+ All Categories
Home > Documents > Minimum Spanning Trees

Minimum Spanning Trees

Date post: 09-Jan-2016
Category:
Upload: airell
View: 19 times
Download: 1 times
Share this document with a friend
Description:
8. 7. b. c. d. 9. 4. 2. a. e. i. 11. 14. 4. 6. 7. 8. 10. h. g. f. 2. 1. Minimum Spanning Trees. Spanning Tree A tree (i.e., connected, acyclic graph) which contains all the vertices of the graph Minimum Spanning Tree Spanning tree with the minimum sum of weights. - PowerPoint PPT Presentation
Popular Tags:
32
Minimum Spanning Trees Spanning Tree A tree (i.e., connected, acyclic graph) which contains all the vertices of the graph Minimum Spanning Tree Spanning tree with the minimum sum of weights a b c d e h g f i 4 8 7 8 11 1 2 7 2 4 14 9 10 6
Transcript
Page 1: Minimum Spanning Trees

Minimum Spanning TreesSpanning Tree

◦A tree (i.e., connected, acyclic graph) which contains all the vertices of the graph

Minimum Spanning Tree◦Spanning tree with the minimum sum of weights

a

b c d

e

h g f

i

4

8 7

8

11

1 2

7

2

4 14

9

106

Page 2: Minimum Spanning Trees

Prim’s Algorithm

Starts from an arbitrary “root”: VA = {a}

At each step:

◦ Find a light edge crossing (VA, V - VA)

◦ Add this edge to set A (The edges in set A always form a single

tree)

◦ Repeat until the tree spans all vertices

a

b c d

e

h g f

i

4

8 7

8

11

1 2

7

2

4 14

9

106

Page 3: Minimum Spanning Trees

Example

0 Q = {a, b, c, d, e, f, g,

h, i} VA =

Extract-MIN(Q) a

a

b c d

e

h g f

i

4

8 7

8

11

1 2

7

2

4 14

9

106

a

b c d

e

h g f

i

4

8 7

8

11

1 2

7

2

4 14

9

106

key [b] = 4 [b] = akey [h] = 8 [h] = a

4 8

Q = {b, c, d, e, f, g, h, i} VA = {a}

Extract-MIN(Q) b

4

8

Page 4: Minimum Spanning Trees

4

8

8

a

b c d

e

h g f

i

4

8 7

8

11

1 2

7

2

4 14

9

106

Q = {c, d, e, f, g, h, i} VA = {a, b}

key [c] = 8 [c] = bkey [h] = 8 [h] = a -

unchanged

8 8 Extract-MIN(Q) c

a

b c d

e

h g f

i

4

8 7

8

11

1 2

7

2

4 14

9

106

Q = {d, e, f, g, h, i} VA = {a, b, c}

key [d] = 7 [d] = ckey [f] = 4 [f] = ckey [i] = 2 [i] = c

7 4 8 2 Extract-MIN(Q) i

4

8

8

7

4

2

Page 5: Minimum Spanning Trees

5

a

b c d

e

h g f

i

4

8 7

8

11

1 2

7

2

4 14

9

106

Q = {d, e, f, g, h} VA = {a, b, c, i}

key [h] = 7 [h] = ikey [g] = 6 [g] = i

7 4 6 7 Extract-MIN(Q) f

a

b c d

e

h g f

i

4

8 7

8

11

1 2

7

2

4 14

9

106

Q = {d, e, g, h} VA = {a, b, c, i, f}

key [g] = 2 [g] = fkey [d] = 7 [d] = c

unchanged

key [e] = 10 [e] = f 7 10 2 7

Extract-MIN(Q) g

4 7

8 4

8

2

7 64 7

7 6 4

8

2

2

10

Page 6: Minimum Spanning Trees

6

a

b c d

e

h g f

i

4

8 7

8

11

1 2

7

2

4 14

9

106

Q = {d, e, h} VA = {a, b, c, i, f, g}

key [h] = 1 [h] = g 7 10 1 Extract-MIN(Q) h

a

b c d

e

h g f

i

4

8 7

8

11

1 2

7

2

4 14

9

106

Q = {d, e} VA = {a, b, c, i, f, g, h}

7 10 Extract-MIN(Q) d

4 7

10

7 2 4

8

2

1

4 7

10

1 2 4

8

2

Page 7: Minimum Spanning Trees

7

a

b c d

e

h g f

i

4

8 7

8

11

1 2

7

2

4 14

9

106

Q = {e} VA = {a, b, c, i, f, g, h, d}

key [e] = 9 [e] = d

9

Extract-MIN(Q) e

Q = VA = {a, b, c, i, f, g, h, d, e}

4 7

10

1 2 4

8

2 9

Page 8: Minimum Spanning Trees

PRIM(V, E, w, r) % r : starting vertex

1. Q ←

2. for each u V

3. do key[u] ← ∞

4. π[u] ← NIL

5. INSERT(Q, u)

6. DECREASE-KEY(Q, r, 0) % key[r] ← 0

7. while Q

8. do u ← EXTRACT-MIN(Q)

9. for each v Adj[u]

10. do if v Q and w(u, v) < key[v]

11. then π[v] ← u

12. DECREASE-KEY(Q, v, w(u, v))

O(V) if Q is implemented as a min-heap

Executed |V| times

Takes O(lgV)

Min-heap operations:O(VlgV)Executed O(E) times

totalConstant

Takes O(lgV) O(ElgV

)

Total time: O(VlgV + ElgV) = O(ElgV)

O(lgV)

Page 9: Minimum Spanning Trees

9

Prim’s Algorithm

Total time: O(ElgV )

Prim’s algorithm is a “greedy” algorithm

◦Greedy algorithms find solutions based on a

sequence of choices which are “locally” optimal

at each step.

Nevertheless, Prim’s greedy strategy

produces a globally optimum solution!

Page 10: Minimum Spanning Trees

10

We would addedge (c, f)

a

b c d

e

h g f

i

4

8 7

8

11

1 2

7

2

4 14

9

106

Kruskal’s Algorithm

Start with each vertex being its own component

Repeatedly merge two components into one by choosing the lightest edge that connects them

Which components to consider at each iteration?◦ Scan the set of edges in

monotonically increasing order by weight. Choose the smallest edge.

Page 11: Minimum Spanning Trees

Example1. Add (h, g)

2. Add (c, i)

3. Add (g, f)

4. Add (a, b)

5. Add (c, f)

6. Ignore (i, g)

7. Add (c, d)

8. Ignore (i, h)

9. Add (a, h)

10. Ignore (b,

c)

11. Add (d, e)

12. Ignore (e, f)

13. Ignore (b, h)

14. Ignore (d, f)

a

b c d

e

h g f

i

4

8 7

8

11

1 2

7

2

4 14

9

106

1: (h, g)2: (c, i),

(g, f)4: (a, b),

(c, f)6: (i, g)7: (c, d),

(i, h)

8: (a, h), (b, c)

9: (d, e)10: (e, f)11: (b, h)14: (d, f)

{g, h}, {a}, {b}, {c},

{d},{e},{f},{i}

{g, h}, {c, i}, {a}, {b},

{d}, {e}, {f}

{g, h, f}, {c, i}, {a},

{b}, {d}, {e}

{g, h, f}, {c, i}, {a, b},

{d}, {e}

{g, h, f, c, i}, {a, b},

{d}, {e}

{g, h, f, c, i}, {a, b},

{d}, {e}

{g, h, f, c, i, d}, {a, b},

{e}

{g, h, f, c, i, d}, {a, b},

{e}

{g, h, f, c, i, d, a, b},

{e}

{g, h, f, c, i, d, a, b},

{e}

{g, h, f, c, i, d, a, b, e}

{g, h, f, c, i, d, a, b, e}

{g, h, f, c, i, d, a, b, e}

{g, h, f, c, i, d, a, b, e}

{a}, {b}, {c}, {d}, {e},

{f}, {g}, {h}, {i}

Page 12: Minimum Spanning Trees

Operations on Disjoint Data Sets

Kruskal’s Alg. uses Disjoint Data Sets (UNION-FIND : Chapter 21) to determine whether an edge connects vertices in different components

MAKE-SET(u) – creates a new set whose only member is u

FIND-SET(u) – returns a representative element from the set that contains u. It returns the same value for any element in the set

UNION(u, v) – unites the sets that contain u and v, say Su and Sv

◦ E.g.: Su = {r, s, t, u}, Sv = {v, x, y}

UNION (u, v) = {r, s, t, u, v, x, y}

We had seen earlier that FIND-SET can be done in O(lgn) or O(1) time

and UNION operation can be done in O(1) (see Chapter 21)

Page 13: Minimum Spanning Trees

1. A ← 2. for each vertex v V3. do MAKE-SET(v)

4. sort E into non-decreasing order by w

5. for each (u, v) taken from the sorted list

6. do if FIND-SET(u) FIND-SET(v)

7. then A ← A {(u, v)}

8. UNION(u, v)

9. return A

Running time: O(V+ElgE+ElgV) O(ElgE)

Implemented by using the disjoint-set data structure (UNION-FIND)

Kruskal’s algorithm is “greedy”It produces a globally optimum solution

KRUSKAL(V, E, w)

O(V)

O(ElgE)

O(E)

O(lgV)

Page 14: Minimum Spanning Trees

Another Example for Prim’s Method

b

a

d

c

f

e

2

2

1

3

10

7

1

98

a b c d e f

a 0 2 7 1b 2 0 10 1 c 7 10 0 8 2

d 1 8 0 9

e 2 9 0 3f 1 3 0

a b c d e f

D[.] = 2 0 10 1

S

new D[i] = Min{ D[i], w(k, i) }

where k is the newly-selected nodeand w[.] is the distance between k and i

Page 15: Minimum Spanning Trees

d

a b c d e f

a 0 2 7 1b 2 0 10 1 c 7 10 0 8 2

d 1 8 0 9

e 2 9 0 3f 1 3 0

a b c d e f

L [.] = 2 0 10 1 a b c d e

f new L [.] = 2 0 8 1 9

b

a

c

f

e

2

2

1

3

10

7

1

98

new D[i] = Min{ D[i], w(k, i) }

where k is the newly-selected nodeand w[.] is the distance between k and i

Page 16: Minimum Spanning Trees

a b c d e f

a 0 2 7 1b 2 0 10 1 c 7 10 0 8 2

d 1 8 0 9

e 2 9 0 3f 1 3 0

a b c d e f

L [.] = 2 0 8 1 9 a b c d e

f new L [.] = 2 0 7 1 9

1

d

b

a

c

f

e

2

2

1

3

10

7

1

98

new D[i] = Min{ D[i], w(k, i) }

where k is the newly-selected nodeand w[.] is the distance between k and i

Page 17: Minimum Spanning Trees

a b c d e f

a 0 2 7 1b 2 0 10 1 c 7 10 0 8 2

d 1 8 0 9

e 2 9 0 3f 1 3 0

a b c d e f

L [.] = 2 0 7 1 9 1 a b c d e

f new L [.] = 2 0 7 1 3

1

d

b

a

c

f

e

2

2

1

3

10

7

1

98

Page 18: Minimum Spanning Trees

a b c d e f

a 0 2 7 1b 2 0 10 1 c 7 10 0 8 2

d 1 8 0 9

e 2 9 0 3f 1 3 0

a b c d e f

L [.] = 2 0 7 1 3 1 a b c d e

f new L [.] = 2 0 2 1 3

1

d

b

a

c

f

e

2

2

1

3

10

7

1

98

Page 19: Minimum Spanning Trees

a b c d e f a 0 2 7 1b 2 0 10 1 c 7 10 0 8 2

d 1 8 0 9

e 2 9 0 3f 1 3 0

a b c d e f

L [.] = 2 0 2 1 3 1 a b c d e

f new L [.] = 2 0 2 1 3

1

Running time: (V2) (array representation)

(ElgV) (Min-

Heap+Adjacency List)Which one is better?

d

b

a

c

f

e

2

2

1

3

10

7

1

98

Page 20: Minimum Spanning Trees

Greedy MST Methods

Prim’s method is fastest. O(n2) (worst case) O(E log n) if a Min Heap is used to keep track

of distances of vertices to partially built tree. If e=O(n2), MinHeap is not a good idea!

Kruskal’s uses union-find trees to run in O(E log n) time.

Page 21: Minimum Spanning Trees

• P processors, n=|V| vertices

• Each processor is assigned n/p vertices (Pi gets the set Vi)

• Each PE holds the n/p columns of A and n/p elements of d[] array

. . . . . .d[.]

A

P0 P1 Pi Pp-1

| | || | || | || | || | || | || | || | |

| | || | || | || | || | || | || | || | |

| | || | || | || | || | || | || | || | |

| | || | || | || | || | || | || | || | |

…..

…..

…..

…..

…..

…..

n/p columns

Parallel MST Algorithm (Prim’s)

Page 22: Minimum Spanning Trees

Parallel MST Algorithm (Prim’s)

1. Initialize: Vt := {r}; d[k] = for all k (except d[r] = 0)

2. P0 broadcasts selectedV = r using one-to-all broadcast.

3. The PE responsible for "selectedV" marks it as belonging to set Vt.

4. For v = 2 to n=|V| do

5. Each Pi updates d[k] = Min[d[k], w(selectedV, k)] for all k Vi

6. Each Pi computes MIN-di =(minimum d[] value among its unselected elements)

7. PEs perform a "global minimum" using MIN-di values and store the result in P0.

Call the winning vertex, selectedV.

8. P0 broadcasts "selectedV" using one-to-all broadcast.

9. The PE responsible for "selectedV" marks it as belonging to set Vt.

10. EndFor

Page 23: Minimum Spanning Trees

TIME COMPLEXITY ANALYSIS:

E=O(n2) then Tseq = n2

(Hypercube)

Tpar = n*(n/p) + n*logp

computation + communication

(Mesh)

Tpar = n*(n/p) + n * Sqrt(p)

The algorithm is cost-optimal on a hypercube if plogp/n =O(1)

Parallel MST Algorithm (Prim’s)

Page 24: Minimum Spanning Trees

Dijkstra’s SSSP Algorithm (adjacency matrix)

b

a

d

c

f

e

2

2

1

3

10

7

1

98

a b c d e f

a 0 2 7 1b 2 0 10 1 c 7 10 0 8 2

d 1 8 0 9

e 2 9 0 3f 1 3 0

a b c d e f

L [.] = 2 0 10 1 S

new L[i] = Min{ L[i], L[k] + W[k, i] }

where k is the newly-selected intermediate nodeand W[.] is the distance between k and i

Page 25: Minimum Spanning Trees

d

a b c d e f

a 0 2 7 1b 2 0 10 1 c 7 10 0 8 2

d 1 8 0 9

e 2 9 0 3f 1 3 0

a b c d e f

L [.] = 2 0 10 1 a b c d e

f new L [.] = 2 0 9 1 10

SSSP cont.

new L[i] = Min{ L[i], L[k] + W[k, i] }

where k is the newly-selected intermediate nodeand W[.] is the distance between k and i

b

a

c

f

e

2

2

1

3

10

7

1

98

Page 26: Minimum Spanning Trees

a b c d e f

a 0 2 7 1b 2 0 10 1 c 7 10 0 8 2

d 1 8 0 9

e 2 9 0 3f 1 3 0

a b c d e f

L [.] = 2 0 9 1 10 a b c d e

f new L [.] = 2 0 9 1 10

3

new L[i] = Min{ L[i], L[k] + W[k, i] }

where k is the newly-selected intermediate nodeand W[.] is the distance between k and i

d

b

a

c

f

e

2

2

1

3

10

7

1

98

Page 27: Minimum Spanning Trees

a b c d e f

a 0 2 7 1b 2 0 10 1 c 7 10 0 8 2

d 1 8 0 9

e 2 9 0 3f 1 3 0

a b c d e f

L [.] = 2 0 9 1 10 3 a b c d e

f new L [.] = 2 0 9 1 6

3

d

b

a

c

f

e

2

2

1

3

10

7

1

98

Page 28: Minimum Spanning Trees

a b c d e f

a 0 2 7 1b 2 0 10 1 c 7 10 0 8 2

d 1 8 0 9

e 2 9 0 3f 1 3 0

a b c d e f

L [.] = 2 0 9 1 6 3 a b c d e

f new L [.] = 2 0 8 1 6

3

d

b

a

c

f

e

2

2

1

3

10

7

1

98

Page 29: Minimum Spanning Trees

a b c d e f a 0 2 7 1b 2 0 10 1 c 7 10 0 8 2

d 1 8 0 9

e 2 9 0 3f 1 3 0

a b c d e f

L [.] = 2 0 8 1 6 3 a b c d e

f new L [.] = 2 0 8 1 6

3

Running time: (V2) (array representation)

(ElgV) (Min-

Heap+Adjacency List)Which one is better?

d

b

a

c

f

e

2

2

1

3

10

7

1

98

Page 30: Minimum Spanning Trees

Task Partitioning for Parallel SSSP Algorithm

• P processors, n=|V| vertices

• Each processor is assigned n/p vertices (Pi gets the set Vi)

• Each PE holds the n/p columns of A and n/p elements of L[] array as shown below

. . . . . .L[.]

A

P0 P1 Pi Pp-1

| | || | || | || | || | || | || | || | |

| | || | || | || | || | || | || | || | |

| | || | || | || | || | || | || | || | |

| | || | || | || | || | || | || | || | |

…..

…..

…..

…..

…..

…..

n/p columns

Page 31: Minimum Spanning Trees

1. Initialize: Vt := {r}; L[k] = for all k except L[r] = 0;

2. P0 broadcasts selectedV = r using one-to-all broadcast.

3. The PE responsible for "selectedV" marks it as belonging to set Vt.

4. For v = 2 to n=|V| do

5. Each Pi updates L[k] = Min[ L[k], L(selectedV)+W(selectedV, k) ] for k Vi

6. Each Pi computes MIN-Li = (minimum L[.] value among its unselected elements)

7. PEs perform a "global minimum" using MIN-Li values and result is stored in P0.

Call the winning vertex, selectedV.

8. P0 broadcasts "selectedV" and L[selectedV] using one-to-all broadcast.

9. The PE responsible for "selectedV" marks it as belonging to set Vt.

10. EndFor

Parallel SSSP Algorithm (Dijkstra’s)

Page 32: Minimum Spanning Trees

TIME COMPLEXITY ANALYSIS:

In the worst-case, Tseq = n2

(Hypercube)

Tpar = n*(n/p) + n*logp

computation + communication

(Mesh)

Tpar = n*(n/p) + n * Sqrt(p)

The algorithm is cost-optimal on a hypercube if plogp/n = O(1)

Parallel SSSP Algorithm (Dijkstra’s)


Recommended