+ All Categories
Home > Documents > MiP school 2008 Schröcken, July 2008

MiP school 2008 Schröcken, July 2008

Date post: 13-Feb-2016
Category:
Upload: neylan
View: 25 times
Download: 0 times
Share this document with a friend
Description:
MiP school 2008 Schröcken, July 2008. http://www.mitophysiology.org/index.php?id=mip-textbook. Mitochondrial Respiratory Physiology. Mitochondrial respiratory control: Electron transport system, oxidative phosphorylation and leak – ETS , OXPHOS and LEAK . Erich Gnaiger - PowerPoint PPT Presentation
Popular Tags:
53
MiPschool 2008 Schröcken, July 2008 Mitochondrial Respiratory Physiology. Erich Gnaiger Medical University Innsbruck, Mitochondrial respiratory control: Electron transport system, oxidative phosphorylation and leak ETS, OXPHOS and LEAK. [email protected] http://www.mitophysiology.org/index.php?id=mip-textbook
Transcript
Page 1: MiP school  2008 Schröcken, July 2008

MiPschool 2008Schröcken, July 2008

Mitochondrial Respiratory Physiology.

Erich GnaigerMedical University Innsbruck, Austria

Mitochondrial respiratory control: Electron transport system, oxidative phosphorylation and leak – ETS, OXPHOS and LEAK.

[email protected]

http://www.mitophysiology.org/index.php?id=mip-textbook

Page 2: MiP school  2008 Schröcken, July 2008

Path

way

flux

Enzymatic defect0.0 0.5 1.0

0

1

2

Excess Capacityand Biochemical Threshold

Threshold

Biochemical threshold:Cellular function is buffered against a specific enzymatic defect.

Excess capacityExcess capacity:Insurance against a specific enzymatic injury.

O2

aa3

H+

bc1

H+

Qc

F1

H+H+

II

S F

I

H+

NADH

Page 3: MiP school  2008 Schröcken, July 2008

Different excess capacities imply tissue-specific (in)sensitivity to enzymatic defects in:• genetic mitochondrial disorders• aging• ischemia-reperfusion injury• degenerative diseases

Excess Capacityand Biochemical Threshold

O2

aa3

H+

bc1

H+

Qc

F1

H+H+

II

S F

I

H+

NADH

Page 4: MiP school  2008 Schröcken, July 2008

KCN concentration [µM]

Rel

. inh

ibiti

on o

f CO

X

0 10 200.00

0.25

0.50

0.75

1.00

Cytochrome c Oxidase

KCN Titration

caa3

F1

O2 ADP ATPH+

H+

TMPDAscorbate

KCN

Antimycin A

Isolated step in intact isolated mitochondria:

TMPD+Ascorbate

Cyanide titration

Page 5: MiP school  2008 Schröcken, July 2008

Glu+MalTMPD+AscFl

ux/C

ompl

ex I

Rel. inhibition of COXKCN concentration [µM]

Rel

. inh

ibiti

on o

f CO

X

0 10 200.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.000.0

0.5

1.0

1.5

2.0

2.5

Electron Transport Chainand Cytochrome c Oxidase

Excess capacityH+

ATP

F1

O2

aa3bc1Q

ADPH+

H+ H+

DHI

cH+

NADHGlutamate+Malate

0.5 mM TMPD + 2 mM ascorbate: 2-fold relative COX capacity

Excess capacity

Page 6: MiP school  2008 Schröcken, July 2008

Electron Transport System

O2

aa3

H+

bc1

H+

Qc

F1

H+H+

II

S F

I

H+

NADH ADP ATP

III IV

A. Definition of ETS capacity.B. Measurement in mitochondria and

permeabilized cells.C. Measurement in intact cells.

Which metabolic state represents electron transport capacity?

Page 7: MiP school  2008 Schröcken, July 2008

Conventional ProtocolDerived from Bioenergetics

Electron Transport Chain

Bioenergetic paradigm (1): Respiratory capacity in State 3, feeding electrons specifically into

complex I

H+ATP

F1

O2

aa3bc1Q

ADPH+

H+ H+

DHI

cH+

NADH

Page 8: MiP school  2008 Schröcken, July 2008

Conventional ProtocolDerived from Bioenergetics

Electron Transport Chain

Bioenergetic paradigm (1): Respiratory capacity in State 3, feeding electrons specifically into

complex I, or complex II

H+ATP

F1

O2

aa3bc1Q

ADPH+

H+ H+

cII

FADH 2

Page 9: MiP school  2008 Schröcken, July 2008

Conventional ProtocolDerived from Bioenergetics

Electron Transport Chain

Bioenergetic paradigm (1): Respiratory capacity in State 3, feeding electrons specifically into

complex I, or complex II (rotenone+succinate)

H+ATP

F1

O2

aa3bc1Q

ADPH+

H+ H+

cII

FADH 2

Then we are surprised to find ...

Page 10: MiP school  2008 Schröcken, July 2008

Intact versusPermeabilized Cells

Uncoupled

Intact

0

1

2

3

CellROUTINE uncoupl.

Res

pira

tion

/ GM

AD

P

Permeabilized

State 3GMADP

In permeabilized cells, State 3 respiration (Glutamate+Malate) is short of representing respiratory capacity of intact uncoupled cells.

ATP

F1

O2

aa3bc1Q

ADPH+

H+ H+

IIDH

NADH

I

Succinate

cH+

GM H+

FCCP

Fibroblasts NIH3T3

Coupled

Page 11: MiP school  2008 Schröcken, July 2008

O2

aa3

H+

bc1

H+

Qc

F1

H+H+

II

S F

I

H+

NADH

Contoversy on Isolated Mitochondria

• Letellier et al (1994) Biochem. J. 302: 171.• Gnaiger et al (1998) BBA 1365: 249• Rossignol et al (2003) Biochem. J. 370: 751.• Antunes et al (2004) PNAS 101: 16774.

• Villani, Attardi (1997) PNAS 94: 1166.

But low COX excess in intact cells „raises the critical issue of how accurately the data obtained with isolated mitochondria reflect the in vivo situation“.

COX excess capacity is high in isolated mitochondria, with corresponding phenotypic threshold.

Page 12: MiP school  2008 Schröcken, July 2008

ControversyLiving cells vs isolated mitochondria

Bioenergetic paradigm (2) of substrate/uncoupler combinations which yield maximum flux in:

• Isolated mitochondria: Rasmussen et al (2001) AJP

• Intact cells: Villani and Attardi (1997) PNAS• Permeabilized muscle fibers: Kunz et al (2000) JBC

Page 13: MiP school  2008 Schröcken, July 2008

Oxidative Phosphorylation in Top Gear

Gold standard to assess maximum aerobic capacity in cultured cells:

→Uncoupled flux

• Villani, Attardi (1997) PNAS 94: 1166

Res

pira

tion [p

mol

·s-1·1

0-6]

0

90

180

360

270

0 20 40 60 80Time [min]

RoutineAma

Oligo-mycin

FCCPRot

But intact cells do not have uncoupled mitochondria !

Page 14: MiP school  2008 Schröcken, July 2008

Oxidative Phosphorylation in Top Gear – Mitochondrial Physiology

Gold standard to assess maximum aerobic capacity in humans:

→VO2 max

Electron Transport Coupled to ATP Synthesis

Page 15: MiP school  2008 Schröcken, July 2008

Oxidative Phosphorylation:Coupling

O2 ATPH+H+

O2

Δp

ATP

OXPHOS andRespiratory Capacity

O2

aa3

H+

bc1

H+

Qc

F1

H+H+

II

S F

I

H+

NADH

Page 16: MiP school  2008 Schröcken, July 2008

Q

Linear

O2

aa3

H+

bc1

H+

cNADH I

H+

Mitochondrial PathwaysConvergent Redox and ET System

Coupled

OXPHOS

F1

H+H+

ADP

ETFβ-Oxidation

Convergent

II

Succinate

4 : 1

SDH

II

Glycolysis

Convergent

GDH

ODH

IDH

MDH

PDH

GpDHGp

p. 24www.oroboros.at/index.php?id=mipnet-publications

Page 17: MiP school  2008 Schröcken, July 2008

Question 1

How do we measure mitochondrial electron transport capacity?

A. MitochondriaB. Intact cells

ETS O2

aa3

H+

bc1

H+

Qc

F1

H+H+

II

S F

I

H+

NADH ADP ATP

III IV

Page 18: MiP school  2008 Schröcken, July 2008

Succinate2-

O2

aa3

H+

bc1

H+

Qc

F1

H+H+

MitoPathwaysSuccinate + Rotenone

Malate2-

Fumarate2-

Pi2-

Pi2-

II

S F

I

Succinate2-

II

FADH2

Oxaloacetate2-

NADH

www.oroboros.at/index.php?id=mipnet-publications

Page 19: MiP school  2008 Schröcken, July 2008

Succinate2-

Malate2-

Malate2-

Pyruvate-

H+

Malate2-

MitoPathwaysPyruvate+Malate+Succinate, PMS

Oxaloacetate2-

Malate2-

Fumarate2- 2-Oxoglutarate2-

NADH

NADH

Succinate2-

Acetyl-CoANADHPyruvate-

HCO3-

NADHCO2FADH2

H+

Citrate3-

H+

Pi2-

Pi2-

O2

aa3

H+

bc1

H+

Qc

F1

H+H+

II

S F

I

H+

NADH

www.oroboros.at/index.php?id=mipnet-publications

Page 20: MiP school  2008 Schröcken, July 2008

Malate2-

Complex II is not active in respiration on pyruvate + malate.Pi

2-

Pyruvate-

H+

Malate2-

Oxaloacetate2-

Malate2-

Fumarate2- 2-Oxoglutarate2-

Acetyl-CoANADH

NADH

NADH

NADHFADH2

HCO3-

CO2

Malate2-

Succinate2-

H+

Citrate3-

H+Pyruvate-

Pi2-

O2

aa3

H+

bc1

H+

Qc

F1

H+H+

I

H+

NADH

MitoPathwaysPyruvate+Malate, PM

www.oroboros.at/index.php?id=mipnet-publications

Page 21: MiP school  2008 Schröcken, July 2008

Succinate2-

MitoPathwaysGlutamate+Malate+Succinate, GMS

Oxaloacetate2-

Malate2-

Fumarate2-

NADH

NADHFADH2

Glutamate-

Aspartate-

Glutamate-

2-Oxoglutarate2-

Glutamate-

Succinate2-Glutamate-

H+

Malate2-

H+

H+

CO2

NADH

H+

Malate2-

NH4+

Pi2-

Pi2-

www.oroboros.at/index.php?id=mipnet-publications

Page 22: MiP school  2008 Schröcken, July 2008

1:101:000:500:400:300:20

O2 C

once

ntra

tion 200

160

120

80

40

0 O2 F

low

per

cel

ls250

200

150

100

50

0

Time [h:min]endogen.

ROUTINE

+c

c

Cytochrome c test: Intact mitochondrial outer membrane

+uncoupler

F F

ETS

CICI

+ADP

ADP

OXPHOS

GMN

GM

+Dig

CI

LEAK

Permeab.

CI Substrates

High-Resolution Respirometryin Permeabilized Cells

Page 23: MiP school  2008 Schröcken, July 2008

1:101:000:500:400:300:20

O2 C

once

ntra

tion 200

160

120

80

40

0 O2 F

low

per

cel

ls250

200

150

100

50

0

Time [h:min]

CeR

endogen.

ROUTINE

CI

+D

D

OXPHOS

+c

c

CI+II

+S

S1

SF

CII

+Rot

Rot

+u

F F

ETS

CI

High-Resolution Respirometryin Permeabilized Cells

Am

a

+AmaGMN

GM

+Dig

CI

LEAK

PC

ETS capacity with CI+II substrates

Page 24: MiP school  2008 Schröcken, July 2008

Maximum electron transport capacity is obtained with convergent CI+II electron input.

Reference State

1

O2

aa3

H+

bc1

H+

Qc

I

H+

NADH

F1

H+H+II

S F

FADH2

CI+II:

ETS O2

aa3

H+

bc1

H+

Qc

F1

H+H+

II

S F

I

H+

NADH ADP ATP

III IV

Page 25: MiP school  2008 Schröcken, July 2008

With CI substrates, respiration is limited to 0.70 of ETS capacity.

Q-Junction Ratio

1

0.70

O2

aa3

H+

bc1

H+

Qc

I

H+

NADHF1

H+H+ CI+II:

CI:

ETS O2

aa3

H+

bc1

H+

Qc

F1

H+H+

II

S F

I

H+

NADH ADP ATP

III IV

Page 26: MiP school  2008 Schröcken, July 2008

With CII substrates, respiration is limited to 0.36 of ETS capacity.

Q-Junction Ratio

0.36

1

O2

aa3

H+

bc1

H+

Qc

F1

H+H+

II

S FFADH2

CI+II:

CII:

ETS O2

aa3

H+

bc1

H+

Qc

F1

H+H+

II

S F

I

H+

NADH ADP ATP

III IV

Page 27: MiP school  2008 Schröcken, July 2008

Convergent CI+II electron input exerts an additive effect in human fibroblasts.

Q-Junction Ratio

0.36

1

0.70

O2

aa3

H+

bc1

H+

Qc

I

H+

NADH

F1

H+H+II

S F

FADH2

CI+II:

CI:

CII:

ETS O2

aa3

H+

bc1

H+

Qc

F1

H+H+

II

S F

I

H+

NADH ADP ATP

III IV

Page 28: MiP school  2008 Schröcken, July 2008

O2

CIVaa3

H+

CIIIbc1

H+

c

H+

Uncoupler

Electron Transport:from Chain to System

QCI

H+

Glutamate

Pyruvate

Malate

Isocitrate

3-Hydroxyacyl CoA

NADH

• Electron Transport ChainSuccinate

CII

?

Fatty acyl CoA

?

3-Glycerol phosphate

?• Electron Transport System, ETS

Convergent Electron Flux and the Q-junction

www.oroboros.at/index.php?id=mipnet-publications

Page 29: MiP school  2008 Schröcken, July 2008

The most frequent misnomer in bioenergetics:

Electron Transport Chain

Page 30: MiP school  2008 Schröcken, July 2008

E

ETS

Page 31: MiP school  2008 Schröcken, July 2008

Question 1

How do we measure mitochondrial electron transport capacity?

A. MitochondriaB. Intact cells

ETS O2

aa3

H+

bc1

H+

Qc

F1

H+H+

II

S F

I

H+

NADH ADP ATP

III IV

Page 32: MiP school  2008 Schröcken, July 2008

O2 C

once

ntra

tion 200

16012080400

Res

pira

tion

[pm

ol∙s

-1∙1

0-6 c

ells

]250200150100500

Time [h:min]3:002:302:001:301:000:300:00

Uncoupling

FCCP

ETS

Olig

omyc

in

LEAKROUTINE

Cells

Fibroblasts NIH3T3

High-Resolution Respirometryin Intact Cells

Gnaiger E (2008) In: Mitochondrial Dysfunction in Drug-Induced Toxicity. (Dykens JA, Will Y, eds) John Wiley.

Page 33: MiP school  2008 Schröcken, July 2008

Mitochondrial Pathwaysand Q-Junction

0 50 100 150 200 2500

50

100

150

200

250

Perm

. cel

ls [p

mol

∙s-1∙1

0-6 c

ells

]

Intact cells [pmol∙s-1∙10-6 cells]

CI+II: Glutamate+Malate+Succinateuncoupled

ETS capacities were identical in intact and permeabilized cells, with convergent electron flow through Complexes I and II (CI+II e-input).

ETS

Page 34: MiP school  2008 Schröcken, July 2008

Identical ETS Capacity in Permeabilized and Intact Cells

EL

LEAK ROUTINE ETSR/EL/R

L/E

10.09 0.29 0.290.32

0.09CI+II combined

E

ETS

1

Coupling

B: Intact CellsA: Permeabilized Cells

Control

Culture medium

uncouplerR

Oligomycin

186 199

pmol∙s-1∙10-6 cells

Page 35: MiP school  2008 Schröcken, July 2008

O2 C

once

ntra

tion 200

16012080400

Res

pira

tion

[pm

ol∙s

-1∙1

0-6 c

ells

]250200150100500

Time [h:min]3:002:302:001:301:000:300:00

Uncoupling

FCCP

ETS

Olig

omyc

in

LEAKROUTINE

State 3?

OXPHOS Capacity ?

O2 ATP

H+H+

ADP

Cells

Fibroblasts NIH3T3

High-Resolution Respirometryin Intact Cells

Page 36: MiP school  2008 Schröcken, July 2008

Question 2

How do we measure OXPHOS capacity?

A. MitochondriaB. In intact cells ?

OXPHOS

O2

aa3

H+

bc1

H+

Qc

F1

H+H+

II

S F

I

H+

NADH ADP ATP

III IV

Page 37: MiP school  2008 Schröcken, July 2008

O2 C

once

ntra

tion 200

160

120

80

40

0 O2 F

low

per

cel

ls250

200

150

100

50

0

Time [h:min]1:451:301:151:000:450:300:15

ADP

Dig

itoni

n

Glu

tam

ate

+Mal

ate

CI

Rot

CII

c ADPSuccinate

CI+II

OXPHOS

Om

y

FFCCP

CI+II

ETSuncoupled

OXPHOS capacity is less than ETS

High-Resolution Respirometryin Permeabilized Cells

ADP-stimulated

Page 38: MiP school  2008 Schröcken, July 2008

P

OXPHOS

Page 39: MiP school  2008 Schröcken, July 2008

Flux Control Diagrams for Permeabilized and Intact Cells

EL

LEAK ROUTINE ETSR/EL/R

L/E

10.09 0.290.32

0.09CI+II combined

EL

LEAK OXPHOS ETS

L/E

P/E

L/P

0.50 10.100.20

0.10

Coupling

B: Intact CellsA: Permeabilized Cells

Control

Culture medium

uncouplerR

OligomycinP

uncouplerADP

Glutamate+Malate+Succinate

0.29Reserve capacity is overestimated 2-fold

R/E

0.58R/P

Page 40: MiP school  2008 Schröcken, July 2008

The phosphorylation system exerts strong control over OXPHOS in human fibroblasts.

O2 ATPH+H+

P E0.50

OXPHOS O2

aa3

H+

bc1

H+

Qc

F1

H+H+

II

S F

I

H+

NADH ADP ATP

III IV

Page 41: MiP school  2008 Schröcken, July 2008

Question 3

How do we express respiratory coupling ratios?

A. MitochondriaB. Intact cells

LEAK O2

aa3

H+

bc1

H+

Qc

F1

H+H+

II

S F

I

H+

NADH ADP ATP

III IV

Page 42: MiP school  2008 Schröcken, July 2008

O2 C

once

ntra

tion 200

160

120

80

40

0 O2 F

low

per

cel

ls250

200

150

100

50

0

Time [h:min]1:451:301:151:000:450:300:15

ADP

Dig

itoni

n

Glu

tam

ate

+Mal

ate

CI

Rot

CII

c ADP

Succinate

CI+II

OXPHOS

Om

y

F

FCCP

CI+II

ETSuncoupled

L/E ratio but not L/P ratio reflects the relative LEAK.

High-Resolution Respirometryin Permeabilized Cells

ADP-stimulated

CI

Page 43: MiP school  2008 Schröcken, July 2008

ETS Capacity versus OXPHOS Capacity

Permeabilized Cells, NIH3T3 Fibroblasts

Glutamate+Malate

EL

LEAK OXPHOS ETS

L/E

P/EL/P

PL 0.25 E0.55

Substrate

Coupling ADP

Control PuncouplerADP

Limitation by the phosphorylation system

4.0

Respiratory Control Ratio (State 3/State 4)is the inverse L/P ratio

Page 44: MiP school  2008 Schröcken, July 2008

ETS Capacity versus OXPHOS Capacity

Permeabilized Cells, NIH3T3 Fibroblasts

Glutamate+Malate

EL

LEAK OXPHOS ETS

L/E

P/EL/P

PL 0.25 E0.55

Substrate

Coupling ADP

Control PuncouplerADP

7.1

Respiratory Control Ratioshould be the inverse L/E ratio

L/E ratio expresses uncoupling

0.14

Page 45: MiP school  2008 Schröcken, July 2008

Mitochondrial Pathwaysand Q-Junction

0 50 100 150 200 2500

50

100

150

200

250

Perm

. cel

ls [p

mol

∙s-1∙1

0-6 c

ells

]

Intact cells [pmol∙s-1∙10-6 cells]

CI+II: GMSE

CI+II: GMSL

CI: GML

CrE

ETS capacities and LEAK respiration were identical in intact and permeabilized cells, with convergent electron flow through Complexes I and II (CI+II e-input)

LEAK

Page 46: MiP school  2008 Schröcken, July 2008

L

LEAK

Page 47: MiP school  2008 Schröcken, July 2008

1. Convergent e-input at the Q-junction corresponds to the

operation of the citric acid cycle.

2. The additive Q-junction effect and phosphorylation limitation of OXPHOS reveal an unexpected diversity of mitochondrial function.

Q-junction ratios: 0.97 to 0.5

Mitochondrial Respiratory Control: The Q-Junction

www.oroboros.at/index.php?id=mipnet-publications

Page 48: MiP school  2008 Schröcken, July 2008

3. Interpretation of apparent excess capacities of ET complexes and of flux control coefficients is largely dependent on the metabolic reference state. Higher capacities with CI+II substrates explain apparent discrepancies between mitochondria and intact cells.

Mitochondrial Respiratory Control: The Q-Junction

p. 33www.oroboros.at/index.php?id=mipnet-publications

Page 49: MiP school  2008 Schröcken, July 2008

4. Interpretation of excess capacities of various components of the respiratory chain and of flux control coefficients is largely dependent on the metabolic reference state. Appreciation of the concept of the Q-junction will provide new insights into the functional design of the respiratory chain.

Mitochondrial Respiratory Control: The Q-Junction

p. 33www.oroboros.at/index.php?id=mipnet-publications

Page 50: MiP school  2008 Schröcken, July 2008

5. The relation between membrane potential and flux is reversed when an increase in flux is effected by a change in substrate supply.

MultiSensor O2k: TPMP+

Mitochondrial Respiratory Control: The Q-Junction

Mitochondrial Pathways and Respiratory Control. OROBOROS MiPNet Publ. 2007 p. 33www.oroboros.at/index.php?id=mipnet-publications

Page 51: MiP school  2008 Schröcken, July 2008

High-Resolution RespirometryState-of-the-art polarography

www.oroboros.at

OROBOROS INSTRUMENTShigh-resolution respirometryOxygraph-2k

FacultyDisclosureStatement

O2 H+ Ca2+

TPP+ NO

Page 52: MiP school  2008 Schröcken, July 2008

6. ROS production and reversed electron flow from Complex II to Complex I: Multiple substrate supply plays a key role (Capel et al 2005; Garait et al 2005). The dependence of ROS production on membrane potential and metabolic state will have to be investigated further based on the concept of the Q-junction.

Mitochondrial Respiratory Control: The Q-Junction

p. 33www.oroboros.at/index.php?id=mipnet-publications

Page 53: MiP school  2008 Schröcken, July 2008

Coupling ControlLEAK, OXPHOS, ETS

L: LEAK

P: Oxidative Phosphorylation

E: Electron Transport SystemOdra Noel

EL

LEAK Routine ETSR/EL/R

L/E

199 = 10.09 0.29 0.290.32

0.09

slow

com-bined

fast

S

GMS

GMS

GM

EL

LEAK OXPHOS ETS

L/E

P/EL/P

0.34

0.50

0.38

0.36(0.12)

186 = 10.10

0.700.090.25

0.98 0.77

0.20

0.68(1.2)(0.35)

0.55

0.14

0.50

0.70

0.10

0.360.93

(0.32)

Substrate

Coupling ADP

B: Intact CellsA: Permeabilized CellsControl

Culturemedium

uncouplerR

OligomycinP

uncouplerADP


Recommended