+ All Categories
Home > Documents > Mobile Computing - University of Notre Damecpoellab/teaching/cse40814_fall14/Lecture4-Nets.pdf9/8/14...

Mobile Computing - University of Notre Damecpoellab/teaching/cse40814_fall14/Lecture4-Nets.pdf9/8/14...

Date post: 20-Jul-2020
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
18
9/8/14 1 Mobile Computing CSE 40814/60814 Fall 2014 What is a Network? A network is a "group of computers and associated devices that are connected by communications facilities.” A network supports communication among users in ways that other media cannot. E-mail, the most popular form of network communication, provides low-cost, printable correspondence with the capability for forwarding, acknowledgment, storage, retrieval, and attachments. Sharing involves not only information (database records, e-mail, graphics, etc.), but also resources (applications, printers, modems, disk space, scanners, etc.). Through its ability to share, a network promotes collaboration. 1 Types of Networks Scope Local area network (LAN) Metropolitan area (MAN) Wide area network (WAN) Ownership Closed versus open Topology (configuration) Bus (Ethernet) Star (wireless networks with central access point) Ring Mesh 2
Transcript
Page 1: Mobile Computing - University of Notre Damecpoellab/teaching/cse40814_fall14/Lecture4-Nets.pdf9/8/14 1 Mobile Computing CSE40814/60814 Fall&2014& & What is a Network? • A network

9/8/14  

1  

Mobile Computing CSE  40814/60814  

Fall  2014    

What is a Network? •  A network is a "group of computers and

associated devices that are connected by communications facilities.” –  A network supports communication among users in ways that other

media cannot. E-mail, the most popular form of network communication, provides low-cost, printable correspondence with the capability for forwarding, acknowledgment, storage, retrieval, and attachments.

–  Sharing involves not only information (database records, e-mail, graphics, etc.), but also resources (applications, printers, modems, disk space, scanners, etc.). Through its ability to share, a network promotes collaboration.

1

Types of Networks •  Scope – Local area network (LAN) – Metropolitan area (MAN) – Wide area network (WAN)

•  Ownership – Closed versus open

•  Topology (configuration) – Bus (Ethernet) – Star (wireless networks with central access point) – Ring – Mesh

2

Page 2: Mobile Computing - University of Notre Damecpoellab/teaching/cse40814_fall14/Lecture4-Nets.pdf9/8/14 1 Mobile Computing CSE40814/60814 Fall&2014& & What is a Network? • A network

9/8/14  

2  

Network Topologies •  A topology refers to the manner in which the

cable is run to individual workstations on the network. – Star, bus, ring, mesh

3

LAN Technology: Ethernet •  Ethernet is a popular, relatively inexpensive, easy-to-install LAN

architecture with the following characteristics: –  Uses the CSMA/CD media access control. –  Data transmission normally occurs at 100 Mbps (10Mbps in the early forms

and 10Gbps in the most recent forms). •  The Ethernet architecture conforms to most but not all of the IEEE 802.3

specification (the physical layers are identical but the MAC layers are somewhat different).

•  An Ethernet LAN is often described in terms of three parameters: transmission rate, transmission type, and segment distance or cable type. –  "100baseT" means:

•  100 - transmission rate or throughput of 100Mbps •  base - transmission type is baseband rather than broadband network (i.e., the signal

is placed directly on the cable, one signal at a time) •  T – the cable type (e.g., twisted pair)

•  Few types of Ethernet: 10Base2, 10Base5, 10BaseT and 10BaseF, 100BaseT, 100BaseF, etc.

4

ISO/OSI Model •  The International Standards Organization (ISO) Open Systems Interconnect

(OSI) is a standard set of rules describing the transfer of data between each layer in a network operating system. Each layer has a specific function (i.e., the physical layer deals with the electrical and cable specifications).

5

Page 3: Mobile Computing - University of Notre Damecpoellab/teaching/cse40814_fall14/Lecture4-Nets.pdf9/8/14 1 Mobile Computing CSE40814/60814 Fall&2014& & What is a Network? • A network

9/8/14  

3  

ISO/OSI Model •  Physical Layer

–  Physical characteristics of network (cable type/length, connectors, etc.). –  Electrical characteristics of signals (voltage levels/durations, etc.). –  Transmits binary data (bits) as electrical or optical signals.

•  Data Link Layer –  Defines when/how medium will be accessed for transmission. –  Works with “frames”. –  Performs error detection and correction. –  Often divided into sublayers (lower: network access; upper: sending/receiving

packets, error checking). –  “MAC” addresses.

•  Network Layer –  Addressing and routing (“IP” addresses). –  IP protocol.

6

ISO/OSI Model •  Transport  Layer  

–  UDP  (User  Datagram  Protocol).  –  TCP  (Transmission  Control  Protocol).  –  Addressing  (“ports”),  error  correcJon,  flow  control,  congesJon  

control.  

•  Session  Layer  –  Management  of  “sessions”.  

•  PresentaJon  Layer  –  Data  translaJon,  formaOng,  encrypJon,  compression.  

•  ApplicaJon  Layer  –  Interface  between  user  applicaJons  and  lower  network  services.  

7

ISO/OSI Model

Page 4: Mobile Computing - University of Notre Damecpoellab/teaching/cse40814_fall14/Lecture4-Nets.pdf9/8/14 1 Mobile Computing CSE40814/60814 Fall&2014& & What is a Network? • A network

9/8/14  

4  

ISO/OSI Model

OSI vs. TCP/IP

Medium Access Control (MAC) •  Responsible  for  deciding  when  &  how  to  transmit  frames  over  a  network  (“channel  access  problem”).  

•  Design  and  realizaJon  of  MAC  protocol  is  very  important  for  “quality”  of  communicaJons  (successful  transmissions,  reliable  transmissions,  high  throughput,  low  latency,  fairness,  …).  

11

A   C  B  

Page 5: Mobile Computing - University of Notre Damecpoellab/teaching/cse40814_fall14/Lecture4-Nets.pdf9/8/14 1 Mobile Computing CSE40814/60814 Fall&2014& & What is a Network? • A network

9/8/14  

5  

Simultaneous Transmissions

•  Ignore  ongoing  communicaJons  and  just  transmit:  – Large  number  of  “collisions”.  – Low  throughput.  

12

A   C  B  

collision  

“Smarter” Approach

•  Listen  before  you  talk!  •  Carrier  Sense  MulJple  Access  (CSMA).  –  “Sense”  (listen)  carrier.  –  If  “busy”  wait;  if  “idle”  transmit.  

13

A   C  B  

Don’t transmit

Can  collisions  sJll  occur?  

Collisions in CSMA •  Collisions  sJll  do  occur:  – Non-­‐zero  propagaJon  delays.  

– ParJal  collision:  enJre  packet  lost.  

14

Page 6: Mobile Computing - University of Notre Damecpoellab/teaching/cse40814_fall14/Lecture4-Nets.pdf9/8/14 1 Mobile Computing CSE40814/60814 Fall&2014& & What is a Network? • A network

9/8/14  

6  

CSMA/CD •  CD  =  Collision  DetecJon.  •  How?  Keep  listening  to  channel!  

•  If  transmiged  signal  and  sensed  signal  differ:  – Collision  detected.  – Abort  transmission.  –  (Jam  channel).  

15

CSMA/CD •  AssumpJon:  the  received  and  transmiged  signal  are  idenJcal  (non-­‐dispersive).    

•  AssumpJon:  receiver  “sees”  the  same  signals  as  transmigers  on  channel.  

•  Problem:  both  not  true  in  wireless  networks!  •  Transmiger  does  not  know  what  the  receiver  “sees”  and  therefore  does  not  know  if  transmission  was  successful.  

16

Wireless Transmissions

17

A   B  C   D  

Distance  

Signal  power  

Page 7: Mobile Computing - University of Notre Damecpoellab/teaching/cse40814_fall14/Lecture4-Nets.pdf9/8/14 1 Mobile Computing CSE40814/60814 Fall&2014& & What is a Network? • A network

9/8/14  

7  

Collision Detection

•  Signal  received  depends  on  “signal  to  interference  plus  noise  raJo”  (SINR  =  P/(I+N)).  

18

A C D B

Hidden Terminal/Exposed Terminal

•  Hidden  terminal:  C  does  not  hear  A  (and  A  cannot  hear  C),  but  it  can  interfere  with  A  at  B.  – Node  SHOULD  NOT  transmit!  

•  Exposed  terminal:  X  hears  A  and  wants  to  transmit  to  Y.  It  cannot  interfere  with  A  at  B.  – Node  SHOULD  transmit!    

19

A   B  C   D  X  

X  is  the  exposed  terminal  to  A  Y  

C  is  the  hidden  terminal  to  A  

IEEE 802.11 (CSMA/CA)

20

CTS = Clear To Send

RTS = Request To Send

D

Y

S

M

K

RTS

CTS

X

Page 8: Mobile Computing - University of Notre Damecpoellab/teaching/cse40814_fall14/Lecture4-Nets.pdf9/8/14 1 Mobile Computing CSE40814/60814 Fall&2014& & What is a Network? • A network

9/8/14  

8  

21

D

Y

S

X

M

K silenced

silenced

silenced

silenced Data

ACK

IEEE 802.11

IEEE 802.11 •  All  backlogged  nodes  choose  a  random  number  

–  R  =  rand  (0,  CW_min)  

•  Each  node  counts  down  R  –  ConJnue  carrier  sensing  while  counJng  down  –  Once  carrier  busy,  freeze  countdown  

•  Whoever  reaches  ZERO  transmits  RTS  –  Neighbors  freeze  countdown,  decode  RTS  –  RTS  contains  (CTS  +  DATA  +  ACK)  duraJon  =  T_comm  –  Neighbors  set  NAV  =  T_comm  

•  Remains  silent  for  NAV  Jme  

22

IEEE 802.11 •  Receiver  replies  with  CTS  

–  Also  contains  (DATA  +  ACK)  duraJon.  –  Neighbors  update  NAV  again  

•  Tx  sends  DATA,  Rx  acknowledges  with  ACK  –  Ater  ACK,  everyone  iniJates  remaining  countdown  –  Tx  chooses  new  R  =  rand  (0,  CW_min)  

•  If  RTS  or  DATA  collides  (i.e.,  no  CTS/ACK  returns)  –  Indicates  collision  –  RTS  chooses  new  random  no.  R1  =  rand  (0,  2*CW_min)  –  Note  ExponenJal  Backoff  Ri  =  rand  (0,  2^i  *  CW_min)  –  Once  successful  transmission,  reset  to  rand(0,  CW_min)  

23

Page 9: Mobile Computing - University of Notre Damecpoellab/teaching/cse40814_fall14/Lecture4-Nets.pdf9/8/14 1 Mobile Computing CSE40814/60814 Fall&2014& & What is a Network? • A network

9/8/14  

9  

Recap •  CSMA/CD:  works  good  in  wired  networks;  but  doesn’t  work  in  wireless  networks.  

•  CMSA/CA  (“collision  avoidance”):  goal  is  to  reduce  the  occurrences  of  collisions  instead  of  detecJng  and  handling  them.  

24

Frequencies for Communication •  VLF  =  Very  Low  Frequency    UHF  =  Ultra  High  Frequency  •  LF  =  Low  Frequency        SHF  =  Super  High  Frequency  •  MF  =  Medium  Frequency      EHF  =  Extra  High  Frequency    •  HF  =  High  Frequency        UV  =  Ultraviolet  Light  •  VHF  =  Very  High  Frequency  

•  Frequency  and  wave  length  –   λ =  c/f    –  wave  length  λ,  speed  of  light  c  ≅  3x108m/s,  frequency  f  

1  Mm  300  Hz  

10  km  30  kHz  

100  m  3  MHz  

1  m  300  MHz  

10  mm  30  GHz  

100  µm  3  THz  

1  µm  300  THz  

visible  light  VLF   LF   MF   HF   VHF   UHF   SHF   EHF   infrared   UV  

opJcal  transmission  coax  cable  twisted  pair  

Frequencies for Mobile Communication •  VHF-­‐/UHF-­‐ranges  for  mobile  radio  

–  simple,  small  antenna  for  cars  –  determinisJc  propagaJon  characterisJcs,  reliable  connecJons  

•  SHF  and  higher  for  directed  radio  links,  satellite  communicaJon  –  small  antenna,  beam  forming  –  large  bandwidth  available  

•  Wireless  LANs  use  frequencies  in  UHF  to  SHF  range  –  some  systems  planned  up  to  EHF  –  limitaJons  due  to  absorpJon  by  water  and  oxygen  molecules  (resonance  

frequencies)  •  weather  dependent  fading,  signal  loss  caused  by  heavy  rainfall,  etc.    

Page 10: Mobile Computing - University of Notre Damecpoellab/teaching/cse40814_fall14/Lecture4-Nets.pdf9/8/14 1 Mobile Computing CSE40814/60814 Fall&2014& & What is a Network? • A network

9/8/14  

10  

Frequencies and Regulations •  ITU-­‐R  holds  aucJons  for  new  frequencies,  manages  frequency  bands  

worldwide  (WRC,  World  Radio  Conferences)  

Examples Europe USA Japan

Cellular phones GSM 880-915, 925-960, 1710-1785, 1805-1880 UMTS 1920-1980, 2110-2170

AMPS, TDMA, CDMA, GSM 824-849, 869-894 TDMA, CDMA, GSM, UMTS 1850-1910, 1930-1990

PDC, FOMA 810-888, 893-958 PDC 1429-1453, 1477-1501 FOMA 1920-1980, 2110-2170

Cordless phones

CT1+ 885-887, 930-932 CT2 864-868 DECT 1880-1900

PACS 1850-1910, 1930-1990 PACS-UB 1910-1930

PHS 1895-1918 JCT 245-380

Wireless LANs 802.11b/g 2412-2472

802.11b/g 2412-2462

802.11b 2412-2484 802.11g 2412-2472

Other RF systems

27, 128, 418, 433, 868

315, 915 426, 868

Signal propagation ranges •  Transmission  range  

–  communicaJon  possible  –  low  error  rate  

•  DetecJon  range  –  detecJon  of  the  signal    possible  

–  no  communicaJon    possible  

•  Interference  range  –  signal  may  not  be    detected    

–  signal  adds  to  the    background  noise  

distance  

sender  

transmission  

detecJon  

interference  

Signal propagation

•  PropagaJon  in  free  space  always  like  light  (straight  line)  •  Receiving  power  proporJonal  to  1/d²  in  vacuum  –  much  more  in  real  

environments  (d  =  distance  between  sender  and  receiver)  

•  Path  loss  (agenuaJon)  •  Fundamental  propagaJon  behaviors:  

–  ground  wave  (<2MHz):  follow  earth’s  surface,  long  distances  (submarine  communicaJon,  AM  radio)  

–  sky  wave  (2-­‐30MHz):  reflected  at  ionosphere,  around  the  world  (intl.  broadcasts,  amateur  radio)  

–  line-­‐of-­‐sight  (>30MHz):  LOS,  straight  line,  waves  are  bent  by  atmosphere  due  to  refracJon  (mobile  phones,  satellite,  cordless)  

•  Most  systems  we  will  discuss  work  with  >100MHz:  LOS  (quesJon:  so  how  do  mobile  phones  work  then???)  

Page 11: Mobile Computing - University of Notre Damecpoellab/teaching/cse40814_fall14/Lecture4-Nets.pdf9/8/14 1 Mobile Computing CSE40814/60814 Fall&2014& & What is a Network? • A network

9/8/14  

11  

Other propagation effects •  Receiving  power  addiJonally  influenced  by  

–  fading  (frequency  dependent)  –  shadowing  –  reflecJon  at  large  obstacles  –  refracJon  depending  on  the  density  of  a  medium  –  scagering  at  small  obstacles  –  diffracJon  at  edges  

reflecJon   scagering   diffracJon  shadowing   refracJon  

Real world example

Multipath propagation •  Signal  can  take  many  different  paths  between  sender  and  

receiver  due  to  reflecJon,  scagering,  diffracJon  

•  Time  dispersion:  signal  is  dispersed  over  Jme  –  interference  with  “neighbor”  symbols,  Inter  Symbol  Interference  (ISI)  

•  The  signal  reaches  a  receiver  directly  and  phase  shited  –  distorted  signal  depending  on  the  phases  of  the  different  parts  

signal  at  sender  signal  at  receiver  

LOS  pulses  mulJpath  pulses  

Delay  Spread  

Page 12: Mobile Computing - University of Notre Damecpoellab/teaching/cse40814_fall14/Lecture4-Nets.pdf9/8/14 1 Mobile Computing CSE40814/60814 Fall&2014& & What is a Network? • A network

9/8/14  

12  

Effects of mobility •  Channel  characterisJcs  change  over  Jme  and  locaJon    –  signal  paths  change  –  different  delay  variaJons  of  different  signal  parts  –  different  phases  of  signal  parts  –  è  quick  changes  in  the  power  received  (short  term  fading)  

•  AddiJonal  changes  in  –  distance  to  sender  –  obstacles  further  away  –  è  slow  changes  in  the  average  power  received  (long  term  fading)  

short  term  fading  

long  term  fading  

t  

power  

•  MulJplexing  in  4  dimensions  –  space  (si)  –  Jme  (t)  –  frequency  (f)  –  code  (c)  

•  Goal:  mulJple  use    of  a  shared  medium  

•  Important:  guard  spaces  needed!  

s2  

s3  

s1  

Multiplexing

f  

t  

c  

k2   k3   k4   k5   k6  k1  

f  

t  

c  

f  

t  

c  

channels  ki  

SDM  

Frequency division multiplexing (FDM) •  SeparaJon  of  the  whole  spectrum  into  smaller  frequency  

bands  •  A  channel  gets  a  certain  band  of  the  spectrum  for  the  

whole  Jme  •  Advantages  

–  no  dynamic  coordinaJon    necessary  

–  works  also  for  analog  signals  

•  Disadvantages  –  waste  of  bandwidth    if  the  traffic  is    distributed    unevenly  

–  inflexible  

k2   k3   k4   k5   k6  k1  

f  

t  

c  

Page 13: Mobile Computing - University of Notre Damecpoellab/teaching/cse40814_fall14/Lecture4-Nets.pdf9/8/14 1 Mobile Computing CSE40814/60814 Fall&2014& & What is a Network? • A network

9/8/14  

13  

f  

t  

c  

k2   k3   k4   k5   k6  k1  

Time division multiplexing (TDM) •  A  channel  gets  the  whole  spectrum  for  a  certain  amount  of  

Jme  

•  Advantages  –  only  one  carrier  in  the  medium  at  any  Jme  

–  throughput  high  even    for  many  users  

•  Disadvantages  –  precise    synchronizaJon    necessary  

f  

Time and frequency multiplex •  CombinaJon  of  both  methods  •  A  channel  gets  a  certain  frequency  band  for  a  certain  amount  of  Jme  

•  Example:  GSM    •  Advantages  –  beger  protecJon  against    tapping  

–  protecJon  against  frequency    selecJve  interference  

•  but:  precise    coordinaJon  required  

t  

c  

k2   k3   k4   k5   k6  k1  

Code division multiplexing (CDM) •  Each  channel  has  unique  code  •  All  channels  use  the  same  spectrum    

at  the  same  Jme  •  Advantages  

–  bandwidth  efficient  –  no  coordinaJon  and  synchronizaJon  necessary  

–  good  protecJon  against  interference  and  tapping  

•  Disadvantages  –  varying  user  data  rates  –  more  complex  signal  regeneraJon  

•  Implemented  using  spread  spectrum  technology  

k2   k3   k4   k5   k6  k1  

f  

t  

c  

Page 14: Mobile Computing - University of Notre Damecpoellab/teaching/cse40814_fall14/Lecture4-Nets.pdf9/8/14 1 Mobile Computing CSE40814/60814 Fall&2014& & What is a Network? • A network

9/8/14  

14  

Modulation •  Digital  modulaJon  

–  digital  data  is  translated  into  an  analog  signal  (baseband)  –  ASK,  FSK,  PSK  -­‐  main  focus  here  –  differences  in  spectral  efficiency,  power  efficiency,  robustness  

•  Analog  modulaJon  –  shits  center  frequency  of  baseband  signal  up  to  the  radio  carrier  

•  MoJvaJon  –  smaller  antennas  (e.g.,  λ/4)  –  Frequency  Division  MulJplexing  –  medium  characterisJcs  

•  Basic  schemes  –  Amplitude  ModulaJon  (AM)  –  Frequency  ModulaJon  (FM)  –  Phase  ModulaJon  (PM)  

Modulation and demodulation

synchronizaJon  decision  

digital  data  analog  

demodulaJon  

radio  carrier  

analog  baseband  signal  

101101001   radio  receiver  

digital  modulaJon  

digital  data   analog  

modulaJon  

radio  carrier  

analog  baseband  signal  

101101001   radio  transmi.er  

Digital modulation •  ModulaJon  of  digital  signals  known  as  Shit  Keying  •  Amplitude  Shit  Keying  (ASK):  

–  very  simple  –  low  bandwidth  requirements  –  very  suscepJble  to  interference    

•  Frequency  Shit  Keying  (FSK):  –  needs  larger  bandwidth  

•  Phase  Shit  Keying  (PSK):  –  more  complex  –  robust  against  interference  

1   0   1  

t  

1   0   1  

t  

1   0   1  

t  

Page 15: Mobile Computing - University of Notre Damecpoellab/teaching/cse40814_fall14/Lecture4-Nets.pdf9/8/14 1 Mobile Computing CSE40814/60814 Fall&2014& & What is a Network? • A network

9/8/14  

15  

Quadrature Amplitude Modulation •  Quadrature  Amplitude  ModulaJon  (QAM)    –  combines  amplitude  and  phase  modulaJon  –  it  is  possible  to  code  n  bits  using  one  symbol  –  2n  discrete  levels,  n=2  idenJcal  to  QPSK  

•  Bit  error  rate  increases  with  n,  but  less  errors  compared  to  comparable  PSK  schemes  –  Example:  16-­‐QAM  (4  bits  =  1  symbol)  –  Symbols  0011  and  0001  have  the  same  phase  φ,  but  different  amplitude  a.  0000  and  1000  have  different  phase,  but  same  amplitude.  

0000  

0001  

0011  

1000  

Q  

I  

0010  

φ  

a  

Spread spectrum technology •  Problem  of  radio  transmission:  frequency  dependent  fading  can  wipe  out  

narrowband  signals  for  duraJon  of  the  interference  •  SoluJon:  spread  the  narrowband  signal  into  a  broadband  signal  using  a  

special  code  –  protecJon  against  narrow  band  interference    

detecJon  at  receiver  

interference   spread  signal   signal  

spread  interference  

f   f  

power   power  

Effects of spreading and interference

dP/df  

f  i)  

dP/df  

f  ii)  

sender  

dP/df  

f  

iii)  

dP/df  

f  

iv)  

receiver  f  

v)  

user  signal  broadband  interference  narrowband  interference  

dP/df  

Page 16: Mobile Computing - University of Notre Damecpoellab/teaching/cse40814_fall14/Lecture4-Nets.pdf9/8/14 1 Mobile Computing CSE40814/60814 Fall&2014& & What is a Network? • A network

9/8/14  

16  

Spreading and frequency selective fading

frequency  

channel  quality  

1   2  3  

4  

5   6  

narrow  band  signal  

guard  space  

2  2  

2  2  

2  

 frequency  

channel  quality  

1  

spread  spectrum  

narrowband  channels  

spread  spectrum  channels  

DSSS (Direct Sequence Spread Spectrum) •  XOR  of  the  signal  with  pseudo-­‐random  number  (chipping  

sequence)  –  many  chips  per  bit  (e.g.,  128)  result  in  higher  bandwidth  of  the  signal  

user  data  

chipping    sequence  

resulJng  signal  

0   1  

0   1   1   0   1   0   1   0  1   0   0   1   1  1  

XOR  

0   1   1  0   0   1   0   1  1   0   1   0   0  1  

=  

tb  

tc  

tb:  bit  period  tc:  chip  period  

FHSS (Frequency Hopping Spread Spectrum)

•  Discrete  changes  of  carrier  frequency  –  sequence  of  frequency  changes  determined  via  pseudo  random  number  

sequence  •  Two  versions  

–  Fast  Hopping:    several  frequencies  per  user  bit  

–  Slow  Hopping:    several  user  bits  per  frequency  

•  Advantages  –  frequency  selecJve  fading  and  interference  limited  to  short  period  –  simple  implementaJon  –  uses  only  small  porJon  of  spectrum  at  any  Jme  

•  Disadvantages  –  not  as  robust  as  DSSS  –  simpler  to  detect  

Page 17: Mobile Computing - University of Notre Damecpoellab/teaching/cse40814_fall14/Lecture4-Nets.pdf9/8/14 1 Mobile Computing CSE40814/60814 Fall&2014& & What is a Network? • A network

9/8/14  

17  

FHSS (Frequency Hopping Spread Spectrum)

user  data  

slow  hopping  (3  bits/hop)  

fast  hopping  (3  hops/bit)  

0   1  

tb  

0   1   1   t  

f  

f1  

f2  

f3  

t  

td  

f  

f1  

f2  

f3  

t  

td  

tb:  bit  period  td:  dwell  Jme  

Cell structure •  Implements  space  division  mulJplex  

–  base  staJon  covers  a  certain  transmission  area  (cell)  •  Mobile  staJons  communicate  only  via  the  base  staJon  •  Advantages  of  cell  structures  

–  higher  capacity,  higher  number  of  users  –  less  transmission  power  needed  –  more  robust,  decentralized  –  base  staJon  deals  with  interference,  transmission  area  etc.  locally  

•  Problems  –  fixed  network  needed  for  the  base  staJons  –  handover  (changing  from  one  cell  to  another)  necessary  –  interference  with  other  cells  

•  Cell  sizes  from  some  100  m  in  ciJes  to,  e.g.,  35  km  on  the  country  side  (GSM)  -­‐  even  less  for  higher  frequencies  

Frequency planning I •  Frequency  reuse  only  with  a  certain  distance  between  the  

base  staJons  •  Standard  model  using  7  frequencies:  •  Fixed  frequency  assignment:  

–  fixed  channel  allocaJon  (FCA)  –  certain  frequencies  are  assigned  to  a  certain  cell  –  problem:  different  traffic  load  in  different  cells  

•  Dynamic  frequency  assignment:  –  borrowing  channel  allocaJon  (BCA)  –  Dynamic  channel  allocaJon  (DCA)  –  base  staJon  chooses  frequencies  depending  on  the  frequencies  already  used  in  neighbor  cells  

–  more  capacity  in  cells  with  more  traffic  –  assignment  can  also  be  based  on  interference  measurements  

f4  f5  

f1  f3  

f2  

f6  

f7  

f3  f2  

f4  f5  

f1  

Page 18: Mobile Computing - University of Notre Damecpoellab/teaching/cse40814_fall14/Lecture4-Nets.pdf9/8/14 1 Mobile Computing CSE40814/60814 Fall&2014& & What is a Network? • A network

9/8/14  

18  

Frequency planning II

f1  f2  

f3  f2  

f1  

f1  

f2  

f3  f2  

f3  f1  

f2  f1  

f3  f3  

f3  f3  

f3  

f4  f5  

f1  f3  

f2  

f6  

f7  

f3  f2  

f4  f5  

f1  f3  

f5  f6  

f7  f2  

f2  

f1  f1   f1  f2  f3  

f2  f3  

f2  f3  h1  

h2  h3  g1  

g2  g3  

h1  h2  h3  g1  

g2  g3  

g1  g2  g3  

3  cell  cluster  

7  cell  cluster  

3  cell  cluster  with  3  sector  antennas  

Cell breathing •  CDM  systems:  cell  size  depends  on  current  load  

•  AddiJonal  traffic  appears  as  noise  to  other  users  

•  If  the  noise  level  is  too  high  users  drop  out  of  cells  


Recommended