+ All Categories
Home > Documents > MIT Slides on Diagonalisatiojn

MIT Slides on Diagonalisatiojn

Date post: 08-Apr-2018
Category:
Upload: diana-jenkins
View: 219 times
Download: 0 times
Share this document with a friend

of 124

Transcript
  • 8/7/2019 MIT Slides on Diagonalisatiojn

    1/124

    Introduction

    The Three Proofs

    Unifying the Proofs

    Conclusion

    The Fibonacci numbersProofs of Binets formula and other mysteries

    Qiaochu Yuan

    Department of MathematicsMassachusetts Institute of Technology

    February 21, 2009 / HMMT

    Qiaochu Yuan The Fibonacci numbers

    http://find/http://goback/
  • 8/7/2019 MIT Slides on Diagonalisatiojn

    2/124

    Introduction

    The Three Proofs

    Unifying the Proofs

    Conclusion

    Outline

    1 Introduction

    Whats Going On?

    Background

    2 The Three ProofsProof 1: Linear Independence

    Proof 2: Partial Fraction Decomposition

    Proof 3: Diagonalization

    3 Unifying the ProofsThe shift operator

    4 Conclusion

    Qiaochu Yuan The Fibonacci numbers

    http://find/http://goback/
  • 8/7/2019 MIT Slides on Diagonalisatiojn

    3/124

    Introduction

    The Three Proofs

    Unifying the Proofs

    Conclusion

    Whats Going On?

    Background

    What Were Going To Do

    Definition: The Fibonacci numbers satisfy

    F0 = 0, F1 = 1, Fn+2 = Fn+1 + Fn

    Theorem (Binets formula): Fn =1

    5

    1+5

    2

    n

    152

    n

    Were going to run through three proofs,

    Were going to learn why theyre really the same,

    We might even do other cool stuff!

    Qiaochu Yuan The Fibonacci numbers

    http://find/http://goback/
  • 8/7/2019 MIT Slides on Diagonalisatiojn

    4/124

    Introduction

    The Three Proofs

    Unifying the Proofs

    Conclusion

    Whats Going On?

    Background

    What Were Going To Do

    Definition: The Fibonacci numbers satisfy

    F0 = 0, F1 = 1, Fn+2 = Fn+1 + Fn

    Theorem (Binets formula): Fn =1

    5

    1+5

    2

    n

    152

    n

    Were going to run through three proofs,

    Were going to learn why theyre really the same,

    We might even do other cool stuff!

    Qiaochu Yuan The Fibonacci numbers

    http://find/http://goback/
  • 8/7/2019 MIT Slides on Diagonalisatiojn

    5/124

    Introduction

    The Three Proofs

    Unifying the Proofs

    Conclusion

    Whats Going On?

    Background

    What Were Going To Do

    Definition: The Fibonacci numbers satisfy

    F0 = 0, F1 = 1, Fn+2 = Fn+1 + Fn

    Theorem (Binets formula): Fn =1

    5

    1+5

    2

    n

    152

    n

    Were going to run through three proofs,

    Were going to learn why theyre really the same,

    We might even do other cool stuff!

    Qiaochu Yuan The Fibonacci numbers

    I d i

    http://find/http://goback/
  • 8/7/2019 MIT Slides on Diagonalisatiojn

    6/124

    Introduction

    The Three Proofs

    Unifying the Proofs

    Conclusion

    Whats Going On?

    Background

    What Were Going To Do

    Definition: The Fibonacci numbers satisfy

    F0 = 0, F1 = 1, Fn+2 = Fn+1 + Fn

    Theorem (Binets formula): Fn =1

    5

    1+5

    2

    n

    152

    n

    Were going to run through three proofs,

    Were going to learn why theyre really the same,

    We might even do other cool stuff!

    Qiaochu Yuan The Fibonacci numbers

    I t d ti

    http://find/http://goback/
  • 8/7/2019 MIT Slides on Diagonalisatiojn

    7/124

    Introduction

    The Three Proofs

    Unifying the Proofs

    Conclusion

    Whats Going On?

    Background

    Linear Algebra Is Important!

    Definition: A (complex) vector space V is a set with:

    Vector addition v + u,Scalar multiplication c v, c C,

    A zero vector v + 0 = v.

    Examples: Cn,C[x], the solutions to y + y = 0

    Qiaochu Yuan The Fibonacci numbers

    Introduction

    http://find/http://goback/
  • 8/7/2019 MIT Slides on Diagonalisatiojn

    8/124

    Introduction

    The Three Proofs

    Unifying the Proofs

    Conclusion

    Whats Going On?

    Background

    Linear Algebra Is Important!

    Definition: A (complex) vector space V is a set with:

    Vector addition v + u,Scalar multiplication c v, c C,

    A zero vector v + 0 = v.

    Examples: Cn,C[x], the solutions to y + y = 0

    Qiaochu Yuan The Fibonacci numbers

    Introduction

    http://find/http://goback/
  • 8/7/2019 MIT Slides on Diagonalisatiojn

    9/124

    Introduction

    The Three Proofs

    Unifying the Proofs

    Conclusion

    Whats Going On?

    Background

    Linear Algebra Is Important!

    Definition: A (complex) vector space V is a set with:

    Vector addition v + u,Scalar multiplication c v, c C,

    A zero vector v + 0 = v.

    Examples: Cn,C[x], the solutions to y + y = 0

    Qiaochu Yuan The Fibonacci numbers

    Introduction

    http://find/http://goback/
  • 8/7/2019 MIT Slides on Diagonalisatiojn

    10/124

    Introduction

    The Three Proofs

    Unifying the Proofs

    Conclusion

    Whats Going On?

    Background

    Linear Algebra Is Important!

    Definition: A (complex) vector space V is a set with:

    Vector addition v + u,Scalar multiplication c v, c C,

    A zero vector v + 0 = v.

    Examples: Cn,C[x], the solutions to y + y = 0

    Qiaochu Yuan The Fibonacci numbers

    Introduction

    http://find/http://goback/
  • 8/7/2019 MIT Slides on Diagonalisatiojn

    11/124

    Introduction

    The Three Proofs

    Unifying the Proofs

    Conclusion

    Whats Going On?

    Background

    Linear Algebra Is Important!

    Definition: A (complex) vector space V is a set with:

    Vector addition v + u,Scalar multiplication c v, c C,

    A zero vector v + 0 = v.

    Examples: Cn,C[x], the solutions to y + y = 0

    Qiaochu Yuan The Fibonacci numbers

    Introduction

    http://find/http://goback/
  • 8/7/2019 MIT Slides on Diagonalisatiojn

    12/124

    Introduction

    The Three Proofs

    Unifying the Proofs

    Conclusion

    Whats Going On?

    Background

    Linear Algebra Is Important!

    Definition: The dimension d of V is the smallest number of

    vectors v1,...vd such that:

    Every v is of the form c1v1 + ... + cdvd,

    This representation is unique,

    c1v1 + ... + cdvd = 0 if and only if c1 = ... = cd = 0 (linearindependence).

    We call (vi) a basisof V and say that it spans V.

    Examples:

    dimCn = n, dimC[x] = , dim{y|y + y = 0} = 2

    Qiaochu Yuan The Fibonacci numbers

    Introduction

    http://find/http://goback/
  • 8/7/2019 MIT Slides on Diagonalisatiojn

    13/124

    The Three Proofs

    Unifying the Proofs

    Conclusion

    Whats Going On?

    Background

    Linear Algebra Is Important!

    Definition: The dimension d of V is the smallest number of

    vectors v1,...vd such that:

    Every v is of the form c1v1 + ... + cdvd,

    This representation is unique,

    c1v1 + ... + cdvd = 0 if and only if c1 = ... = cd = 0 (linearindependence).

    We call (vi) a basisof V and say that it spans V.

    Examples:

    dimCn = n, dimC[x] = , dim{y|y + y = 0} = 2

    Qiaochu Yuan The Fibonacci numbers

    Introduction

    http://find/http://goback/
  • 8/7/2019 MIT Slides on Diagonalisatiojn

    14/124

    The Three Proofs

    Unifying the Proofs

    Conclusion

    Whats Going On?

    Background

    Linear Algebra Is Important!

    Definition: The dimension d of V is the smallest number of

    vectors v1,...vd such that:

    Every v is of the form c1v1 + ... + cdvd,

    This representation is unique,

    c1v1 + ... + cdvd = 0 if and only if c1 = ... = cd = 0 (linearindependence).

    We call (vi) a basisof V and say that it spans V.

    Examples:

    dimCn = n, dimC[x] = , dim{y|y + y = 0} = 2

    Qiaochu Yuan The Fibonacci numbers

    Introduction

    http://find/http://goback/
  • 8/7/2019 MIT Slides on Diagonalisatiojn

    15/124

    The Three Proofs

    Unifying the Proofs

    Conclusion

    Whats Going On?

    Background

    Linear Algebra Is Important!

    Definition: The dimension d of V is the smallest number of

    vectors v1,...vd such that:

    Every v is of the form c1v1 + ... + cdvd,

    This representation is unique,

    c1v1 + ... + cdvd = 0 if and only if c1 = ... = cd = 0 (linearindependence).

    We call (vi) a basisof V and say that it spans V.

    Examples:

    dimCn = n, dimC[x] = , dim{y|y + y = 0} = 2

    Qiaochu Yuan The Fibonacci numbers

    Introduction

    http://find/http://goback/
  • 8/7/2019 MIT Slides on Diagonalisatiojn

    16/124

    The Three Proofs

    Unifying the Proofs

    Conclusion

    Whats Going On?

    Background

    Linear Algebra Is Important!

    Definition: The dimension d of V is the smallest number of

    vectors v1,...vd such that:

    Every v is of the form c1v1 + ... + cdvd,

    This representation is unique,

    c1v1 + ... + cdvd = 0 if and only if c1 = ... = cd = 0 (linearindependence).

    We call (vi) a basisof V and say that it spans V.

    Examples:

    dimCn = n, dimC[x] = , dim{y|y + y = 0} = 2

    Qiaochu Yuan The Fibonacci numbers

    Introduction

    Th Th P f Wh G i O ?

    http://find/http://goback/
  • 8/7/2019 MIT Slides on Diagonalisatiojn

    17/124

    The Three Proofs

    Unifying the Proofs

    Conclusion

    Whats Going On?

    Background

    Linear Algebra Is Important!

    Definition: The dimension d of V is the smallest number of

    vectors v1,...vd such that:

    Every v is of the form c1v1 + ... + cdvd,

    This representation is unique,

    c1v1 + ... + cdvd = 0 if and only if c1 = ... = cd = 0 (linearindependence).

    We call (vi) a basisof V and say that it spans V.

    Examples:

    dimCn = n, dimC[x] = , dim{y|y + y = 0} = 2

    Qiaochu Yuan The Fibonacci numbers

    Introduction

    Th Th P f Wh t G i O ?

    http://find/http://goback/
  • 8/7/2019 MIT Slides on Diagonalisatiojn

    18/124

    The Three Proofs

    Unifying the Proofs

    Conclusion

    Whats Going On?

    Background

    Linear Algebra Is Important!

    Definition: A linear transformation T : V1 V2 is a function

    such that:T(v1 + v2) = T(v1) + T(v2),

    T(cv1) = cT(v1).

    Examples: n n matrices, T(P(x)) = xP(x), ddx

    Qiaochu Yuan The Fibonacci numbers

    Introduction

    The Three Proofs Whats Going On?

    http://find/http://goback/
  • 8/7/2019 MIT Slides on Diagonalisatiojn

    19/124

    The Three Proofs

    Unifying the Proofs

    Conclusion

    What s Going On?

    Background

    Linear Algebra Is Important!

    Definition: A linear transformation T : V1 V2 is a function

    such that:T(v1 + v2) = T(v1) + T(v2),

    T(cv1) = cT(v1).

    Examples: n n matrices, T(P(x)) = xP(x), ddx

    Qiaochu Yuan The Fibonacci numbers

    Introduction

    The Three Proofs Whats Going On?

    http://find/http://goback/
  • 8/7/2019 MIT Slides on Diagonalisatiojn

    20/124

    The Three Proofs

    Unifying the Proofs

    Conclusion

    What s Going On?

    Background

    Linear Algebra Is Important!

    Definition: A linear transformation T : V1 V2 is a function

    such that:T(v1 + v2) = T(v1) + T(v2),

    T(cv1) = cT(v1).

    Examples: n n matrices, T(P(x)) = xP(x), ddx

    Qiaochu Yuan The Fibonacci numbers

    IntroductionThe Three Proofs Whats Going On?

    http://find/http://goback/
  • 8/7/2019 MIT Slides on Diagonalisatiojn

    21/124

    The Three Proofs

    Unifying the Proofs

    Conclusion

    What s Going On?

    Background

    Linear Algebra Is Important!

    Definition: A linear transformation T : V1 V2 is a function

    such that:T(v1 + v2) = T(v1) + T(v2),

    T(cv1) = cT(v1).

    Examples: n n matrices, T(P(x)) = xP(x), ddx

    Qiaochu Yuan The Fibonacci numbers

    IntroductionThe Three Proofs Whats Going On?

    http://find/http://goback/
  • 8/7/2019 MIT Slides on Diagonalisatiojn

    22/124

    The Three Proofs

    Unifying the Proofs

    Conclusion

    What s Going On?

    Background

    Linear Algebra Is Important!

    Definition: An eigenvectorof T : V V is a v such thatT(v) = v.

    is called an eigenvalue. If V has dimension n, T has at

    most n eigenvalues.

    Most T are characterized by their eigenvectors and

    eigenvalues.

    Qiaochu Yuan The Fibonacci numbers

    IntroductionThe Three Proofs Whats Going On?

    http://find/http://goback/
  • 8/7/2019 MIT Slides on Diagonalisatiojn

    23/124

    The Three Proofs

    Unifying the Proofs

    Conclusion

    What s Going On?

    Background

    Linear Algebra Is Important!

    Definition: An eigenvectorof T : V V is a v such thatT(v) = v.

    is called an eigenvalue. If V has dimension n, T has at

    most n eigenvalues.

    Most T are characterized by their eigenvectors and

    eigenvalues.

    Qiaochu Yuan The Fibonacci numbers

    IntroductionThe Three Proofs Whats Going On?

    http://find/http://goback/
  • 8/7/2019 MIT Slides on Diagonalisatiojn

    24/124

    Unifying the Proofs

    Conclusion

    g

    Background

    Linear Algebra Is Important!

    Definition: An eigenvectorof T : V V is a v such thatT(v) = v.

    is called an eigenvalue. If V has dimension n, T has at

    most n eigenvalues.

    Most T are characterized by their eigenvectors and

    eigenvalues.

    Qiaochu Yuan The Fibonacci numbers

    IntroductionThe Three Proofs

    Proof 1: Linear Independence

    Proof 2: Partial Fraction Decomposition

    http://find/http://goback/
  • 8/7/2019 MIT Slides on Diagonalisatiojn

    25/124

    Unifying the Proofs

    Conclusion

    Proof 2: Partial Fraction Decomposition

    Proof 3: Diagonalization

    Motivation: Geometric Series

    What are the solutions to sn+1 = asn?

    sn = ans0! (Induction)

    "First-order" version of what we want to look at.

    Identity to keep in mind: an+1s0 = a(an)s0

    Qiaochu Yuan The Fibonacci numbers

    IntroductionThe Three Proofs

    Proof 1: Linear Independence

    Proof 2: Partial Fraction Decomposition

    http://find/http://goback/
  • 8/7/2019 MIT Slides on Diagonalisatiojn

    26/124

    Unifying the Proofs

    Conclusion

    Proof 2: Partial Fraction Decomposition

    Proof 3: Diagonalization

    Motivation: Geometric Series

    What are the solutions to sn+1 = asn?

    sn = ans0! (Induction)

    "First-order" version of what we want to look at.

    Identity to keep in mind: an+1s0 = a(an)s0

    Qiaochu Yuan The Fibonacci numbers

    IntroductionThe Three Proofs

    Proof 1: Linear Independence

    Proof 2: Partial Fraction Decomposition

    http://find/http://goback/
  • 8/7/2019 MIT Slides on Diagonalisatiojn

    27/124

    Unifying the Proofs

    Conclusion

    Proof 2: Partial Fraction Decomposition

    Proof 3: Diagonalization

    Motivation: Geometric Series

    What are the solutions to sn+1 = asn?

    sn = ans0! (Induction)

    "First-order" version of what we want to look at.

    Identity to keep in mind: an+1s0 = a(an)s0

    Qiaochu Yuan The Fibonacci numbers

    IntroductionThe Three Proofs

    U if i h P f

    Proof 1: Linear Independence

    Proof 2: Partial Fraction Decomposition

    http://find/http://goback/
  • 8/7/2019 MIT Slides on Diagonalisatiojn

    28/124

    Unifying the Proofs

    Conclusion

    Proof 2: Partial Fraction Decomposition

    Proof 3: Diagonalization

    Motivation: Geometric Series

    What are the solutions to sn+1 = asn?

    sn = ans0! (Induction)

    "First-order" version of what we want to look at.

    Identity to keep in mind: an+1s0 = a(an)s0

    Qiaochu Yuan The Fibonacci numbers

    IntroductionThe Three Proofs

    U if i th P f

    Proof 1: Linear Independence

    Proof 2: Partial Fraction Decomposition

    http://find/http://goback/
  • 8/7/2019 MIT Slides on Diagonalisatiojn

    29/124

    Unifying the Proofs

    Conclusion

    oo a t a act o eco pos t o

    Proof 3: Diagonalization

    Fibonacci-type Sequences

    Definition: A sequence sn is of Fibonacci typeif

    sn+2 = sn+1 + sn.Proposition: The set S of Fibonacci-type sequences forms a

    vector space.

    Proof.

    (sn+2 + tn+2) = (sn+1 + tn+1) + (sn + tn),

    csn+2 = csn+1 + csn,

    0 = 0 + 0 (zero vectors are important!)

    Qiaochu Yuan The Fibonacci numbers

    IntroductionThe Three Proofs

    Unifying the Proofs

    Proof 1: Linear Independence

    Proof 2: Partial Fraction Decomposition

    http://find/http://goback/
  • 8/7/2019 MIT Slides on Diagonalisatiojn

    30/124

    Unifying the Proofs

    Conclusion

    p

    Proof 3: Diagonalization

    Fibonacci-type Sequences

    Definition: A sequence sn is of Fibonacci typeif

    sn+2 = sn+1 + sn.Proposition: The set S of Fibonacci-type sequences forms a

    vector space.

    Proof.

    (sn+2 + tn+2) = (sn+1 + tn+1) + (sn + tn),

    csn+2 = csn+1 + csn,

    0 = 0 + 0 (zero vectors are important!)

    Qiaochu Yuan The Fibonacci numbers

    IntroductionThe Three Proofs

    Unifying the Proofs

    Proof 1: Linear Independence

    Proof 2: Partial Fraction Decomposition

    http://find/http://goback/
  • 8/7/2019 MIT Slides on Diagonalisatiojn

    31/124

    Unifying the Proofs

    ConclusionProof 3: Diagonalization

    Fibonacci-type Sequences

    Definition: A sequence sn is of Fibonacci typeif

    sn+2 = sn+1 + sn.Proposition: The set S of Fibonacci-type sequences forms a

    vector space.

    Proof.

    (sn+2 + tn+2) = (sn+1 + tn+1) + (sn + tn),

    csn+2 = csn+1 + csn,

    0 = 0 + 0 (zero vectors are important!)

    Qiaochu Yuan The Fibonacci numbers

    IntroductionThe Three Proofs

    Unifying the Proofs

    Proof 1: Linear Independence

    Proof 2: Partial Fraction Decomposition

    http://find/http://goback/
  • 8/7/2019 MIT Slides on Diagonalisatiojn

    32/124

    Unifying the Proofs

    ConclusionProof 3: Diagonalization

    Fibonacci-type Sequences

    Definition: A sequence sn is of Fibonacci typeif

    sn+2 = sn+1 + sn.Proposition: The set S of Fibonacci-type sequences forms a

    vector space.

    Proof.

    (sn+2 + tn+2) = (sn+1 + tn+1) + (sn + tn),

    csn+2 = csn+1 + csn,

    0 = 0 + 0 (zero vectors are important!)

    Qiaochu Yuan The Fibonacci numbers

    IntroductionThe Three Proofs

    Unifying the Proofs

    Proof 1: Linear Independence

    Proof 2: Partial Fraction Decomposition

    http://find/http://goback/
  • 8/7/2019 MIT Slides on Diagonalisatiojn

    33/124

    Unifying the Proofs

    ConclusionProof 3: Diagonalization

    Finding a Basis

    Proposition: S has dimension 2; it has basis Fn and Fn1.Proof.

    Suppose s0 = a, s1 = b. Then,s2 = a+ b, s3 = a+ 2b, s4 = 2a+ 3b, s5 = 3a+ 5b, s6 =5a+ 8b...

    In fact sn = aFn1 + bFn, n > 1. (Induction)

    The first two values determine the whole sequence, sothere arent any others.

    Qiaochu Yuan The Fibonacci numbers

    IntroductionThe Three Proofs

    Unifying the Proofs

    Proof 1: Linear Independence

    Proof 2: Partial Fraction Decomposition

    P f 3 Di li i

    http://find/http://goback/
  • 8/7/2019 MIT Slides on Diagonalisatiojn

    34/124

    Unifying the Proofs

    ConclusionProof 3: Diagonalization

    Finding a Basis

    Proposition: S has dimension 2; it has basis Fn and Fn1.Proof.

    Suppose s0 = a, s1 = b. Then,s2 = a+ b, s3 = a+ 2b, s4 = 2a+ 3b, s5 = 3a+ 5b, s6 =5a+ 8b...

    In fact sn = aFn1 + bFn, n > 1. (Induction)

    The first two values determine the whole sequence, sothere arent any others.

    Qiaochu Yuan The Fibonacci numbers

    IntroductionThe Three Proofs

    Unifying the Proofs

    Proof 1: Linear Independence

    Proof 2: Partial Fraction Decomposition

    P f 3 Di li ti

    http://find/http://goback/
  • 8/7/2019 MIT Slides on Diagonalisatiojn

    35/124

    y g

    ConclusionProof 3: Diagonalization

    Finding a Basis

    Proposition: S has dimension 2; it has basis Fn and Fn1.Proof.

    Suppose s0 = a, s1 = b. Then,s2 = a+ b, s3 = a+ 2b, s4 = 2a+ 3b, s5 = 3a+ 5b, s6 =5a+ 8b...

    In fact sn = aFn1 + bFn, n > 1. (Induction)The first two values determine the whole sequence, so

    there arent any others.

    Qiaochu Yuan The Fibonacci numbers

    IntroductionThe Three Proofs

    Unifying the Proofs

    Proof 1: Linear Independence

    Proof 2: Partial Fraction Decomposition

    Proof 3: Diagonalization

    http://find/http://goback/
  • 8/7/2019 MIT Slides on Diagonalisatiojn

    36/124

    y g

    ConclusionProof 3: Diagonalization

    Finding a Basis

    Proposition: S has dimension 2; it has basis Fn and Fn1.Proof.

    Suppose s0 = a, s1 = b. Then,s2 = a+ b, s3 = a+ 2b, s4 = 2a+ 3b, s5 = 3a+ 5b, s6 =5a+ 8b...

    In fact sn = aFn1 + bFn, n > 1. (Induction)The first two values determine the whole sequence, so

    there arent any others.

    Qiaochu Yuan The Fibonacci numbers

    IntroductionThe Three Proofs

    Unifying the Proofs

    Proof 1: Linear Independence

    Proof 2: Partial Fraction Decomposition

    Proof 3: Diagonalization

    http://find/http://goback/
  • 8/7/2019 MIT Slides on Diagonalisatiojn

    37/124

    ConclusionProof 3: Diagonalization

    Finding a Basis

    Proposition: S has dimension 2; it has basis Fn and Fn1.Proof.

    Suppose s0 = a, s1 = b. Then,s2 = a+ b, s3 = a+ 2b, s4 = 2a+ 3b, s5 = 3a+ 5b, s6 =5a+ 8b...

    In fact sn = aFn1 + bFn, n > 1. (Induction)The first two values determine the whole sequence, so

    there arent any others.

    Qiaochu Yuan The Fibonacci numbers

    IntroductionThe Three Proofs

    Unifying the Proofs

    Proof 1: Linear Independence

    Proof 2: Partial Fraction Decomposition

    Proof 3: Diagonalization

    http://find/http://goback/
  • 8/7/2019 MIT Slides on Diagonalisatiojn

    38/124

    ConclusionProof 3: Diagonalization

    A Fancy Word For Guessing

    Now we use the ansatz sn = an:

    sn+2 = sn+1 + sn if and only if an+2 = an+1 + an,

    If and only if a2 = a+ 1,

    If and only if a= 1

    52 .

    = 1+

    52 is the golden ratio, =

    152 is the othergolden

    ratio.

    Qiaochu Yuan The Fibonacci numbers

    http://find/http://goback/
  • 8/7/2019 MIT Slides on Diagonalisatiojn

    39/124

    IntroductionThe Three Proofs

    Unifying the Proofs

    C l i

    Proof 1: Linear Independence

    Proof 2: Partial Fraction Decomposition

    Proof 3: Diagonalization

  • 8/7/2019 MIT Slides on Diagonalisatiojn

    40/124

    Conclusionoo 3 ago a at o

    A Fancy Word For Guessing

    Now we use the ansatz sn = an:

    sn+2 = sn+1 + sn if and only if an+2 = an+1 + an,

    If and only if a2 = a+ 1,

    If and only if a= 1

    52 .

    = 1+

    52 is the golden ratio, =

    152 is the othergolden

    ratio.

    Qiaochu Yuan The Fibonacci numbers

    http://find/http://goback/
  • 8/7/2019 MIT Slides on Diagonalisatiojn

    41/124

    IntroductionThe Three Proofs

    Unifying the Proofs

    Conclusion

    Proof 1: Linear Independence

    Proof 2: Partial Fraction Decomposition

    Proof 3: Diagonalization

  • 8/7/2019 MIT Slides on Diagonalisatiojn

    42/124

    Conclusion

    A Fancy Word For Guessing

    Now we use the ansatz sn = an:

    sn+2 = sn+1 + sn if and only if an+2 = an+1 + an,

    If and only if a2 = a+ 1,

    If and only if a= 1

    52 .

    = 1+

    52 is the golden ratio, =

    152 is the othergolden

    ratio.

    Qiaochu Yuan The Fibonacci numbers

    IntroductionThe Three Proofs

    Unifying the Proofs

    Conclusion

    Proof 1: Linear Independence

    Proof 2: Partial Fraction Decomposition

    Proof 3: Diagonalization

    http://find/http://goback/
  • 8/7/2019 MIT Slides on Diagonalisatiojn

    43/124

    Conclusion

    Guessing Works!

    Proposition: n, n form a basis for S.

    Proof.

    Suppose s0 = a, s1 = b and sn = c1n + c2

    n.

    Then s0 = c1 + c2 and s1 = c1 + c2.

    Can we solve this system? Yes!

    c1 =ba , c2 =

    ba

    So every Fibonacci-type sequencehas this form.

    Corollary: Fn =nn

    Qiaochu Yuan The Fibonacci numbers

    IntroductionThe Three Proofs

    Unifying the Proofs

    Conclusion

    Proof 1: Linear Independence

    Proof 2: Partial Fraction Decomposition

    Proof 3: Diagonalization

    http://find/http://goback/
  • 8/7/2019 MIT Slides on Diagonalisatiojn

    44/124

    Conclusion

    Guessing Works!

    Proposition: n, n form a basis for S.

    Proof.

    Suppose s0 = a, s1 = b and sn = c1n + c2

    n.

    Then s0 = c1 + c2 and s1 = c1 + c2.

    Can we solve this system? Yes!

    c1 =ba , c2 =

    ba

    So every Fibonacci-type sequencehas this form.

    Corollary: Fn =nn

    Qiaochu Yuan The Fibonacci numbers

    IntroductionThe Three Proofs

    Unifying the Proofs

    Conclusion

    Proof 1: Linear IndependenceProof 2: Partial Fraction Decomposition

    Proof 3: Diagonalization

    http://find/http://goback/
  • 8/7/2019 MIT Slides on Diagonalisatiojn

    45/124

    Conclusion

    Guessing Works!

    Proposition: n, n form a basis for S.

    Proof.

    Suppose s0 = a, s1 = b and sn = c1n + c2

    n.

    Then s0 = c1 + c2 and s1 = c1 + c2.

    Can we solve this system? Yes!

    c1 =ba , c2 =

    ba

    So every Fibonacci-type sequencehas this form.

    Corollary: Fn =nn

    Qiaochu Yuan The Fibonacci numbers

    IntroductionThe Three Proofs

    Unifying the Proofs

    Conclusion

    Proof 1: Linear IndependenceProof 2: Partial Fraction Decomposition

    Proof 3: Diagonalization

    http://find/http://goback/
  • 8/7/2019 MIT Slides on Diagonalisatiojn

    46/124

    Guessing Works!

    Proposition: n, n form a basis for S.

    Proof.

    Suppose s0 = a, s1 = b and sn = c1n + c2

    n.

    Then s0 = c1 + c2 and s1 = c1 + c2.

    Can we solve this system? Yes!

    c1 =ba , c2 =

    ba

    So every Fibonacci-type sequencehas this form.

    Corollary: Fn =nn

    Qiaochu Yuan The Fibonacci numbers

    IntroductionThe Three Proofs

    Unifying the Proofs

    Conclusion

    Proof 1: Linear IndependenceProof 2: Partial Fraction Decomposition

    Proof 3: Diagonalization

    http://find/http://goback/
  • 8/7/2019 MIT Slides on Diagonalisatiojn

    47/124

    Guessing Works!

    Proposition: n, n form a basis for S.

    Proof.

    Suppose s0 = a, s1 = b and sn = c1n + c2

    n.

    Then s0 = c1 + c2 and s1 = c1 + c2.

    Can we solve this system? Yes!

    c1 =ba , c2 =

    ba

    So every Fibonacci-type sequencehas this form.

    Corollary: Fn =nn

    Qiaochu Yuan The Fibonacci numbers

    IntroductionThe Three Proofs

    Unifying the Proofs

    Conclusion

    Proof 1: Linear IndependenceProof 2: Partial Fraction Decomposition

    Proof 3: Diagonalization

    http://find/http://goback/
  • 8/7/2019 MIT Slides on Diagonalisatiojn

    48/124

    Guessing Works!

    Proposition: n, n form a basis for S.

    Proof.

    Suppose s0 = a, s1 = b and sn = c1n + c2

    n.

    Then s0 = c1 + c2 and s1 = c1 + c2.

    Can we solve this system? Yes!

    c1 =ba , c2 =

    ba

    So every Fibonacci-type sequencehas this form.

    Corollary: Fn =nn

    Qiaochu Yuan The Fibonacci numbers

    IntroductionThe Three Proofs

    Unifying the Proofs

    Conclusion

    Proof 1: Linear IndependenceProof 2: Partial Fraction Decomposition

    Proof 3: Diagonalization

    http://find/http://goback/
  • 8/7/2019 MIT Slides on Diagonalisatiojn

    49/124

    Guessing Works!

    Proposition: n, n form a basis for S.

    Proof.

    Suppose s0 = a, s1 = b and sn = c1n + c2

    n.

    Then s0 = c1 + c2 and s1 = c1 + c2.

    Can we solve this system? Yes!

    c1 =ba , c2 =

    ba

    So every Fibonacci-type sequencehas this form.

    Corollary: Fn =nn

    Qiaochu Yuan The Fibonacci numbers

    IntroductionThe Three Proofs

    Unifying the Proofs

    Conclusion

    Proof 1: Linear IndependenceProof 2: Partial Fraction Decomposition

    Proof 3: Diagonalization

    http://find/http://goback/
  • 8/7/2019 MIT Slides on Diagonalisatiojn

    50/124

    Generating Functions

    Definition: The (ordinary) generating functionof sn is

    s0 + s1x + s2x2 + ....

    Examples:

    1 + x + x2 + ... = 11xs0 + as0x + a

    2s0x2 + ... = a01sx

    1 + 2x + 3x2 + ... = 1(1x)2

    n0

    +

    n1

    x +

    n2

    x2 + ... = (1 + x)n

    Qiaochu Yuan The Fibonacci numbers

    IntroductionThe Three Proofs

    Unifying the Proofs

    Conclusion

    Proof 1: Linear IndependenceProof 2: Partial Fraction Decomposition

    Proof 3: Diagonalization

    http://find/http://goback/
  • 8/7/2019 MIT Slides on Diagonalisatiojn

    51/124

    Generating Functions

    Definition: The (ordinary) generating functionof sn is

    s0 + s1x + s2x2 + ....

    Examples:

    1 + x + x2 + ... = 11xs0 + as0x + a

    2s0x2 + ... = a01sx

    1 + 2x + 3x2 + ... = 1(1x)2

    n0

    +

    n1

    x +

    n2

    x2 + ... = (1 + x)n

    Qiaochu Yuan The Fibonacci numbers

    IntroductionThe Three Proofs

    Unifying the Proofs

    Conclusion

    Proof 1: Linear IndependenceProof 2: Partial Fraction Decomposition

    Proof 3: Diagonalization

    http://find/http://goback/
  • 8/7/2019 MIT Slides on Diagonalisatiojn

    52/124

    Generating Functions

    Definition: The (ordinary) generating functionof sn is

    s0 + s1x + s2x2 + ....

    Examples:

    1 + x + x2 + ... = 11xs0 + as0x + a

    2s0x2 + ... = a01sx

    1 + 2x + 3x2 + ... = 1(1x)2

    n0

    +

    n1

    x +

    n2

    x2 + ... = (1 + x)n

    Qiaochu Yuan The Fibonacci numbers

    http://find/http://goback/
  • 8/7/2019 MIT Slides on Diagonalisatiojn

    53/124

    Introduction

    The Three Proofs

    Unifying the Proofs

    Conclusion

    Proof 1: Linear IndependenceProof 2: Partial Fraction Decomposition

    Proof 3: Diagonalization

  • 8/7/2019 MIT Slides on Diagonalisatiojn

    54/124

    Generating Functions

    Definition: The (ordinary) generating functionof sn is

    s0 + s1x + s2x2 + ....

    Examples:

    1 + x + x2 + ... = 11xs0 + as0x + a

    2s0x2 + ... = a01sx

    1 + 2x + 3x2 + ... = 1(1x)2

    n0

    +

    n1

    x +

    n2

    x2 + ... = (1 + x)n

    Qiaochu Yuan The Fibonacci numbers

    Introduction

    The Three Proofs

    Unifying the Proofs

    Conclusion

    Proof 1: Linear IndependenceProof 2: Partial Fraction Decomposition

    Proof 3: Diagonalization

    http://find/http://goback/
  • 8/7/2019 MIT Slides on Diagonalisatiojn

    55/124

    A Very Special Function

    So let F(x) = F0 + F1x + F2x2 + F3x

    3 + ....

    Then xF(x) = F0x + F1x2 + F2x

    3 + ....

    Then x2

    F(x) = F0x2

    + F1x3

    + ....Then xF(x) + x2F(x) = F0x + F2x

    2 + F3x3 + ....

    But this is also F(x) F0 F1x + F0x = F(x) x!

    It follows that (1 x x2)F(x) = x, so F(x) = x1xx2 .

    Corollary: F

    110

    = 1089 = 0.0112358...

    Qiaochu Yuan The Fibonacci numbers

    Introduction

    The Three Proofs

    Unifying the Proofs

    Conclusion

    Proof 1: Linear IndependenceProof 2: Partial Fraction Decomposition

    Proof 3: Diagonalization

    http://find/http://goback/
  • 8/7/2019 MIT Slides on Diagonalisatiojn

    56/124

    A Very Special Function

    So let F(x) = F0 + F1x + F2x2 + F3x

    3 + ....

    Then xF(x) = F0x + F1x2 + F2x

    3 + ....

    Then x2

    F(x) = F0x2

    + F1x3

    + ....Then xF(x) + x2F(x) = F0x + F2x

    2 + F3x3 + ....

    But this is also F(x) F0 F1x + F0x = F(x) x!

    It follows that (1 x x2)F(x) = x, so F(x) = x1xx2 .

    Corollary: F

    110

    = 1089 = 0.0112358...

    Qiaochu Yuan The Fibonacci numbers

    Introduction

    The Three Proofs

    Unifying the Proofs

    Conclusion

    Proof 1: Linear IndependenceProof 2: Partial Fraction Decomposition

    Proof 3: Diagonalization

    A V S i l F i

    http://find/http://goback/
  • 8/7/2019 MIT Slides on Diagonalisatiojn

    57/124

    A Very Special Function

    So let F(x) = F0 + F1x + F2x2 + F3x

    3 + ....

    Then xF(x) = F0x + F1x2 + F2x

    3 + ....

    Then x

    2

    F(x) = F0x2

    + F1x3

    + ....Then xF(x) + x2F(x) = F0x + F2x

    2 + F3x3 + ....

    But this is also F(x) F0 F1x + F0x = F(x) x!

    It follows that (1 x x2)F(x) = x, so F(x) = x1xx2 .

    Corollary: F

    110

    = 1089 = 0.0112358...

    Qiaochu Yuan The Fibonacci numbers

    Introduction

    The Three Proofs

    Unifying the Proofs

    Conclusion

    Proof 1: Linear IndependenceProof 2: Partial Fraction Decomposition

    Proof 3: Diagonalization

    A V S i l F ti

    http://find/http://goback/
  • 8/7/2019 MIT Slides on Diagonalisatiojn

    58/124

    A Very Special Function

    So let F(x) = F0 + F1x + F2x2 + F3x

    3 + ....

    Then xF(x) = F0x + F1x2 + F2x

    3 + ....

    Then x

    2

    F(x) = F0x2

    + F1x3

    + ....Then xF(x) + x2F(x) = F0x + F2x

    2 + F3x3 + ....

    But this is also F(x) F0 F1x + F0x = F(x) x!

    It follows that (1 x x2)F(x) = x, so F(x) = x1xx2 .

    Corollary: F

    110

    = 1089 = 0.0112358...

    Qiaochu Yuan The Fibonacci numbers

    Introduction

    The Three Proofs

    Unifying the Proofs

    Conclusion

    Proof 1: Linear IndependenceProof 2: Partial Fraction Decomposition

    Proof 3: Diagonalization

    A V S i l F ti

    http://find/http://goback/
  • 8/7/2019 MIT Slides on Diagonalisatiojn

    59/124

    A Very Special Function

    So let F(x) = F0 + F1x + F2x2 + F3x

    3 + ....

    Then xF(x) = F0x + F1x2 + F2x

    3 + ....

    Then x

    2

    F(x) = F0x2

    + F1x3

    + ....Then xF(x) + x2F(x) = F0x + F2x

    2 + F3x3 + ....

    But this is also F(x) F0 F1x + F0x = F(x) x!

    It follows that (1 x x2)F(x) = x, so F(x) = x1xx2 .

    Corollary: F

    110

    = 1089 = 0.0112358...

    Qiaochu Yuan The Fibonacci numbers

    Introduction

    The Three Proofs

    Unifying the Proofs

    Conclusion

    Proof 1: Linear IndependenceProof 2: Partial Fraction Decomposition

    Proof 3: Diagonalization

    A V S i l F ti

    http://find/http://goback/
  • 8/7/2019 MIT Slides on Diagonalisatiojn

    60/124

    A Very Special Function

    So let F(x) = F0 + F1x + F2x2 + F3x

    3 + ....

    Then xF(x) = F0x + F1x2 + F2x

    3 + ....

    Then x

    2

    F(x) = F0x

    2

    + F1x

    3

    + ....Then xF(x) + x2F(x) = F0x + F2x

    2 + F3x3 + ....

    But this is also F(x) F0 F1x + F0x = F(x) x!

    It follows that (1 x x2)F(x) = x, so F(x) = x1xx2 .

    Corollary: F

    110

    = 1089 = 0.0112358...

    Qiaochu Yuan The Fibonacci numbers

    Introduction

    The Three Proofs

    Unifying the Proofs

    Conclusion

    Proof 1: Linear IndependenceProof 2: Partial Fraction Decomposition

    Proof 3: Diagonalization

    A Very Special Function

    http://find/http://goback/
  • 8/7/2019 MIT Slides on Diagonalisatiojn

    61/124

    A Very Special Function

    So let F(x) = F0 + F1x + F2x2 + F3x

    3 + ....

    Then xF(x) = F0x + F1x2 + F2x

    3 + ....

    Then x

    2

    F(x) = F0x

    2

    + F1x

    3

    + ....Then xF(x) + x2F(x) = F0x + F2x

    2 + F3x3 + ....

    But this is also F(x) F0 F1x + F0x = F(x) x!

    It follows that (1 x x2)F(x) = x, so F(x) = x1xx2 .

    Corollary: F

    110

    = 1089 = 0.0112358...

    Qiaochu Yuan The Fibonacci numbers

    Introduction

    The Three Proofs

    Unifying the Proofs

    Conclusion

    Proof 1: Linear IndependenceProof 2: Partial Fraction Decomposition

    Proof 3: Diagonalization

    Remember Those Partial Fractions?

    http://find/http://goback/
  • 8/7/2019 MIT Slides on Diagonalisatiojn

    62/124

    Remember Those Partial Fractions?

    1 = x + x2 1x2

    = 1x + 1, so:

    1 x x2 = (1 x)(1 x). Moreover,x

    1xx2 =

    A

    1x+ B

    1xfor some A, B,

    Hence x = A(1 x) + B(1 x).

    This gives A = 1 , B =

    1 , so...

    F(x) = 1

    11x

    11x

    !

    F(x) = 1

    (1 1) + ( )x + (2 2)x2 + ...

    Qiaochu Yuan The Fibonacci numbers

    Introduction

    The Three Proofs

    Unifying the Proofs

    Conclusion

    Proof 1: Linear IndependenceProof 2: Partial Fraction Decomposition

    Proof 3: Diagonalization

    Remember Those Partial Fractions?

    http://find/http://goback/
  • 8/7/2019 MIT Slides on Diagonalisatiojn

    63/124

    Remember Those Partial Fractions?

    1 = x + x2 1x2

    = 1x + 1, so:

    1 x x2 = (1 x)(1 x). Moreover,x

    1xx2 =

    A

    1x+ B

    1xfor some A, B,

    Hence x = A(1 x) + B(1 x).

    This gives A = 1 , B =

    1 , so...

    F(x) = 1

    11x

    11x

    !

    F(x) = 1

    (1 1) + ( )x + (2 2)x2 + ...

    Qiaochu Yuan The Fibonacci numbers

    Introduction

    The Three Proofs

    Unifying the Proofs

    Conclusion

    Proof 1: Linear IndependenceProof 2: Partial Fraction Decomposition

    Proof 3: Diagonalization

    Remember Those Partial Fractions?

    http://find/http://goback/
  • 8/7/2019 MIT Slides on Diagonalisatiojn

    64/124

    Remember Those Partial Fractions?

    1 = x + x2 1x2

    = 1x + 1, so:

    1 x x2 = (1 x)(1 x). Moreover,x

    1xx2 =

    A

    1x+ B

    1xfor some A, B,

    Hence x = A(1 x) + B(1 x).

    This gives A = 1 , B =

    1 , so...

    F(x) = 1

    11x

    11x

    !

    F(x) = 1

    (1 1) + ( )x + (2 2)x2 + ...

    Qiaochu Yuan The Fibonacci numbers

    Introduction

    The Three Proofs

    Unifying the Proofs

    Conclusion

    Proof 1: Linear IndependenceProof 2: Partial Fraction Decomposition

    Proof 3: Diagonalization

    Remember Those Partial Fractions?

    http://find/http://goback/
  • 8/7/2019 MIT Slides on Diagonalisatiojn

    65/124

    Remember Those Partial Fractions?

    1 = x + x2 1x2

    = 1x + 1, so:

    1 x x2 = (1 x)(1 x). Moreover,x

    1xx2 =

    A

    1x+ B

    1xfor some A, B,

    Hence x = A(1 x) + B(1 x).

    This gives A = 1 , B =

    1 , so...

    F(x) = 1

    1

    1x 1

    1x

    !

    F(x) = 1

    (1 1) + ( )x + (2 2)x2 + ...

    Qiaochu Yuan The Fibonacci numbers

    Introduction

    The Three Proofs

    Unifying the Proofs

    Conclusion

    Proof 1: Linear IndependenceProof 2: Partial Fraction Decomposition

    Proof 3: Diagonalization

    Remember Those Partial Fractions?

    http://find/http://goback/
  • 8/7/2019 MIT Slides on Diagonalisatiojn

    66/124

    Remember Those Partial Fractions?

    1 = x + x2 1x2

    = 1x + 1, so:

    1 x x2 = (1 x)(1 x). Moreover,x

    1xx2 =

    A

    1x+ B

    1xfor some A, B,

    Hence x = A(1 x) + B(1 x).

    This gives A = 1 , B =

    1 , so...

    F(x) = 1

    1

    1x 1

    1x

    !

    F(x) = 1

    (1 1) + ( )x + (2 2)x2 + ...

    Qiaochu Yuan The Fibonacci numbers

    Introduction

    The Three Proofs

    Unifying the Proofs

    Conclusion

    Proof 1: Linear IndependenceProof 2: Partial Fraction Decomposition

    Proof 3: Diagonalization

    Remember Those Partial Fractions?

    http://find/http://goback/
  • 8/7/2019 MIT Slides on Diagonalisatiojn

    67/124

    Remember Those Partial Fractions?

    1 = x + x2 1x2

    = 1x + 1, so:

    1 x x2 = (1 x)(1 x). Moreover,x

    1xx2 =

    A

    1x+ B

    1xfor some A, B,

    Hence x = A(1 x) + B(1 x).

    This gives A = 1 , B =

    1 , so...

    F(x) = 1

    1

    1x 1

    1x

    !

    F(x) = 1

    (1 1) + ( )x + (2 2)x2 + ...

    Qiaochu Yuan The Fibonacci numbers

    Introduction

    The Three ProofsUnifying the Proofs

    Conclusion

    Proof 1: Linear IndependenceProof 2: Partial Fraction Decomposition

    Proof 3: Diagonalization

    Remember Those Partial Fractions?

    http://find/http://goback/
  • 8/7/2019 MIT Slides on Diagonalisatiojn

    68/124

    Remember Those Partial Fractions?

    1 = x + x2 1x2

    = 1x + 1, so:

    1 x x2 = (1 x)(1 x). Moreover,x

    1xx2 =

    A

    1x+ B

    1xfor some A, B,

    Hence x = A(1 x) + B(1 x).

    This gives A = 1 , B =

    1 , so...

    F(x) = 1

    1

    1x 1

    1x

    !

    F(x) = 1

    (1 1) + ( )x + (2 2)x2 + ...

    Qiaochu Yuan The Fibonacci numbers

    Introduction

    The Three ProofsUnifying the Proofs

    Conclusion

    Proof 1: Linear IndependenceProof 2: Partial Fraction Decomposition

    Proof 3: Diagonalization

    Recurrences as Linear Transformations

    http://find/http://goback/
  • 8/7/2019 MIT Slides on Diagonalisatiojn

    69/124

    Recurrences as Linear Transformations

    (a, b) (b, a+ b) is a linear transformation on C2

    Matrix form:

    1 1

    1 0

    b

    a

    =

    b+ a

    b

    (a, b) (b, a+b) (a+b, a+2b) (a+2b, 2a+3b) ...

    In fact Fn =

    1 1

    1 0

    n=

    Fn+1 Fn

    Fn Fn1

    . (Induction)

    Corollary: Fn+1Fn

    1 F2n = (1)

    n. (Determinant)

    How do we quickly compute the powers of a matrix?

    Qiaochu Yuan The Fibonacci numbers

    Introduction

    The Three ProofsUnifying the Proofs

    Conclusion

    Proof 1: Linear IndependenceProof 2: Partial Fraction Decomposition

    Proof 3: Diagonalization

    Recurrences as Linear Transformations

    http://find/http://goback/
  • 8/7/2019 MIT Slides on Diagonalisatiojn

    70/124

    Recurrences as Linear Transformations

    (a, b) (b, a+ b) is a linear transformation on C2

    Matrix form:

    1 1

    1 0

    b

    a

    =

    b+ a

    b

    (a, b) (b, a+b) (a+b, a+2b) (a+2b, 2a+3b) ...

    In fact Fn =

    1 1

    1 0

    n=

    Fn+1 Fn

    Fn Fn1

    . (Induction)

    Corollary: Fn+1Fn

    1 F2n = (1)

    n. (Determinant)

    How do we quickly compute the powers of a matrix?

    Qiaochu Yuan The Fibonacci numbers

    Introduction

    The Three ProofsUnifying the Proofs

    Conclusion

    Proof 1: Linear IndependenceProof 2: Partial Fraction Decomposition

    Proof 3: Diagonalization

    Recurrences as Linear Transformations

    http://find/http://goback/
  • 8/7/2019 MIT Slides on Diagonalisatiojn

    71/124

    Recurrences as Linear Transformations

    (a, b) (b, a+ b) is a linear transformation on C2

    Matrix form:

    1 1

    1 0

    b

    a

    =

    b+ a

    b

    (a, b) (b, a+b) (a+b, a+2b) (a+2b, 2a+3b) ...

    In fact Fn =

    1 1

    1 0

    n=

    Fn+1 Fn

    Fn Fn1

    . (Induction)

    Corollary: Fn+1Fn

    1 F2n = (1)

    n. (Determinant)

    How do we quickly compute the powers of a matrix?

    Qiaochu Yuan The Fibonacci numbers

    Introduction

    The Three ProofsUnifying the Proofs

    Conclusion

    Proof 1: Linear IndependenceProof 2: Partial Fraction Decomposition

    Proof 3: Diagonalization

    Recurrences as Linear Transformations

    http://find/http://goback/
  • 8/7/2019 MIT Slides on Diagonalisatiojn

    72/124

    ecu e ces as ea a s o at o s

    (a, b) (b, a+ b) is a linear transformation on C2

    Matrix form:

    1 1

    1 0

    b

    a

    =

    b+ a

    b

    (a, b) (b, a+b) (a+b, a+2b) (a+2b, 2a+3b) ...

    In fact Fn =

    1 1

    1 0

    n=

    Fn+1 Fn

    Fn Fn1

    . (Induction)

    Corollary: Fn+1Fn

    1 F2n = (1)

    n. (Determinant)

    How do we quickly compute the powers of a matrix?

    Qiaochu Yuan The Fibonacci numbers

    Introduction

    The Three ProofsUnifying the Proofs

    Conclusion

    Proof 1: Linear IndependenceProof 2: Partial Fraction Decomposition

    Proof 3: Diagonalization

    Recurrences as Linear Transformations

    http://find/http://goback/
  • 8/7/2019 MIT Slides on Diagonalisatiojn

    73/124

    (a, b) (b, a+ b) is a linear transformation on C2

    Matrix form:

    1 1

    1 0

    b

    a

    =

    b+ a

    b

    (a, b) (b, a+b) (a+b, a+2b) (a+2b, 2a+3b) ...

    In fact Fn =

    1 1

    1 0

    n=

    Fn+1 Fn

    Fn Fn1

    . (Induction)

    Corollary: Fn+1Fn

    1 F2n = (1)

    n. (Determinant)

    How do we quickly compute the powers of a matrix?

    Qiaochu Yuan The Fibonacci numbers

    Introduction

    The Three ProofsUnifying the Proofs

    Conclusion

    Proof 1: Linear IndependenceProof 2: Partial Fraction Decomposition

    Proof 3: Diagonalization

    Recurrences as Linear Transformations

    http://find/http://goback/
  • 8/7/2019 MIT Slides on Diagonalisatiojn

    74/124

    (a, b) (b, a+ b) is a linear transformation on C2

    Matrix form:

    1 1

    1 0

    b

    a

    =

    b+ a

    b

    (a, b) (b, a+b) (a+b, a+2b) (a+2b, 2a+3b) ...

    In fact Fn =

    1 1

    1 0

    n=

    Fn+1 Fn

    Fn Fn1

    . (Induction)

    Corollary: Fn+1Fn

    1 F2n = (1)

    n. (Determinant)

    How do we quickly compute the powers of a matrix?

    Qiaochu Yuan The Fibonacci numbers

    Introduction

    The Three ProofsUnifying the Proofs

    Conclusion

    Proof 1: Linear IndependenceProof 2: Partial Fraction Decomposition

    Proof 3: Diagonalization

    Changing Basis

    http://find/http://goback/
  • 8/7/2019 MIT Slides on Diagonalisatiojn

    75/124

    g g

    x, y = xe1 + ye2; ei is the standard basis

    x, y = zv1 + wv2; how do we compute z, w?

    yx

    =

    v2 v1 w

    z

    v2 v1

    1 yx

    =

    w

    z

    We can also write linear transformations in a different

    basis!

    Qiaochu Yuan The Fibonacci numbers

    Introduction

    The Three ProofsUnifying the Proofs

    Conclusion

    Proof 1: Linear IndependenceProof 2: Partial Fraction Decomposition

    Proof 3: Diagonalization

    Changing Basis

    http://find/http://goback/
  • 8/7/2019 MIT Slides on Diagonalisatiojn

    76/124

    g g

    x, y = xe1 + ye2; ei is the standard basis

    x, y = zv1 + wv2; how do we compute z, w?

    yx

    =

    v2 v1 w

    z

    v2 v1

    1 yx

    =

    w

    z

    We can also write linear transformations in a different

    basis!

    Qiaochu Yuan The Fibonacci numbers

    http://find/http://goback/
  • 8/7/2019 MIT Slides on Diagonalisatiojn

    77/124

    Introduction

    The Three ProofsUnifying the Proofs

    Conclusion

    Proof 1: Linear Independence

    Proof 2: Partial Fraction Decomposition

    Proof 3: Diagonalization

    Changing Basis

  • 8/7/2019 MIT Slides on Diagonalisatiojn

    78/124

    x, y = xe1 + ye2; ei is the standard basis

    x, y = zv1 + wv2; how do we compute z, w?

    yx

    =

    v2 v1 w

    z

    v2 v1

    1 yx

    =

    w

    z

    We can also write linear transformations in a different

    basis!

    Qiaochu Yuan The Fibonacci numbers

    Introduction

    The Three ProofsUnifying the Proofs

    Conclusion

    Proof 1: Linear Independence

    Proof 2: Partial Fraction Decomposition

    Proof 3: Diagonalization

    Changing Basis

    http://find/http://goback/
  • 8/7/2019 MIT Slides on Diagonalisatiojn

    79/124

    x, y = xe1 + ye2; ei is the standard basis

    x, y = zv1 + wv2; how do we compute z, w?

    yx

    =

    v2 v1 w

    z

    v2 v1

    1 yx

    =

    w

    z

    We can also write linear transformations in a different

    basis!

    Qiaochu Yuan The Fibonacci numbers

    Introduction

    The Three ProofsUnifying the Proofs

    Conclusion

    Proof 1: Linear Independence

    Proof 2: Partial Fraction Decomposition

    Proof 3: Diagonalization

    Linear Transformations in a Different Basis

    http://find/http://goback/
  • 8/7/2019 MIT Slides on Diagonalisatiojn

    80/124

    Suppose Av = u but we want to change to a basis P. Then:

    If new coordinates are v, u then v = Pv, u = Pu

    So APv = Pu, or P1APv = u

    New matrix in new basis is P1AP, a conjugate of AGoal: find basis such that new matrix is easier to work with

    Qiaochu Yuan The Fibonacci numbers

    Introduction

    The Three ProofsUnifying the Proofs

    Conclusion

    Proof 1: Linear Independence

    Proof 2: Partial Fraction Decomposition

    Proof 3: Diagonalization

    Linear Transformations in a Different Basis

    http://find/http://goback/
  • 8/7/2019 MIT Slides on Diagonalisatiojn

    81/124

    Suppose Av = u but we want to change to a basis P. Then:

    If new coordinates are v, u then v = Pv, u = Pu

    So APv = Pu, or P1APv = u

    New matrix in new basis is P1AP, a conjugate of AGoal: find basis such that new matrix is easier to work with

    Qiaochu Yuan The Fibonacci numbers

    Introduction

    The Three ProofsUnifying the Proofs

    Conclusion

    Proof 1: Linear Independence

    Proof 2: Partial Fraction Decomposition

    Proof 3: Diagonalization

    Linear Transformations in a Different Basis

    http://find/http://goback/
  • 8/7/2019 MIT Slides on Diagonalisatiojn

    82/124

    Suppose Av = u but we want to change to a basis P. Then:

    If new coordinates are v, u then v = Pv, u = Pu

    So APv = Pu, or P1APv = u

    New matrix in new basis is P1AP, a conjugate of AGoal: find basis such that new matrix is easier to work with

    Qiaochu Yuan The Fibonacci numbers Introduction

    The Three ProofsUnifying the Proofs

    Conclusion

    Proof 1: Linear Independence

    Proof 2: Partial Fraction Decomposition

    Proof 3: Diagonalization

    Linear Transformations in a Different Basis

    http://find/http://goback/
  • 8/7/2019 MIT Slides on Diagonalisatiojn

    83/124

    Suppose Av = u but we want to change to a basis P. Then:

    If new coordinates are v, u then v = Pv, u = Pu

    So APv = Pu, or P1APv = u

    New matrix in new basis is P1AP, a conjugate of AGoal: find basis such that new matrix is easier to work with

    Qiaochu Yuan The Fibonacci numbers Introduction

    The Three ProofsUnifying the Proofs

    Conclusion

    Proof 1: Linear Independence

    Proof 2: Partial Fraction Decomposition

    Proof 3: Diagonalization

    Linear Transformations in a Different Basis

    http://find/http://goback/
  • 8/7/2019 MIT Slides on Diagonalisatiojn

    84/124

    Suppose Av = u but we want to change to a basis P. Then:

    If new coordinates are v, u then v = Pv, u = Pu

    So APv = Pu, or P1APv = u

    New matrix in new basis is P1AP, a conjugate of AGoal: find basis such that new matrix is easier to work with

    Qiaochu Yuan The Fibonacci numbers Introduction

    The Three ProofsUnifying the Proofs

    Conclusion

    Proof 1: Linear Independence

    Proof 2: Partial Fraction Decomposition

    Proof 3: Diagonalization

    The Power of Eigenvectors

    http://find/http://goback/
  • 8/7/2019 MIT Slides on Diagonalisatiojn

    85/124

    Proposition: , are the eigenvalues of F. The eigenvectors

    are

    1

    ,

    1

    Proof.

    1 1

    1 0

    1 =

    + 1

    2 = + 1 by definition (and same for )

    Dimension 2, so there are no other eigenvalues or

    eigenvectors.

    Computation can be done in general: we can find acharacteristic polynomial.

    With P =

    1 1

    , P1FP =

    0

    0

    , a diagonal matrix

    Qiaochu Yuan The Fibonacci numbers Introduction

    The Three ProofsUnifying the Proofs

    Conclusion

    Proof 1: Linear Independence

    Proof 2: Partial Fraction Decomposition

    Proof 3: Diagonalization

    The Power of Eigenvectors

    http://find/http://goback/
  • 8/7/2019 MIT Slides on Diagonalisatiojn

    86/124

    Proposition: , are the eigenvalues of F. The eigenvectors

    are

    1

    ,

    1

    Proof.

    1 1

    1 0

    1 =

    + 1

    2 = + 1 by definition (and same for )

    Dimension 2, so there are no other eigenvalues or

    eigenvectors.

    Computation can be done in general: we can find acharacteristic polynomial.

    With P =

    1 1

    , P1FP =

    0

    0

    , a diagonal matrix

    Qiaochu Yuan The Fibonacci numbers

    http://find/http://goback/
  • 8/7/2019 MIT Slides on Diagonalisatiojn

    87/124

    Introduction

    The Three ProofsUnifying the Proofs

    Conclusion

    Proof 1: Linear Independence

    Proof 2: Partial Fraction Decomposition

    Proof 3: Diagonalization

    The Power of Eigenvectors

  • 8/7/2019 MIT Slides on Diagonalisatiojn

    88/124

    Proposition: , are the eigenvalues of F. The eigenvectors

    are

    1

    ,

    1

    Proof.

    1 1

    1 0

    1 =

    + 1

    2 = + 1 by definition (and same for )

    Dimension 2, so there are no other eigenvalues or

    eigenvectors.

    Computation can be done in general: we can find acharacteristic polynomial.

    With P =

    1 1

    , P1FP =

    0

    0

    , a diagonal matrix

    Qiaochu Yuan The Fibonacci numbers Introduction

    The Three ProofsUnifying the Proofs

    Conclusion

    Proof 1: Linear Independence

    Proof 2: Partial Fraction Decomposition

    Proof 3: Diagonalization

    The Power of Eigenvectors

    http://find/http://goback/
  • 8/7/2019 MIT Slides on Diagonalisatiojn

    89/124

    Proposition: , are the eigenvalues of F. The eigenvectors

    are

    1

    ,

    1

    Proof.

    1 1

    1 0

    1 =

    + 1

    2 = + 1 by definition (and same for )

    Dimension 2, so there are no other eigenvalues or

    eigenvectors.

    Computation can be done in general: we can find acharacteristic polynomial.

    With P =

    1 1

    , P1FP =

    0

    0

    , a diagonal matrix

    Qiaochu Yuan The Fibonacci numbers Introduction

    The Three ProofsUnifying the Proofs

    Conclusion

    Proof 1: Linear Independence

    Proof 2: Partial Fraction Decomposition

    Proof 3: Diagonalization

    The Power of Eigenvectors

    http://find/http://goback/
  • 8/7/2019 MIT Slides on Diagonalisatiojn

    90/124

    Proposition: , are the eigenvalues of F. The eigenvectors

    are

    1

    ,

    1

    Proof.

    1 1

    1 0

    1 =

    + 1

    2 = + 1 by definition (and same for )

    Dimension 2, so there are no other eigenvalues or

    eigenvectors.

    Computation can be done in general: we can find acharacteristic polynomial.

    With P =

    1 1

    , P1FP =

    0

    0

    , a diagonal matrix

    Qiaochu Yuan The Fibonacci numbers Introduction

    The Three ProofsUnifying the Proofs

    Conclusion

    Proof 1: Linear Independence

    Proof 2: Partial Fraction Decomposition

    Proof 3: Diagonalization

    The Power of Eigenvectors

    http://find/http://goback/
  • 8/7/2019 MIT Slides on Diagonalisatiojn

    91/124

    Conjugation respects multiplication: P1FnP =

    n 0

    0 n

    Back to old basis: Fn

    = P n 0

    0 n

    P1

    Computations give

    Fn = 1

    n+1 n+1 n n

    n n n1 n1

    as desired

    Qiaochu Yuan The Fibonacci numbers Introduction

    The Three ProofsUnifying the Proofs

    Conclusion

    Proof 1: Linear Independence

    Proof 2: Partial Fraction DecompositionProof 3: Diagonalization

    The Power of Eigenvectors

    http://find/http://goback/
  • 8/7/2019 MIT Slides on Diagonalisatiojn

    92/124

    Conjugation respects multiplication: P1FnP =

    n 0

    0 n

    Back to old basis: Fn

    = P n 0

    0 n

    P1

    Computations give

    Fn = 1

    n+1 n+1 n n

    n n n1 n1

    as desired

    Qiaochu Yuan The Fibonacci numbers Introduction

    The Three ProofsUnifying the Proofs

    Conclusion

    Proof 1: Linear Independence

    Proof 2: Partial Fraction DecompositionProof 3: Diagonalization

    The Power of Eigenvectors

    http://find/http://goback/
  • 8/7/2019 MIT Slides on Diagonalisatiojn

    93/124

    Conjugation respects multiplication: P1FnP =

    n 0

    0 n

    Back to old basis: Fn

    = P n 0

    0 n

    P1

    Computations give

    Fn = 1

    n+1 n+1 n n

    n n n1 n1

    as desired

    Qiaochu Yuan The Fibonacci numbers Introduction

    The Three ProofsUnifying the Proofs

    Conclusion

    The shift operator

    Eigendecomposition as a General Principle

    http://find/http://goback/
  • 8/7/2019 MIT Slides on Diagonalisatiojn

    94/124

    What do the three proofs have in common?

    Geometric series n, n appeared naturally

    General idea of decomposing into a sum of simpler partsappeared naturally

    "Simpler parts" = geometric series = eigenvectors?

    Identify linear transformations acting in the first two proofs

    Qiaochu Yuan The Fibonacci numbers Introduction

    The Three ProofsUnifying the Proofs

    Conclusion

    The shift operator

    Eigendecomposition as a General Principle

    http://find/http://goback/
  • 8/7/2019 MIT Slides on Diagonalisatiojn

    95/124

    What do the three proofs have in common?

    Geometric series n, n appeared naturally

    General idea of decomposing into a sum of simpler partsappeared naturally

    "Simpler parts" = geometric series = eigenvectors?

    Identify linear transformations acting in the first two proofs

    Qiaochu Yuan The Fibonacci numbers Introduction

    The Three ProofsUnifying the Proofs

    Conclusion

    The shift operator

    Eigendecomposition as a General Principle

    http://find/http://goback/
  • 8/7/2019 MIT Slides on Diagonalisatiojn

    96/124

    What do the three proofs have in common?

    Geometric series n, n appeared naturally

    General idea of decomposing into a sum of simpler partsappeared naturally

    "Simpler parts" = geometric series = eigenvectors?

    Identify linear transformations acting in the first two proofs

    Qiaochu Yuan The Fibonacci numbers

    Introduction

    The Three ProofsUnifying the Proofs

    Conclusion

    The shift operator

    Eigendecomposition as a General Principle

    http://find/http://goback/
  • 8/7/2019 MIT Slides on Diagonalisatiojn

    97/124

    What do the three proofs have in common?

    Geometric series n, n appeared naturally

    General idea of decomposing into a sum of simpler partsappeared naturally

    "Simpler parts" = geometric series = eigenvectors?

    Identify linear transformations acting in the first two proofs

    Qiaochu Yuan The Fibonacci numbers

    Introduction

    The Three ProofsUnifying the Proofs

    Conclusion

    The shift operator

    Eigendecomposition as a General Principle

    http://find/http://goback/
  • 8/7/2019 MIT Slides on Diagonalisatiojn

    98/124

    What do the three proofs have in common?

    Geometric series n, n appeared naturally

    General idea of decomposing into a sum of simpler partsappeared naturally

    "Simpler parts" = geometric series = eigenvectors?

    Identify linear transformations acting in the first two proofs

    Qiaochu Yuan The Fibonacci numbers

    Introduction

    The Three ProofsUnifying the Proofs

    Conclusion

    The shift operator

    Interesting Linear Transformations

    http://find/http://goback/
  • 8/7/2019 MIT Slides on Diagonalisatiojn

    99/124

    Vector spaces: spaces of sequences (proof 1), spaces of

    functions (proof 2)

    We want an be to associated with an eigenvalue of a

    Sequences: take T(sn) = sn+1; then an is an eigenvector

    with eigenvalue a

    Functions: take T(f(x)) = f(x)f(0)x ; then1

    1ax is aneigenvector with eigenvalue a

    Shift operators:

    T : a0 + a1x + a2x2 + ... a1 + a2x + a3x

    2 + ...

    Eigenvectors are precisely the geometric series,eigenvalues are their common ratios

    Caution: spaces are infinite-dimensional

    Qiaochu Yuan The Fibonacci numbers

    Introduction

    The Three ProofsUnifying the Proofs

    Conclusion

    The shift operator

    Interesting Linear Transformations

    http://find/http://goback/
  • 8/7/2019 MIT Slides on Diagonalisatiojn

    100/124

    Vector spaces: spaces of sequences (proof 1), spaces of

    functions (proof 2)

    We want an be to associated with an eigenvalue of a

    Sequences: take T(sn) = sn+1; then an is an eigenvector

    with eigenvalue a

    Functions: take T(f(x)) = f(x)f(0)x ; then1

    1ax is aneigenvector with eigenvalue a

    Shift operators:

    T : a0 + a1x + a2x2 + ... a1 + a2x + a3x

    2 + ...

    Eigenvectors are precisely the geometric series,eigenvalues are their common ratios

    Caution: spaces are infinite-dimensional

    Qiaochu Yuan The Fibonacci numbers

    Introduction

    The Three Proofs

    Unifying the Proofs

    Conclusion

    The shift operator

    Interesting Linear Transformations

    http://find/http://goback/
  • 8/7/2019 MIT Slides on Diagonalisatiojn

    101/124

    Vector spaces: spaces of sequences (proof 1), spaces of

    functions (proof 2)

    We want an be to associated with an eigenvalue of a

    Sequences: take T(sn) = sn+1; then an is an eigenvector

    with eigenvalue a

    Functions: take T(f(x)) = f(x)f(0)x ; then1

    1ax is aneigenvector with eigenvalue a

    Shift operators:

    T : a0 + a1x + a2x2 + ... a1 + a2x + a3x

    2 + ...

    Eigenvectors are precisely the geometric series,eigenvalues are their common ratios

    Caution: spaces are infinite-dimensional

    Qiaochu Yuan The Fibonacci numbers

    Introduction

    The Three Proofs

    Unifying the Proofs

    Conclusion

    The shift operator

    Interesting Linear Transformations

    V f ( f 1) f

    http://find/http://goback/
  • 8/7/2019 MIT Slides on Diagonalisatiojn

    102/124

    Vector spaces: spaces of sequences (proof 1), spaces of

    functions (proof 2)

    We want an be to associated with an eigenvalue of a

    Sequences: take T(sn) = sn+1; then an is an eigenvector

    with eigenvalue a

    Functions: take T(f(x)) = f(x)f(0)x ; then1

    1ax is aneigenvector with eigenvalue a

    Shift operators:

    T : a0 + a1x + a2x2 + ... a1 + a2x + a3x

    2 + ...

    Eigenvectors are precisely the geometric series,eigenvalues are their common ratios

    Caution: spaces are infinite-dimensional

    Qiaochu Yuan The Fibonacci numbers

    http://find/http://goback/
  • 8/7/2019 MIT Slides on Diagonalisatiojn

    103/124

    Introduction

    The Three Proofs

    Unifying the Proofs

    Conclusion

    The shift operator

    Interesting Linear Transformations

    V t f ( f 1) f

  • 8/7/2019 MIT Slides on Diagonalisatiojn

    104/124

    Vector spaces: spaces of sequences (proof 1), spaces of

    functions (proof 2)

    We want an be to associated with an eigenvalue of a

    Sequences: take T(sn) = sn+1; then an is an eigenvector

    with eigenvalue a

    Functions: take T(f(x)) = f(x)f(0)x ; then1

    1ax is aneigenvector with eigenvalue a

    Shift operators:

    T : a0 + a1x + a2x2 + ... a1 + a2x + a3x

    2 + ...

    Eigenvectors are precisely the geometric series,eigenvalues are their common ratios

    Caution: spaces are infinite-dimensional

    Qiaochu Yuan The Fibonacci numbers

    Introduction

    The Three Proofs

    Unifying the Proofs

    Conclusion

    The shift operator

    Interesting Linear Transformations

    Vector spaces: spaces of sequences (proof 1) spaces of

    http://find/http://goback/
  • 8/7/2019 MIT Slides on Diagonalisatiojn

    105/124

    Vector spaces: spaces of sequences (proof 1), spaces of

    functions (proof 2)

    We want an be to associated with an eigenvalue of a

    Sequences: take T(sn) = sn+1; then an is an eigenvector

    with eigenvalue a

    Functions: take T(f(x)) = f(x)f(0)x ; then1

    1ax is aneigenvector with eigenvalue a

    Shift operators:

    T : a0 + a1x + a2x2 + ... a1 + a2x + a3x

    2 + ...

    Eigenvectors are precisely the geometric series,eigenvalues are their common ratios

    Caution: spaces are infinite-dimensional

    Qiaochu Yuan The Fibonacci numbers

    Introduction

    The Three Proofs

    Unifying the Proofs

    Conclusion

    The shift operator

    A Generic Description

    http://find/http://goback/
  • 8/7/2019 MIT Slides on Diagonalisatiojn

    106/124

    A sequence s is Fibonacci-type if

    T2s = Ts+ s (T2 T 1)(s) = 0

    When T is the shift on sequences, this is the usual

    definitionWhen T is division by x, this is the definition of the

    generating function

    When T = F, this is the identity F2 F I = 0

    (characteristic polynomial)

    Qiaochu Yuan The Fibonacci numbers

    Introduction

    The Three Proofs

    Unifying the Proofs

    Conclusion

    The shift operator

    A Generic Description

    http://find/http://goback/
  • 8/7/2019 MIT Slides on Diagonalisatiojn

    107/124

    A sequence s is Fibonacci-type if

    T2s = Ts+ s (T2 T 1)(s) = 0

    When T is the shift on sequences, this is the usual

    definitionWhen T is division by x, this is the definition of the

    generating function

    When T = F, this is the identity F2 F I = 0

    (characteristic polynomial)

    Qiaochu Yuan The Fibonacci numbers

    Introduction

    The Three Proofs

    Unifying the Proofs

    Conclusion

    The shift operator

    A Generic Description

    http://find/http://goback/
  • 8/7/2019 MIT Slides on Diagonalisatiojn

    108/124

    A sequence s is Fibonacci-type if

    T2s = Ts+ s (T2 T 1)(s) = 0

    When T is the shift on sequences, this is the usual

    definitionWhen T is division by x, this is the definition of the

    generating function

    When T = F, this is the identity F2 F I = 0(characteristic polynomial)

    Qiaochu Yuan The Fibonacci numbers

    Introduction

    The Three Proofs

    Unifying the Proofs

    Conclusion

    The shift operator

    A Generic Description

    http://find/http://goback/
  • 8/7/2019 MIT Slides on Diagonalisatiojn

    109/124

    A sequence s is Fibonacci-type if

    T2s = Ts+ s (T2 T 1)(s) = 0

    When T is the shift on sequences, this is the usual

    definitionWhen T is division by x, this is the definition of the

    generating function

    When T = F, this is the identity F2 F I = 0(characteristic polynomial)

    Qiaochu Yuan The Fibonacci numbers

    Introduction

    The Three Proofs

    Unifying the Proofs

    Conclusion

    The shift operator

    A Generic Proof

    http://find/http://goback/
  • 8/7/2019 MIT Slides on Diagonalisatiojn

    110/124

    Operators like T can be added and multiplied:

    T2 T 1 = (T )(T )

    T a : a0 + a1x + a2x2 + ...

    (a1 a0a) + (a2 a1a)x + (a3 a2a)x2 + ...

    (T a)s = 0 a is a geometric series with common ratioa

    Operators commute, so we just take everything that is

    annihilated by both operators

    So we expect solutions to be span of{s|(T )s = 0}, {s|(T )s = 0}

    Qiaochu Yuan The Fibonacci numbers

    Introduction

    The Three Proofs

    Unifying the Proofs

    Conclusion

    The shift operator

    A Generic Proof

    http://find/http://goback/
  • 8/7/2019 MIT Slides on Diagonalisatiojn

    111/124

    Operators like T can be added and multiplied:

    T2 T 1 = (T )(T )

    T a : a0 + a1x + a2x2 + ...

    (a1 a0a) + (a2 a1a)x + (a3 a2a)x2 + ...

    (T a)s = 0 a is a geometric series with common ratioa

    Operators commute, so we just take everything that is

    annihilated by both operators

    So we expect solutions to be span of{s|(T )s = 0}, {s|(T )s = 0}

    Qiaochu Yuan The Fibonacci numbers

    Introduction

    The Three Proofs

    Unifying the Proofs

    Conclusion

    The shift operator

    A Generic Proof

    http://find/http://goback/
  • 8/7/2019 MIT Slides on Diagonalisatiojn

    112/124

    Operators like T can be added and multiplied:

    T2 T 1 = (T )(T )

    T a : a0 + a1x + a2x2 + ...

    (a1 a0a) + (a2 a1a)x + (a3 a2a)x2 + ...

    (T a)s = 0 a is a geometric series with common ratioa

    Operators commute, so we just take everything that is

    annihilated by both operators

    So we expect solutions to be span of{s|(T )s = 0}, {s|(T )s = 0}

    Qiaochu Yuan The Fibonacci numbers

    Introduction

    The Three Proofs

    Unifying the Proofs

    Conclusion

    The shift operator

    A Generic Proof

    http://find/http://goback/
  • 8/7/2019 MIT Slides on Diagonalisatiojn

    113/124

    Operators like T can be added and multiplied:

    T2 T 1 = (T )(T )

    T a : a0 + a1x + a2x2 + ...

    (a1 a0a) + (a2 a1a)x + (a3 a2a)x2 + ...

    (T a)s = 0 a is a geometric series with common ratioa

    Operators commute, so we just take everything that is

    annihilated by both operators

    So we expect solutions to be span of{s|(T )s = 0}, {s|(T )s = 0}

    Qiaochu Yuan The Fibonacci numbers

    Introduction

    The Three Proofs

    Unifying the Proofs

    Conclusion

    The shift operator

    A Generic Proof

    http://find/http://goback/
  • 8/7/2019 MIT Slides on Diagonalisatiojn

    114/124

    Operators like T can be added and multiplied:

    T2 T 1 = (T )(T )

    T a : a0 + a1x + a2x2 + ...

    (a1 a0a) + (a2 a1a)x + (a3 a2a)x2 + ...

    (T a)s = 0 a is a geometric series with common ratioa

    Operators commute, so we just take everything that is

    annihilated by both operators

    So we expect solutions to be span of{s|(T )s = 0}, {s|(T )s = 0}

    Qiaochu Yuan The Fibonacci numbers

    Introduction

    The Three Proofs

    Unifying the Proofs

    Conclusion

    The shift operator

    Generalization

    http://find/http://goback/
  • 8/7/2019 MIT Slides on Diagonalisatiojn

    115/124

    Theorem: Let (sn) satisfy sn+k = ak1sn+k1 + ... + a0sn andlet P(x) = xk ak1xk1 ... a0 = (x 1)m1 ...(x r)mr.Then:

    There exist polynomials p1,...pr with deg pi < mi suchthat...

    sn = p1(n)n1 + ... + pr(n)

    nr

    Example: sn+2 = 4sn+1 4sn sn = (c1n+ c0)2n

    Qiaochu Yuan The Fibonacci numbers

    Introduction

    The Three Proofs

    Unifying the ProofsConclusion

    The shift operator

    Generalization

    http://find/http://goback/
  • 8/7/2019 MIT Slides on Diagonalisatiojn

    116/124

    Theorem: Let (sn) satisfy sn+k = ak1sn+k1 + ... + a0sn andlet P(x) = xk ak1xk1 ... a0 = (x 1)m1 ...(x r)mr.Then:

    There exist polynomials p1,...pr with deg pi < mi suchthat...

    sn = p1(n)n1 + ... + pr(n)

    nr

    Example: sn+2 = 4sn+1 4sn sn = (c1n+ c0)2n

    Qiaochu Yuan The Fibonacci numbers

    Introduction

    The Three Proofs

    Unifying the ProofsConclusion

    The shift operator

    Generalization

    http://find/http://goback/
  • 8/7/2019 MIT Slides on Diagonalisatiojn

    117/124

    Theorem: Let (sn) satisfy sn+k = ak1sn+k1 + ... + a0sn andlet P(x) = xk ak1xk1 ... a0 = (x 1)m1 ...(x r)mr.Then:

    There exist polynomials p1,...pr with deg pi < mi suchthat...

    sn = p1(n)n1 + ... + pr(n)

    nr

    Example: sn+2 = 4sn+1 4sn sn = (c1n+ c0)2n

    Qiaochu Yuan The Fibonacci numbers

    Introduction

    The Three Proofs

    Unifying the ProofsConclusion

    The shift operator

    Generalization

    http://find/http://goback/
  • 8/7/2019 MIT Slides on Diagonalisatiojn

    118/124

    Theorem: Let (sn) satisfy sn+k = ak1sn+k1 + ... + a0sn andlet P(x) = xk ak1xk1 ... a0 = (x 1)m1 ...(x r)mr.Then:

    There exist polynomials p1,...pr with deg pi < mi suchthat...

    sn = p1(n)n1 + ... + pr(n)

    nr

    Example: sn+2 = 4sn+1 4sn sn = (c1n+ c0)2n

    Qiaochu Yuan The Fibonacci numbers

    Introduction

    The Three Proofs

    Unifying the ProofsConclusion

    Conclusion

    http://find/http://goback/
  • 8/7/2019 MIT Slides on Diagonalisatiojn

    119/124

    Binets formula is best understood as eigendecomposition.

    Eigendecomposition can appear in many situations.

    Further reading: artofproblemsolv-

    ing.com/Forum/weblog_entry.php?t=175257, 212490,215833, 217361

    Even further reading:

    www.math.upenn.edu/ wilf/DownldGF.html

    GOOD LUCK ON GUTS!

    Qiaochu Yuan The Fibonacci numbers

    http://find/http://goback/
  • 8/7/2019 MIT Slides on Diagonalisatiojn

    120/124

    Introduction

    The Three Proofs

    Unifying the ProofsConclusion

    Conclusion

  • 8/7/2019 MIT Slides on Diagonalisatiojn

    121/124

    Binets formula is best understood as eigendecomposition.

    Eigendecomposition can appear in many situations.

    Further reading: artofproblemsolv-

    ing.com/Forum/weblog_entry.php?t=175257, 212490,215833, 217361

    Even further reading:

    www.math.upenn.edu/ wilf/DownldGF.html

    GOOD LUCK ON GUTS!

    Qiaochu Yuan The Fibonacci numbers

    Introduction

    The Three Proofs

    Unifying the ProofsConclusion

    Conclusion

    http://find/http://goback/
  • 8/7/2019 MIT Slides on Diagonalisatiojn

    122/124

    Binets formula is best understood as eigendecomposition.

    Eigendecomposition can appear in many situations.

    Further reading: artofproblemsolv-

    ing.com/Forum/weblog_entry.php?t=175257, 212490,215833, 217361

    Even further reading:

    www.math.upenn.edu/ wilf/DownldGF.html

    GOOD LUCK ON GUTS!

    Qiaochu Yuan The Fibonacci numbers

    Introduction

    The Three Proofs

    Unifying the ProofsConclusion

    Conclusion

    http://find/http://goback/
  • 8/7/2019 MIT Slides on Diagonalisatiojn

    123/124

    Binets formula is best understood as eigendecomposition.

    Eigendecomposition can appear in many situations.

    Further reading: artofproblemsolv-

    ing.com/Forum/weblog_entry.php?t=175257, 212490,215833, 217361

    Even further reading:

    www.math.upenn.edu/ wilf/DownldGF.html

    GOOD LUCK ON GUTS!

    Qiaochu Yuan The Fibonacci numbers

    Introduction

    The Three Proofs

    Unifying the ProofsConclusion

    Conclusion

    http://find/http://goback/
  • 8/7/2019 MIT Slides on Diagonalisatiojn

    124/124

    Binets formula is best understood as eigendecomposition.

    Eigendecomposition can appear in many situations.

    Further reading: artofproblemsolv-

    ing.com/Forum/weblog_entry.php?t=175257, 212490,215833, 217361

    Even further reading:

    www.math.upenn.edu/ wilf/DownldGF.html

    GOOD LUCK ON GUTS!

    Qiaochu Yuan The Fibonacci numbers

    http://find/http://goback/

Recommended