+ All Categories
Home > Documents > MISG12_FishingPoleDesign

MISG12_FishingPoleDesign

Date post: 12-Jul-2016
Category:
Upload: mmmaaarrrtttaaa
View: 214 times
Download: 0 times
Share this document with a friend
Description:
fishing
45
FISHING POLE DESIGN Mulalo Nengome, Marijke Rademeyer, Akinlotan Morenikeji Deborah, Gideon fareo January 07, 2012 Mulalo Nengome, Marijke Rademeyer, Akinlotan Morenikeji Deborah, Gideon fareo Mathematics in Industry Study Group (MISG) 2012
Transcript
Page 1: MISG12_FishingPoleDesign

FISHING POLE DESIGN

Mulalo Nengome, Marijke Rademeyer, Akinlotan MorenikejiDeborah, Gideon fareo

January 07, 2012

Mulalo Nengome, Marijke Rademeyer, Akinlotan Morenikeji Deborah, Gideon fareoMathematics in Industry Study Group (MISG) 2012

Page 2: MISG12_FishingPoleDesign

Outline

Introduction

Mulalo Nengome, Marijke Rademeyer, Akinlotan Morenikeji Deborah, Gideon fareoMathematics in Industry Study Group (MISG) 2012

Page 3: MISG12_FishingPoleDesign

Outline

Introduction

Objectives

Mulalo Nengome, Marijke Rademeyer, Akinlotan Morenikeji Deborah, Gideon fareoMathematics in Industry Study Group (MISG) 2012

Page 4: MISG12_FishingPoleDesign

Outline

Introduction

Objectives

A sketch of The Beam’s Structure

Mulalo Nengome, Marijke Rademeyer, Akinlotan Morenikeji Deborah, Gideon fareoMathematics in Industry Study Group (MISG) 2012

Page 5: MISG12_FishingPoleDesign

Outline

Introduction

Objectives

A sketch of The Beam’s Structure

Scaling

Mulalo Nengome, Marijke Rademeyer, Akinlotan Morenikeji Deborah, Gideon fareoMathematics in Industry Study Group (MISG) 2012

Page 6: MISG12_FishingPoleDesign

Outline

Introduction

Objectives

A sketch of The Beam’s Structure

Scaling

Dimensionless ODE Formulation

Mulalo Nengome, Marijke Rademeyer, Akinlotan Morenikeji Deborah, Gideon fareoMathematics in Industry Study Group (MISG) 2012

Page 7: MISG12_FishingPoleDesign

Outline

Introduction

Objectives

A sketch of The Beam’s Structure

Scaling

Dimensionless ODE Formulation

Progress

Mulalo Nengome, Marijke Rademeyer, Akinlotan Morenikeji Deborah, Gideon fareoMathematics in Industry Study Group (MISG) 2012

Page 8: MISG12_FishingPoleDesign

Outline

Introduction

Objectives

A sketch of The Beam’s Structure

Scaling

Dimensionless ODE Formulation

Progress

Simplification of Coefficients

Mulalo Nengome, Marijke Rademeyer, Akinlotan Morenikeji Deborah, Gideon fareoMathematics in Industry Study Group (MISG) 2012

Page 9: MISG12_FishingPoleDesign

Outline

Introduction

Objectives

A sketch of The Beam’s Structure

Scaling

Dimensionless ODE Formulation

Progress

Simplification of Coefficients

Graphical Analysis

Mulalo Nengome, Marijke Rademeyer, Akinlotan Morenikeji Deborah, Gideon fareoMathematics in Industry Study Group (MISG) 2012

Page 10: MISG12_FishingPoleDesign

Outline

Introduction

Objectives

A sketch of The Beam’s Structure

Scaling

Dimensionless ODE Formulation

Progress

Simplification of Coefficients

Graphical Analysis

Comparism of Different Rod Materials

Mulalo Nengome, Marijke Rademeyer, Akinlotan Morenikeji Deborah, Gideon fareoMathematics in Industry Study Group (MISG) 2012

Page 11: MISG12_FishingPoleDesign

Outline

Introduction

Objectives

A sketch of The Beam’s Structure

Scaling

Dimensionless ODE Formulation

Progress

Simplification of Coefficients

Graphical Analysis

Comparism of Different Rod Materials

Length comparisons

Mulalo Nengome, Marijke Rademeyer, Akinlotan Morenikeji Deborah, Gideon fareoMathematics in Industry Study Group (MISG) 2012

Page 12: MISG12_FishingPoleDesign

Outline

Introduction

Objectives

A sketch of The Beam’s Structure

Scaling

Dimensionless ODE Formulation

Progress

Simplification of Coefficients

Graphical Analysis

Comparism of Different Rod Materials

Length comparisons

Comparison of Radii

Mulalo Nengome, Marijke Rademeyer, Akinlotan Morenikeji Deborah, Gideon fareoMathematics in Industry Study Group (MISG) 2012

Page 13: MISG12_FishingPoleDesign

Outline

Introduction

Objectives

A sketch of The Beam’s Structure

Scaling

Dimensionless ODE Formulation

Progress

Simplification of Coefficients

Graphical Analysis

Comparism of Different Rod Materials

Length comparisons

Comparison of Radii

Conclusions

Mulalo Nengome, Marijke Rademeyer, Akinlotan Morenikeji Deborah, Gideon fareoMathematics in Industry Study Group (MISG) 2012

Page 14: MISG12_FishingPoleDesign

Introduction

We consider a cylindrical solid pole modelled as a beam based onthe Euler-Bernoulli beam theory.

The partial differential equation describing the displacement,u(x , t), of the beam as a function of position and time is given by

∂2u

∂t2+

Ek2

ρ

∂4u

∂x4= 0, 0 < x < L, t > 0. (1)

subject to spatial boundary condition

u(0, t) = a sin(ωt), ux (0, t) = 0, uxx(L, t) = 0, uxxx(L, t) = 0

and initial condition

u(x , 0) = 0, ut(x , 0) = 0

Mulalo Nengome, Marijke Rademeyer, Akinlotan Morenikeji Deborah, Gideon fareoMathematics in Industry Study Group (MISG) 2012

Page 15: MISG12_FishingPoleDesign

Objectives

Our aims are to formulate a model that can:

determine the fishing rod (or pole) that can achieve an optimalcasting distance in order to optimize the fishing process.

Mulalo Nengome, Marijke Rademeyer, Akinlotan Morenikeji Deborah, Gideon fareoMathematics in Industry Study Group (MISG) 2012

Page 16: MISG12_FishingPoleDesign

Objectives

Our aims are to formulate a model that can:

determine the fishing rod (or pole) that can achieve an optimalcasting distance in order to optimize the fishing process.

determine the major factors that determines the dynamics of afishing pole, such as the length factor and materials.

Mulalo Nengome, Marijke Rademeyer, Akinlotan Morenikeji Deborah, Gideon fareoMathematics in Industry Study Group (MISG) 2012

Page 17: MISG12_FishingPoleDesign

A sketch of The Beam’s Structure

Mulalo Nengome, Marijke Rademeyer, Akinlotan Morenikeji Deborah, Gideon fareoMathematics in Industry Study Group (MISG) 2012

Page 18: MISG12_FishingPoleDesign

Scaling

It is always better to simplify a mathematical model by scaling itwhere possible.

The advantages of scaling are:

Parameter reduction.

Mulalo Nengome, Marijke Rademeyer, Akinlotan Morenikeji Deborah, Gideon fareoMathematics in Industry Study Group (MISG) 2012

Page 19: MISG12_FishingPoleDesign

Scaling

It is always better to simplify a mathematical model by scaling itwhere possible.

The advantages of scaling are:

Parameter reduction.

Highlight of essential dynamical features.

Mulalo Nengome, Marijke Rademeyer, Akinlotan Morenikeji Deborah, Gideon fareoMathematics in Industry Study Group (MISG) 2012

Page 20: MISG12_FishingPoleDesign

Scaling

It is always better to simplify a mathematical model by scaling itwhere possible.

The advantages of scaling are:

Parameter reduction.

Highlight of essential dynamical features.

Exposure of important dimensionless groups.

Mulalo Nengome, Marijke Rademeyer, Akinlotan Morenikeji Deborah, Gideon fareoMathematics in Industry Study Group (MISG) 2012

Page 21: MISG12_FishingPoleDesign

Scaling

It is always better to simplify a mathematical model by scaling itwhere possible.

The advantages of scaling are:

Parameter reduction.

Highlight of essential dynamical features.

Exposure of important dimensionless groups.

Simplified and dimensionless resulting equations.

Mulalo Nengome, Marijke Rademeyer, Akinlotan Morenikeji Deborah, Gideon fareoMathematics in Industry Study Group (MISG) 2012

Page 22: MISG12_FishingPoleDesign

Scaling

It is always better to simplify a mathematical model by scaling itwhere possible.

The advantages of scaling are:

Parameter reduction.

Highlight of essential dynamical features.

Exposure of important dimensionless groups.

Simplified and dimensionless resulting equations.

Clear understanding of the problem and easier interpretation.

Mulalo Nengome, Marijke Rademeyer, Akinlotan Morenikeji Deborah, Gideon fareoMathematics in Industry Study Group (MISG) 2012

Page 23: MISG12_FishingPoleDesign

Scaling

It is always better to simplify a mathematical model by scaling itwhere possible.

The advantages of scaling are:

Parameter reduction.

Highlight of essential dynamical features.

Exposure of important dimensionless groups.

Simplified and dimensionless resulting equations.

Clear understanding of the problem and easier interpretation.

Thus, we scale the variables as below:

v(ξ, τ) =u

a, ξ =

x

L, τ = ωt.

Mulalo Nengome, Marijke Rademeyer, Akinlotan Morenikeji Deborah, Gideon fareoMathematics in Industry Study Group (MISG) 2012

Page 24: MISG12_FishingPoleDesign

Scaling

With this scale, (1) becomes:

∂2v

∂τ2+ J

∂4v

∂ξ4= 0, 0 < ξ < 1, τ > 0. (2)

v(0, τ) = sin(τ), vξ(0, τ) = 0, vξξ(1, τ) = 0, vξξξ(1, τ) = 0

with initial conditions: v(ξ, 0) = 0, vτ (ξ, 0) = 0

The dimensionless parameter J = Ek2

ρω2L4 is the most important

response here and it describes the dynamic behaviour of the fishingpole, where E is the Young’s modulus, ρ is the density, K is theradius of gyration and ω is the angular frequency of oscillation.

Mulalo Nengome, Marijke Rademeyer, Akinlotan Morenikeji Deborah, Gideon fareoMathematics in Industry Study Group (MISG) 2012

Page 25: MISG12_FishingPoleDesign

Dimensionless ODE Formulation

After scaling the parameters of the PDE, we look for a solution ofthe form:

u(x , t) = X (ξ) sin(τ).

On Substituing this into the PDE, we obtained a dimensionlessODE:

Jd4X

dx4− X = 0, J =

EK 2

ρω2L4(3)

with boundary conditions:

X (0) = 1

X ′(0) = 0

X ′′(1) = 0

X ′′′(1) = 0

(4)

For the resulting ODE, we also look for a solution of the form:

X (ξ) = Aeλξ

Where E is the Young’s modulus, K is the radius of gyration of theMulalo Nengome, Marijke Rademeyer, Akinlotan Morenikeji Deborah, Gideon fareoMathematics in Industry Study Group (MISG) 2012

Page 26: MISG12_FishingPoleDesign

Progress

From this, we obtain the general solution:

X (ξ) = C1eJ−1/4

+ C2e−J−1/4ξ + C3 cos(J−1/4ξ) + C4 sin(J−1/4ξ)

Using hyperbolic trigonometric functions, we have:

New Solution Form:

χ(ξ) = C ∗1 cosh(λξ) + C ∗

2 sinh(λξ) + C ∗3 sin(λξ) + C ∗

4 cos(λξ)

whereJ−1/4 = λ

Mulalo Nengome, Marijke Rademeyer, Akinlotan Morenikeji Deborah, Gideon fareoMathematics in Industry Study Group (MISG) 2012

Page 27: MISG12_FishingPoleDesign

Simplification of coefficients

C ∗1 =

1

2

1 + coshλ cosλ+ sinλ sinhλ

1 + coshλ cosλ

C ∗2 = −

1

2

sinλ+ cos λ sinhλ

1 + coshλ cos λ

C3 =1

2

cosλ sinhλ+ sinλ coshλ

1 + coshλ cosλ

C4 =1

2

1 + coshλ cosλ− sinλ sinhλ

1 + coshλ cosλ

(5)

For the equations above to blow up, the denominator1 + coshλ cosλ must be zero.

Let the denominator of the solution be

g(λ) = 1 + cos(λ) cosh(λ)

=⇒ g(J) = 1 + cos(J−14 ) cosh(J−

14 )

Mulalo Nengome, Marijke Rademeyer, Akinlotan Morenikeji Deborah, Gideon fareoMathematics in Industry Study Group (MISG) 2012

Page 28: MISG12_FishingPoleDesign

Graphical Analysis

Behaviour of the denominator g(λ) of solution:Graph of g(λ) against λ

20 30 40 50

-1´1015

-5´1014

5´1014

From the graph, we can see that there are infinitely manysingularities for some values of λ > 30. This implies that there areinfinitely many values of the response J for which the solutionU(x , t) is undefined.

Mulalo Nengome, Marijke Rademeyer, Akinlotan Morenikeji Deborah, Gideon fareoMathematics in Industry Study Group (MISG) 2012

Page 29: MISG12_FishingPoleDesign

Graphical Analysis

An emphasised Graph of g(λ) against λ ∈ (0, 5)

1.8751 4.6941

1 2 3 4 5

-10

10

20

The smallest singularity of the solution is at λ = 1.8751, followedby λ = 4.6941, as shown above. Since λ and J are inverselyproportional, these values corresponds to their equivalent values ofJ for which the rod will attain its resonant frequency which resultsin a maximum amplitude (deflection) that can cause a break in therod as the base of the pole is been moved in a sinusoidal motion offrequency ω and amplitude a.

Mulalo Nengome, Marijke Rademeyer, Akinlotan Morenikeji Deborah, Gideon fareoMathematics in Industry Study Group (MISG) 2012

Page 30: MISG12_FishingPoleDesign

Graphical Analysis

Graph of Amplitude X (x) of the oscillation at the rod’s tip(i.e. at x = L = 1m) against λ

2 3 4 5 6 7 8Λ

-5

5

XH1LHx,tL

Mulalo Nengome, Marijke Rademeyer, Akinlotan Morenikeji Deborah, Gideon fareoMathematics in Industry Study Group (MISG) 2012

Page 31: MISG12_FishingPoleDesign

Graphical Analysis

Graph of Amplitude X (x) of the oscillation at the rod’s tip(i.e. at x = L = 1m) against J

0.02 0.04 0.06 0.08 0.10J

-20

-10

10

20

30

XH1LHx,tL

Mulalo Nengome, Marijke Rademeyer, Akinlotan Morenikeji Deborah, Gideon fareoMathematics in Industry Study Group (MISG) 2012

Page 32: MISG12_FishingPoleDesign

Graphical Analysis

Graph of Curvature of the rod against λ

2 4 6 8 10x

50

100

150

200

uHx,tL

The curvature (bending moment) of the rod at its base (i.e atx = 0) goes to infinity at the values of λ that results in the rod’sresonant frequency.

Mulalo Nengome, Marijke Rademeyer, Akinlotan Morenikeji Deborah, Gideon fareoMathematics in Industry Study Group (MISG) 2012

Page 33: MISG12_FishingPoleDesign

Graphical Analysis

Graph of Curvature of the rod against J

0.02 0.04 0.06 0.08 0.10J

-100

-50

50

100

X''H0LHx,tL

The curvature (bending moment) of the rod at its base (i.e atx = 0) goes to infinity at the values of J that results in the rod’sresonant frequency.

Mulalo Nengome, Marijke Rademeyer, Akinlotan Morenikeji Deborah, Gideon fareoMathematics in Industry Study Group (MISG) 2012

Page 34: MISG12_FishingPoleDesign

Graphical Analysis

Blue line:Graph of Deflection U(x , t = pi4) against x

Red line: Graph of Curvature X ′′(x) against x

uJx,Π

4)

X''

0.2 0.4 0.6 0.8 1.0x

5

10

15

Using a value of λ = 1.8 (quite close to the singularity of thesolution), the graphs above shows that the curvature of the rod ishigh around its base and it tends to zero at the tip of the rod (1.e.at x = L = 1m).

Mulalo Nengome, Marijke Rademeyer, Akinlotan Morenikeji Deborah, Gideon fareoMathematics in Industry Study Group (MISG) 2012

Page 35: MISG12_FishingPoleDesign

Graphical Analysis

Blue line:Graph of Deflection U(x , t = pi4) against x

Red line: Graph of Curvature X ′′(x) against x

u(x,Π

4)

X''(x)

0.2 0.4 0.6 0.8 1.0x

50 000

100 000

150 000

200 000

250 000

300 000

Using the singularity value λ = 1.8751, the graphs above shows thecurvature of the rod which is highest around the base of the rodresults in an extremely high deflection (U(x , pi

4) of the rod which

can cause a break in it as the base of the pole is being moved in asinusoidal motion.Mulalo Nengome, Marijke Rademeyer, Akinlotan Morenikeji Deborah, Gideon fareoMathematics in Industry Study Group (MISG) 2012

Page 36: MISG12_FishingPoleDesign

Graph of U(x , t) against x for J = 0.1

t=0

t =Π

2

t =3 Π

2

J=0.1

0.2 0.4 0.6 0.8 1.0x

-6

-4

-2

2

4

6

uHx,tL

Mulalo Nengome, Marijke Rademeyer, Akinlotan Morenikeji Deborah, Gideon fareoMathematics in Industry Study Group (MISG) 2012

Page 37: MISG12_FishingPoleDesign

Graph of U(x , t) against x for J = 0.01

t=0

t =Π

2

t =3 Π

2

J=0.01

0.2 0.4 0.6 0.8 1.0x

-1.0

-0.5

0.5

1.0

uHx,tL

Mulalo Nengome, Marijke Rademeyer, Akinlotan Morenikeji Deborah, Gideon fareoMathematics in Industry Study Group (MISG) 2012

Page 38: MISG12_FishingPoleDesign

Comparism of Different Rod Materials(Fixed Geometricaldimensions)

We consider the various parameters in the expression for J for 3different materials and their properties. Their corresponding J valueand the ratio E

ρ determines which material is best suited.

MATERIAL ρ (kg/m3) E (kgm−1s−2) Eρ (m

2s−2) J value

Bamboo 0.3 × 103 0.39 × 1011 1.3 × 108 6.5859

Fibre Glass 0.8 × 103 0.95 × 1011 1.1 × 108 6.0286

Carbon Fibre 1.8 × 103 1.7 × 1011 0.94 × 108 4.7621

Graphite Fibre 2.53 × 103 2.07 × 1011 0.82 × 108 4.1547

Mulalo Nengome, Marijke Rademeyer, Akinlotan Morenikeji Deborah, Gideon fareoMathematics in Industry Study Group (MISG) 2012

Page 39: MISG12_FishingPoleDesign

Length Comparison for Bamboo

Bamboo, (Graph of U(x , t) against x at timet = π

2,K = 0.014, ω = 20π, E

ρ = 1.3 × 108)

L=5

L=1

L=1.2L=1.5

0.2 0.4 0.6 0.8 1.0x

0.7

0.8

0.9

1.0

1.1

uHx,tL

Mulalo Nengome, Marijke Rademeyer, Akinlotan Morenikeji Deborah, Gideon fareoMathematics in Industry Study Group (MISG) 2012

Page 40: MISG12_FishingPoleDesign

Length Comparison for Bamboo

Bamboo, (J = Eρ

K2

ω2L4 ),Eρ = 1.3 × 108)

L=1

L=1.2

L=1.5

L=2

0.2 0.4 0.6 0.8 1.0x

1.05

1.10

1.15

1.20

uHx,tL

Mulalo Nengome, Marijke Rademeyer, Akinlotan Morenikeji Deborah, Gideon fareoMathematics in Industry Study Group (MISG) 2012

Page 41: MISG12_FishingPoleDesign

Length Comparison for Graphite Fibre

Graphite fibre, (J = Eρ

K2

ω2L4 ),Eρ = 0.82 × 108

L=2

L=1

L=1.2

L=1.5

0.2 0.4 0.6 0.8 1.0x

1.05

1.10

1.15

1.20

1.25

1.30

1.35

uHx,tL

Mulalo Nengome, Marijke Rademeyer, Akinlotan Morenikeji Deborah, Gideon fareoMathematics in Industry Study Group (MISG) 2012

Page 42: MISG12_FishingPoleDesign

Comparison of different radii

Graph of U(x , t) against x for varying radius

r , t = π2, L = 1, ω = 20π, E

ρ = 1.3 × 108,K (r) = r√

2

2

r=0.02

r=0.04

r=0.06

r=0.08

0.2 0.4 0.6 0.8 1.0x

1.002

1.004

1.006

1.008

1.010

uHx,tL

Mulalo Nengome, Marijke Rademeyer, Akinlotan Morenikeji Deborah, Gideon fareoMathematics in Industry Study Group (MISG) 2012

Page 43: MISG12_FishingPoleDesign

Comparison of All The Different Rod Materials

Graph of U(x , t) against x witht = π

2, L = 1, ω = 20π,K = 0.014 and varying E

ρ

Bamboo

graphite fibre

fibreglass

carbonfibre

0.2 0.4 0.6 0.8 1.0x

1.005

1.010

1.015

1.020

1.025

1.030

uHx,tL

Mulalo Nengome, Marijke Rademeyer, Akinlotan Morenikeji Deborah, Gideon fareoMathematics in Industry Study Group (MISG) 2012

Page 44: MISG12_FishingPoleDesign

Conclusion

In conclusion, a meticulous comparison of all the materials showsgraphite fibre to have the lowest J value, which implies the longestrod length (which greatly favours on shore angling), andconsequently produces the largest deflection at the tip of the rodfor a given displacement at the base. From all our observations, wesuggest that for a one to achieve an optimal casting distance inorder to optimize the fishing process, a long graphite fibre pole maybe best.

Mulalo Nengome, Marijke Rademeyer, Akinlotan Morenikeji Deborah, Gideon fareoMathematics in Industry Study Group (MISG) 2012

Page 45: MISG12_FishingPoleDesign

The End

THANK YOU!

Mulalo Nengome, Marijke Rademeyer, Akinlotan Morenikeji Deborah, Gideon fareoMathematics in Industry Study Group (MISG) 2012