+ All Categories
Home > Documents > Mini RF: Synthetic Aperture Radar on LRO AM/10_40_Bussey.pdfSlide - 14. RLEP-LRO-M30, -M40 LOLA...

Mini RF: Synthetic Aperture Radar on LRO AM/10_40_Bussey.pdfSlide - 14. RLEP-LRO-M30, -M40 LOLA...

Date post: 10-Aug-2020
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
20
1 MiniRF: Synthetic Aperture Radar on LRO
Transcript
Page 1: Mini RF: Synthetic Aperture Radar on LRO AM/10_40_Bussey.pdfSlide - 14. RLEP-LRO-M30, -M40 LOLA ~1.2km. tracks. Mini-RF 3.5km interferometry pass. equator. Missing LOLA pass. Mini-RF

1

Mini‐RF: Synthetic Aperture Radar on LRO

Page 2: Mini RF: Synthetic Aperture Radar on LRO AM/10_40_Bussey.pdfSlide - 14. RLEP-LRO-M30, -M40 LOLA ~1.2km. tracks. Mini-RF 3.5km interferometry pass. equator. Missing LOLA pass. Mini-RF

2

Background

Mini-RF has demonstrated its ability to make high-quality SAR images in S- and X-bands at two different resolutions

Initial analysis of images and backscatter data indicate that Mini-RF is a fully functional imaging SAR, capable of providing new and unique information about lunar surface properties

The principal mission of LRO is to gather strategic information about the lunar surface and its environment to enable a variety of surface missions, exploration and activities

Mini-RF can collect information about the Moon that directly addresses lunar strategic knowledge needs and contributes to LRO Level 1 requirements

Mini-RF data complements other LRO instrument data by providing additional information on the physical environment and properties of the lunar surface

Mini-RF currently collected non-polar nighttime data using spare downlink capacity

Page 3: Mini RF: Synthetic Aperture Radar on LRO AM/10_40_Bussey.pdfSlide - 14. RLEP-LRO-M30, -M40 LOLA ~1.2km. tracks. Mini-RF 3.5km interferometry pass. equator. Missing LOLA pass. Mini-RF

3

Specifications

• Mini-RF, a lightweight hybrid-polarization Synthetic Aperture Radar (SAR), is an SOMD-ESMD jointly funded technology demonstration.

• Images terrain in two wavelengths and two resolutions• S-band λ=12.6 cm• X-band λ=4.2 cm• Baseline resolution (75 m/pixel)• Zoom resolution (15 m/pixel)

• Mini-RF can measure topography by interferometry.• 15 m/pixel, sub-meter vertical resolution

• Mini-RF’s hybrid-polarization technique permits measurement of Stokes parameters which provide detailed characterization of the backscattered field of the lunar surfaces.

Page 4: Mini RF: Synthetic Aperture Radar on LRO AM/10_40_Bussey.pdfSlide - 14. RLEP-LRO-M30, -M40 LOLA ~1.2km. tracks. Mini-RF 3.5km interferometry pass. equator. Missing LOLA pass. Mini-RF

Slide - 4

LCROSS Support

Faustini, 39km

Mini-RF south-polar S-zoom coverage acquired in support of LCROSS

Page 5: Mini RF: Synthetic Aperture Radar on LRO AM/10_40_Bussey.pdfSlide - 14. RLEP-LRO-M30, -M40 LOLA ~1.2km. tracks. Mini-RF 3.5km interferometry pass. equator. Missing LOLA pass. Mini-RF

5

LCROSS Support Continues

Post Impact

Pre Impact

Page 6: Mini RF: Synthetic Aperture Radar on LRO AM/10_40_Bussey.pdfSlide - 14. RLEP-LRO-M30, -M40 LOLA ~1.2km. tracks. Mini-RF 3.5km interferometry pass. equator. Missing LOLA pass. Mini-RF

S-Zoom Coverage

6

Page 7: Mini RF: Synthetic Aperture Radar on LRO AM/10_40_Bussey.pdfSlide - 14. RLEP-LRO-M30, -M40 LOLA ~1.2km. tracks. Mini-RF 3.5km interferometry pass. equator. Missing LOLA pass. Mini-RF

7

Examples of Mini-RF Data

Mini-RF SAR data co- registered with

Clementine UVVIS context mosaics.

Page 8: Mini RF: Synthetic Aperture Radar on LRO AM/10_40_Bussey.pdfSlide - 14. RLEP-LRO-M30, -M40 LOLA ~1.2km. tracks. Mini-RF 3.5km interferometry pass. equator. Missing LOLA pass. Mini-RF

8

Mini-RF data is synergistic with LROC data

Mini-RF OC S-band zoom

Apollo 15 Pan frame AS15-9328

Bessel crater, D=16 km 21.8°N 17.9°E

Page 9: Mini RF: Synthetic Aperture Radar on LRO AM/10_40_Bussey.pdfSlide - 14. RLEP-LRO-M30, -M40 LOLA ~1.2km. tracks. Mini-RF 3.5km interferometry pass. equator. Missing LOLA pass. Mini-RF

9

Kopff

Page 10: Mini RF: Synthetic Aperture Radar on LRO AM/10_40_Bussey.pdfSlide - 14. RLEP-LRO-M30, -M40 LOLA ~1.2km. tracks. Mini-RF 3.5km interferometry pass. equator. Missing LOLA pass. Mini-RF

10

Crater inside Apollo Basin

Page 11: Mini RF: Synthetic Aperture Radar on LRO AM/10_40_Bussey.pdfSlide - 14. RLEP-LRO-M30, -M40 LOLA ~1.2km. tracks. Mini-RF 3.5km interferometry pass. equator. Missing LOLA pass. Mini-RF

11

Humboldt

Page 12: Mini RF: Synthetic Aperture Radar on LRO AM/10_40_Bussey.pdfSlide - 14. RLEP-LRO-M30, -M40 LOLA ~1.2km. tracks. Mini-RF 3.5km interferometry pass. equator. Missing LOLA pass. Mini-RF

12

Copernicus King Wiener F

Page 13: Mini RF: Synthetic Aperture Radar on LRO AM/10_40_Bussey.pdfSlide - 14. RLEP-LRO-M30, -M40 LOLA ~1.2km. tracks. Mini-RF 3.5km interferometry pass. equator. Missing LOLA pass. Mini-RF

13

Value to Exploration Beyond Current Baseline Mission

Mini-RF enhances the ability of LRO to meet its level 1 requirements

• Mini-RF data uniquely determines RF backscatter properties of polar permanently shadowed areas

• Best technique for mapping extent, physical state, and purity of polar ice• Complementary to polar observations of other LRO instruments (LOLA, LEND, LAMP

& DIVINER)• Mini-RF provides direct measurement of lunar surface decimeter-

scale roughness, smoothness, & characterization of the regolith• Essential for landing site certification, exploration traverse planning• Complementary information to decameter-scale surface slope (LOLA) and meter-scale

roughness (LROC NAC) data• Mini-RF provides unique scientific data to permit better exploration

and utilization planning• Maps of polar cold traps; best technique for surface imaging of dark areas• Maps of low-backscatter materials at non-polar locations (e.g., dark mantle pyroclastic

deposits, possible exploration targets and feedstock for ISRU)• Study of crater ejecta, extent and distribution, crater evolution, regolith formation,

degradation and erosion, subsurface properties• Only way of acquiring farside radar data

Page 14: Mini RF: Synthetic Aperture Radar on LRO AM/10_40_Bussey.pdfSlide - 14. RLEP-LRO-M30, -M40 LOLA ~1.2km. tracks. Mini-RF 3.5km interferometry pass. equator. Missing LOLA pass. Mini-RF

Slide - 14

RLEP-LRO-M30, -M40

~1.2kmLOLAtracks

Mini-RF 3.5km interferometry pass

equator

Missing LOLA pass

Mini-RF can measure topography complementary to the LOLA data, by filling in gaps in LOLA coverage near the equator

Page 15: Mini RF: Synthetic Aperture Radar on LRO AM/10_40_Bussey.pdfSlide - 14. RLEP-LRO-M30, -M40 LOLA ~1.2km. tracks. Mini-RF 3.5km interferometry pass. equator. Missing LOLA pass. Mini-RF

Slide - 15

Faustini, 39km

Mini-RF south-polar S-zoom coverage acquired in support of LCROSS

RLEP-LRO-M60

Page 16: Mini RF: Synthetic Aperture Radar on LRO AM/10_40_Bussey.pdfSlide - 14. RLEP-LRO-M30, -M40 LOLA ~1.2km. tracks. Mini-RF 3.5km interferometry pass. equator. Missing LOLA pass. Mini-RF

Slide - 16

RLEP-LRO-M70

Page 17: Mini RF: Synthetic Aperture Radar on LRO AM/10_40_Bussey.pdfSlide - 14. RLEP-LRO-M30, -M40 LOLA ~1.2km. tracks. Mini-RF 3.5km interferometry pass. equator. Missing LOLA pass. Mini-RF

Slide - 17

RLEP-LRO-M80

ManiliusTier 2 site 19°N, 5°E

CopernicusTier 1 site

9.75°N, 19.9°W

Mini-RF is already acquiring data of

potential Constellation landing sites

Page 18: Mini RF: Synthetic Aperture Radar on LRO AM/10_40_Bussey.pdfSlide - 14. RLEP-LRO-M30, -M40 LOLA ~1.2km. tracks. Mini-RF 3.5km interferometry pass. equator. Missing LOLA pass. Mini-RF

Slide - 18

RLEP-LRO-M100

Higher ilmenite abundances cause reduced radar backscatter

Mini-RF strip through

Sulpicius Gallus

pyroclastic deposits (arrow)

Page 19: Mini RF: Synthetic Aperture Radar on LRO AM/10_40_Bussey.pdfSlide - 14. RLEP-LRO-M30, -M40 LOLA ~1.2km. tracks. Mini-RF 3.5km interferometry pass. equator. Missing LOLA pass. Mini-RF

Top-level Performance Requirements

• Operation at two frequencies• information on scattering function• Demonstrated by imaging at both S & X bands

• Range swath widthS-band baseline resolution: 6 kmS-band zoom, & X-band resolution: 4 km

• Compliance demonstrated directly by SAR images• Resolution

Baseline 150 m, Zoom 30 m.

• Correlation computed from range compressed SAR data compared to ideal response

• Sensitivity• Most important for ice detection• Analysis of data indicates that Mini-RF meets NEσ0 specs

X-Baseline

Page 20: Mini RF: Synthetic Aperture Radar on LRO AM/10_40_Bussey.pdfSlide - 14. RLEP-LRO-M30, -M40 LOLA ~1.2km. tracks. Mini-RF 3.5km interferometry pass. equator. Missing LOLA pass. Mini-RF

20

Conclusions

• Mini-RF has and will continue to work with LCROSS

• Mini-RF is collecting high-quality data of use to ESMD & SMD

• Mini-RF enhances the ability of LRO to meet its level 1 requirements• Mini-RF data uniquely determines RF

backscatter properties of polar permanently shadowed areas

• Mini-RF provides direct measurement of lunar surface decimeter-scale roughness, smoothness, & characterization of the regolith

• Mini-RF can acquire topography information to increase equatorial coverage


Recommended