysh

Estonia: Sillamäe

Thailand

Vietnam: Thuan An

Quelle: EURARE 2017

Quelle: EURARE 2017

Rare Earth Separation Plantsoperating

HRE

projected

Rare earth processing

25Source: fotolia

Solar power

- Thin film cells of amorphous andcrystall. Silicium

- Galliumarsenide cells (GaAs)- Cadmiumtelluride cells (CdTe)- CIS cells (Cu-In-Diselenide; Cu-In-Ga-

Diselenide)

Raw material demand for solar power 2017

Iron17 mio. t(� 1.4%)

Copper 450,000 t(� 2.3%)

Tin 46,300 t(� 12.7%)

Lead 26,900 t(� 0.6%)

Zinc 3,000 t(� 0.1%)

Tellurium

Global installed solar power capacity

Cadmium

Due to the different types of photovoltaic systems and the lack of data, the data on demand are only rough estimates.

Newly installed capacity – 99 GW in 2017 Estimated raw material demand:[MW]

Share of total raw material demand 2017

Aluminium 3.5 mio. t(� 6.0%)

Selenium

0

100.000

200.000

300.000

400.000

500.000

Gallium

Indium

Solar energy

2018 = 505 GW

>1,100 GW expected in 2022

SolarPowerEurope, 2019

Ren21 2019

https://www.deutsche-rohstoffagentur.de/DERA/DE/Downloads/zukunftstechnologien-zusammenfassung-en.pdf?__blob=publicationFile&v=5

MetalProduction

2013Demand

2013Demand

2035Factor Emerging technologies

Lithium 30,000 t 610 t 110,000 t 3.6Lithium-ion batteries, lightweight airframes

Heavy rare earths (Dy/Tb) 2,400 t 2,000 t 7,400 t 3.1 Magnets, e-cars, wind power

Rhenium 50 t 50 t 120 t 2.4 Super alloys

Light rare earths (Nd/Pr) 37,000 t 29,000 t 64,000 t 1.7 Magnets, e-cars, wind power

Tantalum 1,300 t 500 t 2,100 t 1.6Microcapacitors, medical technology

Scandium 7 t 1 t 9 t 1.3 SOFC fuel cells

Cobalt 130,000 t 5,000 t 120,000 t 0.9 Lithium-ion batteries, XtL.

Germanium 140 t 60 t 120 t 0.8 Fiber optic, IR technology

Platinum 190 t 0 t 110 t 0.6 Fuel cells, catalysts

Tin 290,000 t 180,000 t 150,000 t 0.5 Transparent electrodes, solders

Palladium 200 t 20 t 100 t 0.5 Catalysts, seawater desalination

Indium 800 t 230 t 360 t 0.5 Displays, thin layer photovoltaics

Gallium 350 t 90 t 130 t 0.4 Thin layer photovoltaics, IC, WLED

Silver 26,000 t 5,800 t 8,300 t 0.3 RFID

Copper 18,000,000 t 120,000 t 5,300,000 t 0.3 Electric motors, RFID

Titanium 240,000 t 9,000 t 41,000 t 0,2 Seawater desalination, implants

Minor Metals demand for emerging technologies, 2016

revised for 2025

https://www.deutsche-rohstoffagentur.de/DERA/DE/Downloads/zukunftstechnologien-zusammenfassung-en.pdf?__blob=publicationFile&v=5

MetalProduction

2013Demand

2013Demand

2035Factor Emerging technologies

Lithium 30,000 t 610 t 110,000 t 3.6Lithium-ion batteries, lightweight airframes

Heavy rare earths (Dy/Tb) 2,400 t 2,000 t 7,400 t 3.1 Magnets, e-cars, wind power

Rhenium 50 t 50 t 120 t 2.4 Super alloys

Light rare earths (Nd/Pr) 37,000 t 29,000 t 64,000 t 1.7 Magnets, e-cars, wind power

Tantalum 1,300 t 500 t 2,100 t 1.6Microcapacitors, medical technology

Scandium 7 t 1 t 9 t 1.3 SOFC fuel cells

Cobalt 130,000 t 5,000 t 120,000 t 0.9 Lithium-ion batteries, XtL.

Germanium 140 t 60 t 120 t 0.8 Fiber optic, IR technology

Platinum 190 t 0 t 110 t 0.6 Fuel cells, catalysts

Tin 290,000 t 180,000 t 150,000 t 0.5 Transparent electrodes, solders

Palladium 200 t 20 t 100 t 0.5 Catalysts, seawater desalination

Indium 800 t 230 t 360 t 0.5 Displays, thin layer photovoltaics

Gallium 350 t 90 t 130 t 0.4 Thin layer photovoltaics, IC, WLED

Silver 26,000 t 5,800 t 8,300 t 0.3 RFID

Copper 18,000,000 t 120,000 t 5,300,000 t 0.3 Electric motors, RFID

Titanium 240,000 t 9,000 t 41,000 t 0,2 Seawater desalination, implants

Minor Metals demand for emerging technologies, 2016

revised for 2025

https://www.deutsche-rohstoffagentur.de/DERA/DE/Downloads/zukunftstechnologien-zusammenfassung-en.pdf?__blob=publicationFile&v=5

MetalProduction

2013Demand

2013Demand

2035Factor Emerging technologies

Lithium 30,000 t 610 t 110,000 t 3.6Lithium-ion batteries, lightweight airframes

Heavy rare earths (Dy/Tb) 2,400 t 2,000 t 7,400 t 3.1 Magnets, e-cars, wind power

Rhenium 50 t 50 t 120 t 2.4 Super alloys

Light rare earths (Nd/Pr) 37,000 t 29,000 t 64,000 t 1.7 Magnets, e-cars, wind power

Tantalum 1,300 t 500 t 2,100 t 1.6Microcapacitors, medical technology

Scandium 7 t 1 t 9 t 1.3 SOFC fuel cells

Cobalt 130,000 t 5,000 t 120,000 t 0.9 Lithium-ion batteries, XtL.

Germanium 140 t 60 t 120 t 0.8 Fiber optic, IR technology

Platinum 190 t 0 t 110 t 0.6 Fuel cells, catalysts

Tin 290,000 t 180,000 t 150,000 t 0.5 Transparent electrodes, solders

Palladium 200 t 20 t 100 t 0.5 Catalysts, seawater desalination

Indium 800 t 230 t 360 t 0.5 Displays, thin layer photovoltaics

Gallium 350 t 90 t 130 t 0.4 Thin layer photovoltaics, IC, WLED

Silver 26,000 t 5,800 t 8,300 t 0.3 RFID

Copper 18,000,000 t 120,000 t 5,300,000 t 0.3 Electric motors, RFID

Titanium 240,000 t 9,000 t 41,000 t 0,2 Seawater desalination, implants

Minor Metals demand for emerging technologies, 2016

revised for 2025

Pucará Limestone Formation

Florida Canyon Project

• Planned processing tests

with regard to Ge + Ga in

Zn concentrates, pre-

concentrates from different

mines (if possible also slags

from smelters)

German-Peruvian partnership between INGEMMET and BGR/DERA, 2019

• 2019: Investigation of drill

cores in the Florida

Canyon Pb-Zn project

(Nexa Resources)

• Analytics of ores and

concentrates of the San

Vicente Pb-Zn mine (Co.

Minera San Ignacio)

German-Peruvian partnership between INGEMMET and BGR/DERA

The Federal Institute for Geosciences and Natural Resources is the central geoscientific authority providing advice to the German Federal Government in all geo-relevant questions. It is subordinate to the Federal Ministry for Economic Affairs and Energy (BMWi).

Thank you very much!Muchas gracias por su atencion


Recommended