+ All Categories

Mixsel

Date post: 11-May-2015
Category:
Upload: dalgetty
View: 671 times
Download: 0 times
Share this document with a friend
Description:
Semiconductor lasers are ideally suited for mass production and widespread applications, because they are based on a wafer-scale technology with a high level of integration. Not surprisingly, the first lasers entering virtually every household were semiconductor lasers in compact disk players. A new ultrafast semiconductor laser concept has been introduced by Prof. Keller, which is power scalable, suitable for pulse repetition rate scaling in the 10 to 100 GHz regime, supports both optical and electrical pumping and allows for wafer-scale fabrication. This class of devices is referred to as the modelocked integrated external-cavity surface emitting laser (MIXSEL). The next step towards even lower-cost and more compact ultrafast lasers will be electrical pumping with both pico- and femtosecond pulses. This would result in devices ideally suited for many applications such as telecommunications, optical clocking, frequency metrology, high resolution nonlinear multiphoton microscopy, optical coherence tomography, laser display . anywhere where the current ultrafast laser technology is considered to be too bulky or expensive. The project aims to demonstrate optically and electrically pumped MIXSELs in both the pico- and femtosecond regime. Picosecond MIXSELs are ideally suited for clocking applications whereas femtosecond MIXSELs are required for continuum generation and many biomedical applications. For both cases, average powers above 100 mW with electrical pumping and above 500 mW with optical pumping should be reached, which represent significant advances of ultrafast MIXSELs.
Popular Tags:
41
Ultrafast Laser Physics nano-tera.ch Annual Meeting 12. 5. 11 Vertical integration of ultrafast semiconductor lasers for wafer-scale mass production Prof. Bernd Witzigmann Computational Electronics and Photonics, University of Kassel (previously ETH Zurich) Prof. Ursula Keller & Dr. Thomas Südmeyer Physics Department, ETH Zurich Prof. Eli Kapon & Dr. Alexei Sirbu Institut de Photonique et d‘Electronique Quantiques, EPFL, Lausanne Prof. Pierre Thomann Institut de Physique, Université de Neuchâtel Jan. 17, 2011
Transcript
Page 1: Mixsel

ETH ZurichUltrafast Laser Physics

nano-tera.ch Annual Meeting 12. 5. 11

Vertical integration of ultrafast semiconductor lasers for wafer-scale mass production

Vertical integration of ultrafast semiconductor lasers for wafer-scale mass production

Prof. Bernd WitzigmannComputational Electronics and Photonics, University of Kassel (previously ETH Zurich)

Prof. Ursula Keller & Dr. Thomas Südmeyer Physics Department, ETH Zurich

Prof. Eli Kapon & Dr. Alexei SirbuInstitut de Photonique et d‘Electronique Quantiques, EPFL, Lausanne

Prof. Pierre ThomannInstitut de Physique, Université de Neuchâtel

Jan. 17, 2011

Page 2: Mixsel

ETH ZurichUltrafast Laser Physics

nano-tera.ch Annual Meeting 12. 5. 11

OutlineOutline

Motivation and research targets

VECSELs and SESAMs

MIXSEL concept

Highlights • 6.4 W modelocked OP-MIXSEL chip at 960 nm.

• 1 W femtosecond SESAM-modelocked OP-VECSEL at 960 nm.

• 2.62 W cw average power from a 1550 nm OP-VECSEL realized with wafer fusion. First Modelocking result at 1550 nm.

• 120 mW cw average power from an EP-VECSEL.

• Full stabilization of a frequency comb (CEO beat and laser repetition rate) using a SESAM modelocked diode-pumped Er:Yb:glass

Summary and outlook

Page 3: Mixsel

ETH ZurichUltrafast Laser Physics

nano-tera.ch Annual Meeting 12. 5. 11

Compact ultrafast lasers for “real world application”Compact ultrafast lasers for “real world application”Telecom & Datacom Interconnects Optical Clocking

Frequency comb

Multi-photon imaging

Page 4: Mixsel

ETH ZurichUltrafast Laser Physics

nano-tera.ch Annual Meeting 12. 5. 11

The first VECSELs conference at Photonics West

Jan. 24 - 25, 2011

Page 5: Mixsel

ETH ZurichUltrafast Laser Physics

nano-tera.ch Annual Meeting 12. 5. 11

OutlineOutline

Motivation and research targets

VECSELs and SESAMs

MIXSEL concept

Highlights• 6.4 W modelocked OP-MIXSEL chip at 960 nm.

• 1 W femtosecond SESAM-modelocked OP-VECSEL at 960 nm.

• 2.62 W cw average power from a 1550 nm OP-VECSEL realized with wafer fusion. First Modelocking result at 1550 nm.

• 120 mW cw average power from an EP-VECSEL.

• Full stabilization of a frequency comb (CEO beat and laser repetition rate) using a SESAM modelocked diode-pumped Er:Yb:glass

Summary and outlook

Page 6: Mixsel

ETH ZurichUltrafast Laser Physics

nano-tera.ch Annual Meeting 12. 5. 11

CW Optically-Pumped VECSELsCW Optically-Pumped VECSELs

OP-VECSEL = Optically Pumped Vertical-External-Cavity Surface-Emitting Semiconductor Laser

M. Kuznetsov et al., IEEE Photon. Technol. Lett. 9, 1063 (1997)

• Semiconductor gain structure with reduced thickness

IEEE JQE 38, 1268 (2002)• Pump: high power diode bar• External cavity

for diffraction-limited output

pump

laser

heat sink

gain structure

outputcoupler

Page 7: Mixsel

ETH ZurichUltrafast Laser Physics

nano-tera.ch Annual Meeting 12. 5. 11

VECSEL gain structureVECSEL gain structure

pump

laser

heat sink

gain structure

outputcoupler

gain structureheatsink

pump energy

Page 8: Mixsel

ETH ZurichUltrafast Laser Physics

nano-tera.ch Annual Meeting 12. 5. 11

Optically pumped semiconductor laser?Optically pumped semiconductor laser?

• Maybe a bad idea coming from semiconductor diode lasers?

• But for sure a good idea coming from diode-pumped solid-state lasers:- more flexibility in operation wavelengths- broad tunability - efficient mode conversion from low-beam-quality high-power diode lasers

- modelocking possible with SESAMs- waferscale integration - cheaper ultrafast lasers in the GHz pulse repetition rate regime

Page 9: Mixsel

ETH ZurichUltrafast Laser Physics

nano-tera.ch Annual Meeting 12. 5. 11

Semiconductor materials: bandgap engineeringSemiconductor materials: bandgap engineeringWavelength of interest 960 nm, 1.3 µm, and 1.5 µm

1.5 µm

Page 10: Mixsel

ETH ZurichUltrafast Laser Physics

nano-tera.ch Annual Meeting 12. 5. 11

VECSELs: cw spectral coverage (Jennifer Hastie)VECSELs: cw spectral coverage (Jennifer Hastie)

• 2‐2.8 μm – GaInAsSb / AlGaAsSb 

• 1.5 μm – InGaAs / InGaAsP

• 1.2‐1.5 μm – AlGaInAs / InP (fused)

• 1.2‐1.3 μm – GaInNAs / GaAs

• 1‐1.3 μm – InAs QDs

• 0.9‐1.18 μm – InGaAs / GaAs

• 850‐870 nm – GaAs / AlGaAs

• 700‐750 nm – InP QDs

• 640‐690 nm – InGaP / AlGaInP

• Frequency‐doubled VECSELs have been reported throughout the visible and into the UV

Infrared review: N. Schulz et al., Laser & Photonics Reviews 2, 160 (2008)Visible and UV review: S. Calvez et al., Laser & Photonics Reviews 3, 407 (2009)

updated by Jennifer Hastie, University of Strathclyde, group of Prof. Martin Dawson

Page 11: Mixsel

ETH ZurichUltrafast Laser Physics

nano-tera.ch Annual Meeting 12. 5. 11

SESAMSemiconductorSaturableAbsorber Mirror

Ultrafast VECSELs: Modelocking with SESAMs Ultrafast VECSELs: Modelocking with SESAMs

pump

modelockedlaser

heat sink

gain structure

outputcoupler

SESAM

cwlaser

Review article for VECSELs: U. Keller and A. C. Tropper, Physics Reports, vol. 429, Nr. 2, pp. 67-120, 2006

Page 12: Mixsel

ETH ZurichUltrafast Laser Physics

nano-tera.ch Annual Meeting 12. 5. 11

OutlineOutline

Motivation and research targets

VECSELs and SESAMs

MIXSEL concept

Highlights• 6.4 W modelocked OP-MIXSEL chip at 960 nm.

• 1 W femtosecond SESAM-modelocked OP-VECSEL at 960 nm.

• 2.62 W cw average power from a 1550 nm OP-VECSEL realized with wafer fusion. First Modelocking result at 1550 nm.

• 120 mW cw average power from an EP-VECSEL.

• Full stabilization of a frequency comb (CEO beat and laser repetition rate) using a SESAM modelocked diode-pumped Er:Yb:glass

Summary and outlook

Page 13: Mixsel

ETH ZurichUltrafast Laser Physics

nano-tera.ch Annual Meeting 12. 5. 11

Motivation for semiconductor lasers: Wafer scale integrationMotivation for semiconductor lasers: Wafer scale integrationD. Lorenser et al., Appl. Phys. B 79, 927, 2004

MIXSELmodelocked integrated external-cavity surface emitting laser

SESAM

Passively modelocked VECSELvertical external cavity surface emitting laser

Review: Physics Reports 429, 67-120, 2006

D. J. H. C. Maas et al., Appl. Phys. B 88, 493, 2007

Page 14: Mixsel

ETH ZurichUltrafast Laser Physics

nano-tera.ch Annual Meeting 12. 5. 11

MIXSEL wafer scale integrationMIXSEL wafer scale integration

A. R. Bellancourt et al., “Modelocked integrated external-cavity surface emitting laser” IET Optoelectronics, vol. 3, Iss. 2, pp. 61-72, 2009 (invited paper)

Page 15: Mixsel

ETH ZurichUltrafast Laser Physics

nano-tera.ch Annual Meeting 12. 5. 11

Review article for VECSELs: U. Keller and A. C. Tropper, Physics Reports, vol. 429, Nr. 2, pp. 67-120, 2006

Comparison of Ultrafast GHz LasersComparison of Ultrafast GHz Lasers

Page 16: Mixsel

ETH ZurichUltrafast Laser Physics

nano-tera.ch Annual Meeting 12. 5. 11

OutlineOutline

Motivation and research targets

VECSELs and SESAMs

MIXSEL concept

Highlights• 6.4 W modelocked OP-MIXSEL chip at 960 nm.

• 1 W femtosecond SESAM-modelocked OP-VECSEL at 960 nm.

• 2.62 W cw average power from a 1550 nm OP-VECSEL realized with wafer fusion. First Modelocking result at 1550 nm.

• 120 mW cw average power from an EP-VECSEL.

• Full stabilization of a frequency comb (CEO beat and laser repetition rate) using a SESAM modelocked diode-pumped Er:Yb:glass

Summary and outlook

Page 17: Mixsel

ETH ZurichUltrafast Laser Physics

nano-tera.ch Annual Meeting 12. 5. 11

Optically pumped ultrafast VECSELs / MIXSELsOptically pumped ultrafast VECSELs / MIXSELs

B. Rudin, V. J. Wittwer, D. J. H. C. Maas, M. Hoffmann, O. D. Sieber, Y. Barbarin, M. Golling, T. Südmeyer, U. Keller,

Opt. Express 18, 27582, 2010

Page 18: Mixsel

ETH ZurichUltrafast Laser Physics

nano-tera.ch Annual Meeting 12. 5. 11

Resonant vs. antiresonant MIXSEL designResonant vs. antiresonant MIXSEL design

Initial MIXSEL demonstration had a resonant design:D. J. H. C. Maas et al., Appl. Phys. B 88, 493, 2007 • sensitive to growth errors

• high GDD - long pulses

• tolerant to growth errors

• low GDD - short pulses

Here: MIXSEL demonstration with antiresonant design

growth error simulation: layer thickness variations < 1%

Page 19: Mixsel

ETH ZurichUltrafast Laser Physics

nano-tera.ch Annual Meeting 12. 5. 11

MIXSEL: improved thermal managementMIXSEL: improved thermal management

Finite Element (FE) temperature simulations

• exchange the copper with CVD diamond

reasonable temperatures

• leads to highest output power from a ultrafast semiconductor laser

heat sink material

thermal conductivity (W m-1K-1)

estimated heating power (pump power)

pump/ laser mode radius

temp. rise(FE sim.)

heat sink temperature

output power

GaAs 45 1.5 W (1.7 W) 80 µm 149 K -15 °C 41.5 mW

copper 400 3.2 W (4.3 W) 80 µm 98 K +10 °C 660 mW

diamond 1800 26.6 W (36.7 W) 215 µm 100 K -15 °C 6400 mW

Page 20: Mixsel

ETH ZurichUltrafast Laser Physics

nano-tera.ch Annual Meeting 12. 5. 11

High power MIXSELHigh power MIXSEL

• Optical pumping 36.7 W at 808 nm

• Pump / laser spot radius: ~215 m

• Efficiency (opt-opt): 17.4 %

• Cavity length: 60.8 mm 2.47 GHz

• Output coupling: 0.7%

• TBP: 1.35 (4.2 times sech2)

B. Rudin, V. J. Wittwer, D. J. H. C. Maas, M. Hoffmann, O. D. Sieber, Y. Barbarin, M. Golling, T. Südmeyer, U. Keller, Opt. Express 18, 27582, 2010

Page 21: Mixsel

ETH ZurichUltrafast Laser Physics

nano-tera.ch Annual Meeting 12. 5. 11

OutlineOutline

Motivation and research targets

VECSELs and SESAMs

MIXSEL concept

Highlights • 6.4 W modelocked OP-MIXSEL chip at 960 nm.

• 1 W femtosecond SESAM-modelocked OP-VECSEL at 960 nm.

• 2.62 W cw average power from a 1550 nm OP-VECSEL realized with wafer fusion. First Modelocking result at 1550 nm.

• 120 mW cw average power from an EP-VECSEL.

• Full stabilization of a frequency comb (CEO beat and laser repetition rate) using a SESAM modelocked diode-pumped Er:Yb:glass

Summary and outlook

Page 22: Mixsel

ETH ZurichUltrafast Laser Physics

nano-tera.ch Annual Meeting 12. 5. 11

Optically pumped ultrafast VECSELs / MIXSELsOptically pumped ultrafast VECSELs / MIXSELs

M. Hoffmann, O. D. Sieber, V. J. Wittwer, I. L. Kestnikov, D. A. Livshits, T. Südmeyer, U. Keller,

Opt. Express 19, 8108, 2011

Page 23: Mixsel

ETH ZurichUltrafast Laser Physics

nano-tera.ch Annual Meeting 12. 5. 11

Femtosecond all Quantum Dot VECSELFemtosecond all Quantum Dot VECSELSeparate pump mirrorDBR separation tuning for maximum absorption

higher efficiencyActive regionchirped QD-layer positions

• each layer stack resonant for different laser wavelength

• according to absorption intensity broader gain

AR sectionhybrid semiconductor / fused silica

reduction of the GDD

pump

modelockedlaser

CVD-diamond QD-gainstructure

outputcoupler QD-SESAM

Page 24: Mixsel

ETH ZurichUltrafast Laser Physics

nano-tera.ch Annual Meeting 12. 5. 11

heat sink: thinned QD gain structure on CVD substrate

output coupler: 100 mm

output coupler transmission: 2.5%

laser mode radius on QD-VECSEL: 115 µm

laser mode radius on QD-SESAM: 115 µm

heat sink temperature: -20°C

Femtosecond QD-VECSELFemtosecond QD-VECSEL

pump

modelockedlaser

CVD-diamond QD-gainstructure

outputcoupler QD-SESAM

repetition rate: 5.4 GHzTBP: 1.3 sech2

peak power: 219 W

pulse duration: 784 fsoutput power: 1.05 Wcenter wavelength: 970 nm

M. Hoffmann, O. D. Sieber, V. J. Wittwer, I. L. Kestnikov, D. A. Livshits, T. Südmeyer, U. Keller, Opt. Express 19, 8108, 2011

Page 25: Mixsel

ETH ZurichUltrafast Laser Physics

nano-tera.ch Annual Meeting 12. 5. 11

OutlineOutline

Motivation and research targets

VECSELs and SESAMs

MIXSEL concept

Highlights• 6.4 W modelocked OP-MIXSEL chip at 960 nm.

• 1 W femtosecond SESAM-modelocked OP-VECSEL at 960 nm.

• 2.62 W cw average power from a 1550 nm OP-VECSEL realized with wafer fusion. First Modelocking result at 1550 nm.

• 120 mW cw average power from an EP-VECSEL.

• Full stabilization of a frequency comb (CEO beat and laser repetition rate) using a SESAM modelocked diode-pumped Er:Yb:glass

Summary and outlook

Page 26: Mixsel

ETH ZurichUltrafast Laser Physics

nano-tera.ch Annual Meeting 12. 5. 11

2.62 W wafer fused VECSEL at 1550 nm2.62 W wafer fused VECSEL at 1550 nm

Opt. Express 16, 21881-21886 (2008)

• Combine advantages of InP-based active medium with GaAs/AlGaAs reflector

• Intra-cavity diamond for good heat dissipation

2.62 W cw

Page 27: Mixsel

ETH ZurichUltrafast Laser Physics

nano-tera.ch Annual Meeting 12. 5. 11

First wafer-fused modelocked VECSEL at 1550 nmFirst wafer-fused modelocked VECSEL at 1550 nm• First wafer-fused passively modelocked VECSEL at 1550 nm!

• Combine advantages of InP-based active medium with GaAs/AlGaAs reflector

• Intracavity diamond for good heat dissipation

• Beam-spot diameters: 210 µm on gain chip; 50 µm on GaInNAs-based SESAM

• 600 mW in 16 ps pulses at 1.29 GHz with 10 W pump power

E. J. Saarinen, J. Puustinen, A. Sirbu, A. Mereuta, A. Caliman, E. Kapon, O. Okhotnikov, Optics Letters, 34, 3139 (2009)

Page 28: Mixsel

ETH ZurichUltrafast Laser Physics

nano-tera.ch Annual Meeting 12. 5. 11

OutlineOutline

Motivation and research targets

VECSELs and SESAMs

MIXSEL concept

Highlights• 6.4 W modelocked OP-MIXSEL chip at 960 nm.

• 1 W femtosecond SESAM-modelocked OP-VECSEL at 960 nm.

• 2.62 W cw average power from a 1550 nm OP-VECSEL realized with wafer fusion. First Modelocking result at 1550 nm.

• 120 mW cw average power from an EP-VECSEL.

• Full stabilization of a frequency comb (CEO beat and laser repetition rate) using a SESAM modelocked diode-pumped Er:Yb:glass

Summary and outlook

Page 29: Mixsel

ETH ZurichUltrafast Laser Physics

nano-tera.ch Annual Meeting 12. 5. 11

Bottom disk contact

DBR

Top ring contact

Electrical vs. optical pumpingElectrical vs. optical pumpingOutput coupler

Active region

Heat spreader

DBR

OP-VECSEL EP-VECSEL

~ 50 μm

Pump laser

Page 30: Mixsel

ETH ZurichUltrafast Laser Physics

nano-tera.ch Annual Meeting 12. 5. 11

ETH Zurich EP-VECSEL designETH Zurich EP-VECSEL design

Design guidelines: P. Kreuter, B. Witzigmann, D.J.H.C. Maas, Y. Barbarin, T. Südmeyer and U. Keller, Appl. Phys. B, 91, 257, 2008

Suitable for modelocking • Relatively low GDD: AR section• Confined current injection for good beam profile

• 6 µm current spreading layer• bottom p-doped, top n-doping• small bottom disk p-contact

Power scalability• Wafer removal• Large apertures possible

Trade off between electrical and optical losses• Optimized doping profile

• High doping → high free carrier absorption• Low doping → high resistivity

• Intermediate n-DBR for increased gain

top contact

bottom contact

CuW wafer

p-DBR

current spreading

layer

AR section

n-DBR

SiNx

SiNx

active region

SEM

14 µm

11

Page 31: Mixsel

ETH ZurichUltrafast Laser Physics

nano-tera.ch Annual Meeting 12. 5. 11

Growth, processing, and evaluation implemented 60 different EP-VECSEL lasing in cw Output power up to 120 mW (cw) achieved Good homogenous electroluminescence profiles measured for

devices up to 100 µm (excellent agreement with our simulations)

First EP-VECSEL resultsFirst EP-VECSEL results

Page 32: Mixsel

ETH ZurichUltrafast Laser Physics

nano-tera.ch Annual Meeting 12. 5. 11

EP-VECSEL cw resultsEP-VECSEL cw results40 EP-VECSELs with different bottom contact diameters

Power scaling considerations• Output power should scale with area (P α Ø2)

and current density (P α J )• Ideal power scaling, ∆T independent of device size

17

Page 33: Mixsel

ETH ZurichUltrafast Laser Physics

nano-tera.ch Annual Meeting 12. 5. 11

OutlineOutline

Motivation and research targets

VECSELs and SESAMs

MIXSEL concept

Highlights• 6.4 W modelocked OP-MIXSEL chip at 960 nm.

• 1 W femtosecond SESAM-modelocked OP-VECSEL at 960 nm.

• 2.62 W cw average power from a 1550 nm OP-VECSEL realized with wafer fusion. First Modelocking result at 1550 nm.

• 120 mW cw average power from an EP-VECSEL.

• Full stabilization of a frequency comb (CEO beat and laser repetition rate) using a SESAM modelocked diode-pumped Er:Yb:glass

Summary and outlook

Page 34: Mixsel

ETH ZurichUltrafast Laser Physics

nano-tera.ch Annual Meeting 12. 5. 11

A key application: optical frequency combsA key application: optical frequency combs

www.faszination-uhrwerk.de

- Phase stable link between optical (100s THz) and microwave frequencies (GHz)

- Counting of arbitrary optical frequencies practicable for the first time

offer

- Fundamental physics- Optical clocks- Satellite navigation- Large bandwidth telecommunication- Spectroscopy- Medical applications, noninvasive

diagnostics

impact

Page 35: Mixsel

ETH ZurichUltrafast Laser Physics

nano-tera.ch Annual Meeting 12. 5. 11

Femtosecond Er:Yb:glass laserFemtosecond Er:Yb:glass laser

Stumpf, Zeller, Schlatter, Südmeyer, Okuno, Keller, Opt. Express 16, 10572 (2008)

Telecom center wavelength (1.55 µm) Reliable telecom grade pump diode Low power consumption (< 1.5 W electrical) Clean soliton pulses Polarized output

Total resonator losses below 3 %

Page 36: Mixsel

ETH ZurichUltrafast Laser Physics

nano-tera.ch Annual Meeting 12. 5. 11

Moving of the laser from ETH to NeuchatelMoving of the laser from ETH to Neuchatel

Page 37: Mixsel

ETH ZurichUltrafast Laser Physics

nano-tera.ch Annual Meeting 12. 5. 11

Noise performance of DPSSLs and VECSELsNoise performance of DPSSLs and VECSELs

+ high-Q cavity, low nonlinearities⇒ extremely low intrinsic noise

+ convenient and robust

DPSSLs

Compare 75 MHz 1.5-µm Er:Yb glass DPSSL with commercial 1.5-µm Er-fiber laser

Example excellent noise performance of DPSSLs: Optical ultra-stable microwave oscillator

S.Schilt, M. C. Stumpf, L. Tombez, N. Bucalovic, V. Dolgovskiy, G. Di Domenico, D. Hofstetter, S. Pekarek, A. E. H. Oehler, T. Südmeyer, U. Keller, P. Thomann,“Phase noise characterization of a near-infrared solid-state laser optical frequency comb for ultra-stable microwave generation”,Optical Clock Workshop, Torino, Italy, December 1-3, 2010

Relative frequency stability of the CEO frequency measured with the same feedback loop

(right scale: relative frequency stability with respect to the optical carrier)

Page 38: Mixsel

ETH ZurichUltrafast Laser Physics

nano-tera.ch Annual Meeting 12. 5. 11

fCEO detected with a DPSSL without pulse compression or amplification

targeted VECSEL

VECSELs for Frequency Comb GenerationVECSELs for Frequency Comb Generationcrucial for frequency comb stabilization:

detection of the carrier envelope offset frequency (fCEO)

278 fs

74 mW

75 MHz

3.1 kW1550 nm

p

Pav

frep

Ppeak

λcenter

200 fs

1 W

1 GHz

4.4 kW960 nm

Femtosecond VECSEL: promising candidate for compact, low cost frequency comb generation

Stumpf, Pekarek, Oehler, Südmeyer, Dudley, Keller, Appl. Phys. B 99, 401 (2010)

Page 39: Mixsel

ETH ZurichUltrafast Laser Physics

nano-tera.ch Annual Meeting 12. 5. 11

OutlineOutline

Motivation and research targets

VECSELs and SESAMs

MIXSEL concept

Highlights• 6.4 W modelocked OP-MIXSEL chip at 960 nm.

• 1 W femtosecond SESAM-modelocked OP-VECSEL at 960 nm.

• 2.62 W cw average power from a 1550 nm OP-VECSEL realized with wafer fusion. First Modelocking result at 1550 nm.

• 120 mW cw average power from an EP-VECSEL.

• Full stabilization of a frequency comb (CEO beat and laser repetition rate) using a SESAM modelocked diode-pumped Er:Yb:glass

Summary and outlook

Page 40: Mixsel

ETH ZurichUltrafast Laser Physics

nano-tera.ch Annual Meeting 12. 5. 11

Optically pumped ultrafast VECSELs / MIXSELsOptically pumped ultrafast VECSELs / MIXSELs

Page 41: Mixsel

ETH ZurichUltrafast Laser Physics

nano-tera.ch Annual Meeting 12. 5. 11

Gantt chartGantt chart

• Excellent result of 960 nm MIXSEL => 1550 nm SESAM and MIXSEL delayed (Tasks 1.1, 1.2 and 2.1)

• Femtosecond VECSEL demonstrated (Task 4.2) => high expectation for fs-MIXSEL (Task 4.3)

• First EP-VECSEL in a university,120 mW realized => 200 mW achievable in a next realization (Task 5.3)


Recommended