+ All Categories
Home > Documents > Mobile/Embedded DNN and AI SoCs - Homepage - CMU · PDF fileOutline 1. Deep Neural Network...

Mobile/Embedded DNN and AI SoCs - Homepage - CMU · PDF fileOutline 1. Deep Neural Network...

Date post: 06-Mar-2018
Category:
Upload: duonghanh
View: 228 times
Download: 7 times
Share this document with a friend
37
Mobile/Embedded DNN and AI SoCs Hoi-Jun Yoo KAIST
Transcript
Page 1: Mobile/Embedded DNN and AI SoCs - Homepage - CMU · PDF fileOutline 1. Deep Neural Network Processor –Mobile DNN Applications –Basic CNN Architectures 2. M/E-DNN: Mobile/Embedded

Mobile/Embedded DNN and

AI SoCs

Hoi-Jun Yoo

KAIST

Page 2: Mobile/Embedded DNN and AI SoCs - Homepage - CMU · PDF fileOutline 1. Deep Neural Network Processor –Mobile DNN Applications –Basic CNN Architectures 2. M/E-DNN: Mobile/Embedded

Outline

1. Deep Neural Network Processor

– Mobile DNN Applications

– Basic CNN Architectures

2. M/E-DNN: Mobile/Embedded Deep Neural Network

– Requirements of M/E-DNN

– M/E-DNN Design & Example

3. SoC Applications of M/E-DNN

– Hybrid CIS, CNNP Processor and DNPU Processor

– Hybrid Intelligent Systems

– AR Processor, UI/UX Processor and ADAS Processor

Hoi-Jun Yoo2

Page 3: Mobile/Embedded DNN and AI SoCs - Homepage - CMU · PDF fileOutline 1. Deep Neural Network Processor –Mobile DNN Applications –Basic CNN Architectures 2. M/E-DNN: Mobile/Embedded

Types of AI SoCs

• General AI• Scalability• Global Data Sharing

• Specific AI• UI / UX• Limited Data Sharing

Real-Time Operation

Requirement

Ge

ne

ral In

tellig

en

ce

Lo

wH

igh

HighLow

Cloud· Control based on overall conditions

· Learning with Data collected from many edge machines

· High Maintenance and Cooling Cost

Mobile· Low Power Operation

· Real-time Autonomous Learning

Control &

Control Model

Control &

Control Model

Data &

Learned Model

Data &

Learned Model

Stand-Alone AI

Embedded AI

Edge· Control based on individual situation

· Real-time Inference and Learning

Hoi-Jun Yoo3

Page 4: Mobile/Embedded DNN and AI SoCs - Homepage - CMU · PDF fileOutline 1. Deep Neural Network Processor –Mobile DNN Applications –Basic CNN Architectures 2. M/E-DNN: Mobile/Embedded

Emerging Mobile Applications

• The Needs for Embedded Vision & AI

Security & Surveillance

Augmented RealityADAS & Autonomous Cars

Visual Perception & Analytics

Drones

Hoi-Jun Yoo4

Page 5: Mobile/Embedded DNN and AI SoCs - Homepage - CMU · PDF fileOutline 1. Deep Neural Network Processor –Mobile DNN Applications –Basic CNN Architectures 2. M/E-DNN: Mobile/Embedded

Deep Neural Networks

MLP

(Multi-Layer

Perceptron)

CNN

(Convolutional)

RNN

(Recurrent)

Characteristic Fully Connected Convolutional Layer

Sequential Data

Feedback Path

Internal State

Major

ApplicationSpeech Recognition Vision Processing

Speech Recognition

Action Recognition

Number of

Layers3~10 Layers Max ~100 Layers 3~5 Layers

Convolution

PoolingInput

Outp

ut

Fully Connected

Outp

ut

Input

Hidden Outp

ut

Input

Hoi-Jun Yoo5

Page 6: Mobile/Embedded DNN and AI SoCs - Homepage - CMU · PDF fileOutline 1. Deep Neural Network Processor –Mobile DNN Applications –Basic CNN Architectures 2. M/E-DNN: Mobile/Embedded

Outline

1. Deep Neural Network Processor

– Mobile DNN Applications

– Basic CNN Architectures

2. M/E-DNN: Mobile/Embedded Deep Neural Network

– Requirements of M/E-DNN

– M/E-DNN Design & Example

3. SoC Applications of M/E-DNN

– Hybrid CIS, CNNP Processor and DNPU Processor

– Hybrid Intelligent Systems

– AR Processor, UI/UX Processor and ADAS Processor

Hoi-Jun Yoo6

Page 7: Mobile/Embedded DNN and AI SoCs - Homepage - CMU · PDF fileOutline 1. Deep Neural Network Processor –Mobile DNN Applications –Basic CNN Architectures 2. M/E-DNN: Mobile/Embedded

Cloud-based DNN Mobile/Embedded DNN

• Cloud Intelligence

• General AI- Very deep network

• Communication latency

• High Number Precision

• High power / cooling cost

• Large memory capacity

• On-device Intelligence

• Application-specific AI- Specific DNN network

• Real-time operation

• Reduced Number Precision

• Low-power consumption

• Efficient memory arch.

co

nv

co

nv

po

ol

co

nv

co

nv

po

ol

co

nv

co

nv

co

nv

po

ol

co

nv

co

nv

co

nv

po

ol

co

nv

co

nv

co

nv

po

ol

FC

FC

FC

co

nv

po

ol

co

nv

po

ol

co

nv

po

ol

FC

FC

co

nv

po

ol

Hoi-Jun Yooco

nv

Mobile/Embedded DNN Requirements

7

Page 8: Mobile/Embedded DNN and AI SoCs - Homepage - CMU · PDF fileOutline 1. Deep Neural Network Processor –Mobile DNN Applications –Basic CNN Architectures 2. M/E-DNN: Mobile/Embedded

• 2D Cell + Shared PE Digital CNN

– 2D Cell Array to Remove Emulation Overhead

– Programmable PE for Flexible Operation

• Cells: Storage and Communication

• PEs: Processing of Cell Data

Mobile/Embedded DNN Architecture

C10

C20

C30

C11

C21

C31

C12

C22

C32

PE2

PE3

PE4

C00 C01 C02

C13

C23

C33

C03 PE1

Cell-to-PE

Read Bus

PE-to-Cell

Write Bus

Cell-to-Cell

Communication

(2D Shift Register)

Hoi-Jun Yoo

[1] Kwanho Kim et al, ISSCC 2008

[2] Seungjin Lee et al, IEEE TNN 2011

8

Page 9: Mobile/Embedded DNN and AI SoCs - Homepage - CMU · PDF fileOutline 1. Deep Neural Network Processor –Mobile DNN Applications –Basic CNN Architectures 2. M/E-DNN: Mobile/Embedded

• Digital Cellular Neural Net.

• 80x60 shift-register array

• 120 VPEs shared by cells

SRAM based Architecture

20x60

Cell

Array

60

VP

E A

RR

AY

Controller IMEM(2KB)

20x60

Cell

Array

20x60

Cell

Array

60

VP

E A

RR

AY

20x60

Cell

Array

VPE

VPE

VPECELL

CELL

CELL

CELL

CELL

CELL

CELL CELL

CELL CELL

CELL CELL

Hoi-Jun Yoo

[8] Kwanho Kim et al, ISSCC 2008

9

Page 10: Mobile/Embedded DNN and AI SoCs - Homepage - CMU · PDF fileOutline 1. Deep Neural Network Processor –Mobile DNN Applications –Basic CNN Architectures 2. M/E-DNN: Mobile/Embedded

• Dynamic logic-based shift register Small cell area

SRAM Memory Based NN Cell

/equalize

read bus 1

write

enable

write bus

North

WestSouth

East

read bus 2

/write bus

read

enable1/pre-

charge

load

enable

WL0

WL1

WL2

WL3

/shift

shiftL

OA

D

SH

IFT

IN

SH

IFT

OU

T

read

enable2

REGISTER

FILE SHIFT

REGISTER

north en

south en

east en

west en

Register6T SRAM Cell

NMOS only Mux / Demux

(Dynamic Logic)

Hoi-Jun Yoo

[8] Kwanho Kim et al, ISSCC 2008

10

Page 11: Mobile/Embedded DNN and AI SoCs - Homepage - CMU · PDF fileOutline 1. Deep Neural Network Processor –Mobile DNN Applications –Basic CNN Architectures 2. M/E-DNN: Mobile/Embedded

Process Technology 0.13μm 8M CMOS

Area 4.5 mm2

Number of Cells 4800

Number of PEs 120

Operating Frequency 200 MHz

Peak Performance

(Sustained)

24 GOPS (22 GOPS)

Active Power 84 mW

Average Power (15FPS) 6 mW

Controller

PE

Array

1

PE

Array

2

Cell

Array

1

Cell

Array

2

Cell

Array

3

Cell

Array

4

Hoi-Jun Yoo

Chip Summary and Applications[8] Kwanho Kim et al, ISSCC 2008

[10] Seungjin Lee et al, ISSCC 2010

11

Page 12: Mobile/Embedded DNN and AI SoCs - Homepage - CMU · PDF fileOutline 1. Deep Neural Network Processor –Mobile DNN Applications –Basic CNN Architectures 2. M/E-DNN: Mobile/Embedded

Outline

1. Deep Neural Network Processor

– Mobile DNN Applications

– Basic CNN Architectures

2. M/E-DNN: Mobile/Embedded Deep Neural Network

– Requirements of M/E-DNN

– M/E-DNN Design & Examples

3. SoC Applications of M/E-DNN

– Hybrid CIS, CNNP Processor and DNPU Processor

– Hybrid Intelligent Systems

– AR Processor, UI/UX Processor and ADAS Processor

Hoi-Jun Yoo12

Page 13: Mobile/Embedded DNN and AI SoCs - Homepage - CMU · PDF fileOutline 1. Deep Neural Network Processor –Mobile DNN Applications –Basic CNN Architectures 2. M/E-DNN: Mobile/Embedded

Multi-Core SoC

Right brainLeft brain

NoC

• Hard computing- CPU / DSP- Special purpose HW- Multiple cores

• Soft computing- Deep Neural Nets- Fuzzy logic- Learning / evolution

Intelligence computing system:multi-core digital processors + DNN soft-computing hardware (through Networks-on-Chip).

Fast / accurate computing performance

Suitable for solving imprecision, uncertainty, and ambiguous problems

Hoi-Jun Yoo

KAIST Approach: MC Processor + M/E DNN

13

Page 14: Mobile/Embedded DNN and AI SoCs - Homepage - CMU · PDF fileOutline 1. Deep Neural Network Processor –Mobile DNN Applications –Basic CNN Architectures 2. M/E-DNN: Mobile/Embedded

Low Power Face Recognition SoC

[1] Kyeongryeol Bong et al, ISSCC 2017

Conventional Face Detector• Face detection by vision processor

Hybrid Face Detector• Face detection by CMOS image sensor

• Combine analog & digital face detector

Use Ultra-low Power CNN ProcessorDigital

Haar-like

Filt. Unit

Integral

Image

Unit

320x240

Pixel Array

Column Amp. Array

ADC Array

To

p C

on

tro

ller

Analog Haar-like

Filtering Circuit

80x20 Analog Memory

Ha

ar-

like

Fac

e D

ete

cto

r

CM

OS

Ima

ge S

en

so

r

Hoi-Jun Yoo 14

Page 15: Mobile/Embedded DNN and AI SoCs - Homepage - CMU · PDF fileOutline 1. Deep Neural Network Processor –Mobile DNN Applications –Basic CNN Architectures 2. M/E-DNN: Mobile/Embedded

Chip & System implementation

Hoi-Jun Yoo

Always-on face detector (FD) Ultra low-power CNN processor

• Always-on FD: 3.3mm x 3.36mm CIS in 65nm

– 320 x 240 pixel array, Haar-like filtering circuit & analog MEM

• CNN processor: 4mm x 4mm CNNP in 65nm

– 4 x 4 PE array with local T-SRAM

[1] Kyeongryeol Bong et al, ISSCC 2017

15

Page 16: Mobile/Embedded DNN and AI SoCs - Homepage - CMU · PDF fileOutline 1. Deep Neural Network Processor –Mobile DNN Applications –Basic CNN Architectures 2. M/E-DNN: Mobile/Embedded

Chip & System implementation

Hoi-Jun Yoo

• The Most Accurate Face Recognition SoC

– 97% Achieved using CNN @ LFW dataset

• 0.62mW Face Recognition System w/ imaging

[1] Kyeongryeol Bong et al, ISSCC 2017

16

Page 17: Mobile/Embedded DNN and AI SoCs - Homepage - CMU · PDF fileOutline 1. Deep Neural Network Processor –Mobile DNN Applications –Basic CNN Architectures 2. M/E-DNN: Mobile/Embedded

CNN + RNN Deep Neural Network

Hoi-Jun Yoo

• CNN: Visual feature extraction and recognition

– Face recognition, image classification…

• RNN: Sequential data recognition and generation

– Translation, speech recognition…

• CNN + RNN: CNN-extracted features RNN input

• Previous works– Optimized for convolution layer only: [6], [3]

– Optimized for FC layer and RNN only: [5]

CNN:

Visual feature

extraction

(Single frame)

RNN:

Temporal

data

processing

(Multi frame)

Look

Around

!!

[3] B. Moons, SOVC 2016[5] S. Han, ISCA 2016[6] Y. Chen, ISSCC 2016

[7] Dongjoo Shin et al, ISSCC 2017

17

Page 18: Mobile/Embedded DNN and AI SoCs - Homepage - CMU · PDF fileOutline 1. Deep Neural Network Processor –Mobile DNN Applications –Basic CNN Architectures 2. M/E-DNN: Mobile/Embedded

Processor for support both CNN & RNN

Convolution

Cluster 1

Convolution

Cluster 3

Aggregation Core

Custom Instruction Set-based

Controller

Convolution Processor FC RNN-LSTM Processor

Top RISC Controller

Ext. IF

Ext. IF

Instruction

MemoryData Memory

Input Buffer

Quantization Table-based

Matrix Multiplier

Accumulation Registers

Activation Function LUT

Weight BufferConvolution

Cluster 0

Convolution

Cluster 3

Convolution layer

(CNN)

Fully-connected layer

(CNN)

Recurrent neural network

Heterogeneous

Architecture

Hoi-Jun Yoo

[7] Dongjoo Shin et al, ISSCC 2017

18

Page 19: Mobile/Embedded DNN and AI SoCs - Homepage - CMU · PDF fileOutline 1. Deep Neural Network Processor –Mobile DNN Applications –Basic CNN Architectures 2. M/E-DNN: Mobile/Embedded

DNPU: Chip implementation

Hoi-Jun Yoo

• CNN-RNN processor : 4mm x 4mm in 65nm

• Supply Voltage : 0.77V ~ 1.1V, frequency : 50 ~ 200MHz

• Energy Efficiency : 8.1TOPS/W (50MHz, 0.77V, 4bit word length)

3.9TOPS/W (200MHz, 1.1V, 16bit word length)

Specifications

Process

Die Area

Supply

Frequency

Power

Energy

Efficiency

65nm 1P8M CMOS

4mm x 4mm (16mm2)

SRAM

0.77V ~ 1.1V

2.1 TOPS/W

50MHz

@ 0.77V

200MHz

@ 1.1V

34.6mW

279mW

50 ~ 200MHz

50MHz

@ 0.77V

200MHz

@ 1.1V1.0 TOPS/W

CLP Word

Length: 16b

CLP Word

Length: 4b

Convolution

Cluster 0

FC LSTM

Processor

Ext. Gateway

Convolution

Cluster 3

Convolution

Cluster 1

Convolution

Cluster 2

CNN

Ctrlr.

Aggregation

Core

Top

Ctrlr.

Ex

t. G

ate

wa

yPre-Processing

Core

CLP FCRLP

280 KB 10 KB

8.1 TOPS/W

3.9 TOPS/W

[7] Dongjoo Shin et al, ISSCC 2017

19

Page 20: Mobile/Embedded DNN and AI SoCs - Homepage - CMU · PDF fileOutline 1. Deep Neural Network Processor –Mobile DNN Applications –Basic CNN Architectures 2. M/E-DNN: Mobile/Embedded

Hoi-Jun Yoo

Pet Robot Demonstration Video

[7] Dongjoo Shin et al, ISSCC 2017

20

Page 21: Mobile/Embedded DNN and AI SoCs - Homepage - CMU · PDF fileOutline 1. Deep Neural Network Processor –Mobile DNN Applications –Basic CNN Architectures 2. M/E-DNN: Mobile/Embedded

• 2D-barcode / 2D-marker

• Markers on Everything?

Impossible Solution in Real

World

Marker-based AR Markerless AR

• Natural Feature Extraction

• >10x Higher Computation

Difficulties in Real-time (30fps)

Operation

BEEP!

- Mini Cooper

- 1600CC

- $35,000

Recognition

Cooper: 98%

Peugeot: 45%

AUDI TT: 11%

Hoi-Jun Yoo

Requirements for AR: High-Throughput

21

Page 22: Mobile/Embedded DNN and AI SoCs - Homepage - CMU · PDF fileOutline 1. Deep Neural Network Processor –Mobile DNN Applications –Basic CNN Architectures 2. M/E-DNN: Mobile/Embedded

Hoi-Jun Yoo

Markerless AR Process

22

Page 23: Mobile/Embedded DNN and AI SoCs - Homepage - CMU · PDF fileOutline 1. Deep Neural Network Processor –Mobile DNN Applications –Basic CNN Architectures 2. M/E-DNN: Mobile/Embedded

Hands-free Head Mounted Display (HMD)

– Smaller Battery Size

– Complicated Markerless AR Functionalities

[a] HP iPAQ [b] Apple iPhone5 [c] Google Project Glass

Hoi-Jun Yoo

[a] [b] [c]

Requirements for AR in HMD: Energy

23

Page 24: Mobile/Embedded DNN and AI SoCs - Homepage - CMU · PDF fileOutline 1. Deep Neural Network Processor –Mobile DNN Applications –Basic CNN Architectures 2. M/E-DNN: Mobile/Embedded

Hoi-Jun Yoo

SoC Architecture of K-Glass

[12] Gyeonghoon Kim et al, ISSCC 2014

24

Page 25: Mobile/Embedded DNN and AI SoCs - Homepage - CMU · PDF fileOutline 1. Deep Neural Network Processor –Mobile DNN Applications –Basic CNN Architectures 2. M/E-DNN: Mobile/Embedded

• 4mm x 8mm by 65nm CMOS Technology

• 381mW Average / 778mW Peak Power Consumption

• 1.22 TOPS Peak Performance

• 1.57 TOPS/W Energy Efficiency for 720p Video

BONE-AR: Chip Implementation

Keypoint Detection

Processor (KDP)

8 Cores

Scale Space

Processor (SSP)

2 Cores

Descriptor Generation

Processor (DGP)

10 Cores

Rendering

ACC. (RA)

2 Cores

Visual

Attention

Processor

(VAP) 5 Cores

Pose

Estimation

Processor

(PEP)

2 Cores

Ne

ura

l

Ne

two

rk

AC

C.

Keypoint Matching

Accelerator (KMA)

4 Cores

Mixed-Mode SVM

Hoi-Jun Yoo[12] Gyeonghoon Kim et al, ISSCC 2014

25

Page 26: Mobile/Embedded DNN and AI SoCs - Homepage - CMU · PDF fileOutline 1. Deep Neural Network Processor –Mobile DNN Applications –Basic CNN Architectures 2. M/E-DNN: Mobile/Embedded

Hoi-Jun Yoo

Demo: BONE-AR

26

Page 27: Mobile/Embedded DNN and AI SoCs - Homepage - CMU · PDF fileOutline 1. Deep Neural Network Processor –Mobile DNN Applications –Basic CNN Architectures 2. M/E-DNN: Mobile/Embedded

Step1. “Point” the Cursor by “Gaze”

Gaze

Point

Low-power(<50mW [a]) Always-On Gaze UI

- Previous Work [b] : 100mW

[a] Power Consumption of Wireless Optical Mouse Reported in “Mouse Battery Life Comparison Test Report”, Microsoft Corp., 2004[b] D. Kim, et al., “A 5000S/s Single-chip Smart Eye-tracking Sensor”, ISSCC 2008

Hoi-Jun Yoo

Gaze User Interface

[13] Injoon Hong et al, ISSCC 2015

27

Page 28: Mobile/Embedded DNN and AI SoCs - Homepage - CMU · PDF fileOutline 1. Deep Neural Network Processor –Mobile DNN Applications –Basic CNN Architectures 2. M/E-DNN: Mobile/Embedded

Step2. “Click” the Target by “Wink”

Hoi-Jun Yoo

Gaze User Interface

[13] Injoon Hong et al, ISSCC 2015

28

Page 29: Mobile/Embedded DNN and AI SoCs - Homepage - CMU · PDF fileOutline 1. Deep Neural Network Processor –Mobile DNN Applications –Basic CNN Architectures 2. M/E-DNN: Mobile/Embedded

1. 320x240 Gaze Image Sensor (GIS)2. Multi-core OR Processor (ORP)

Glint Detection

10-b Single-slope ADC

Column-Parallel Pupil

Edge Detection CircuitsEdge

Image

Glint

Control

Signals

Lo

ga

rithm

ic

SIM

D P

roc

es

so

r

Gaze Image Sensor

320x240

Pixel Array

Object Recognition Processor

Convolutional

Neural Network

Processor

DRM Processor

Filtering

Accelerator x 3

EOG Processor

Scale Space

Processor

Feature Detection

Processor x 4

Descriptor Generation

Processor x 8

Feature Matching

Processor

Hoi-Jun Yoo

GIS & BONE-V8: System Architecture

[13] Injoon Hong et al, ISSCC 2015

29

Page 30: Mobile/Embedded DNN and AI SoCs - Homepage - CMU · PDF fileOutline 1. Deep Neural Network Processor –Mobile DNN Applications –Basic CNN Architectures 2. M/E-DNN: Mobile/Embedded

• 4mm x 4mm ORP, 3.36mm x 3.36mm GIS in 65nm

• Real-Time (30fps) OR and Gaze Estimation Performance

• 75mW Average Power (65mW ORP, 10mW GIS)

• 131mW Peak Power (97mW ORP, 34mW GIS)

GIS & BONE-V8: Chip Implementation

<OR Processor> <Gaze Image Sensor>

Hoi-Jun Yoo[13] Injoon Hong et al, ISSCC 2015

30

Page 31: Mobile/Embedded DNN and AI SoCs - Homepage - CMU · PDF fileOutline 1. Deep Neural Network Processor –Mobile DNN Applications –Basic CNN Architectures 2. M/E-DNN: Mobile/Embedded

Hoi-Jun Yoo

Demo: GIS & BONE-V8

[13] Injoon Hong et al, ISSCC 2015

31

Page 32: Mobile/Embedded DNN and AI SoCs - Homepage - CMU · PDF fileOutline 1. Deep Neural Network Processor –Mobile DNN Applications –Basic CNN Architectures 2. M/E-DNN: Mobile/Embedded

Multi-Modal UI/UX

Raw Input (2D Image)

Preprocessing (Clean Hand Data)

Input Layer

POOL

POOL

Class Layer

Hidden Layer

Classifier Input

2D CONV2D CONV

2D CONV2D CONV

Raw Input (1D Audio)

2D Filter

2D Filter

Preprocessing (2D Spectrogram)

Input Layer

1D CONV1D CONV

1D Filter

POOL

POOL

1D Filter

1D CONV1D CONV

<Gesture DNN> <Speech DNN>

28x28

14x14

10x10

5x5

50

100

10

80x251

80x83

80x78

80x26

80

150

26

Deep Neural Network

Audio Signal

Hand Image

User Interface

Hoi-Jun Yoo[14] Seongwook Park et al, ISSCC 2016

32

Page 33: Mobile/Embedded DNN and AI SoCs - Homepage - CMU · PDF fileOutline 1. Deep Neural Network Processor –Mobile DNN Applications –Basic CNN Architectures 2. M/E-DNN: Mobile/Embedded

• 4mm x 4mm by 65nm CMOS Technology

• 126mW Deep Learning Processor

• 1.80TOPS/W Smart Glasses Processor

UI/UX Specialized SoC

DL/DI Cluster0Random Drop-Out

Deep Learning Processor

DL/DI Cluster1Random Drop-Out

Deep Learning Processor

Random

Drop-Out

Deep

Inference

Processor

Random Drop-Out

Deep Inference

Processor

Random Drop-Out

Deep Inference

Processor

DL/DI Cluster2Random Drop-Out

Deep Learning Processor

DL/DI Cluster3Random Drop-Out

Deep Learning Processor

Pre-ProcessingSpeech Separation Processor

Hand Segmentation Processor

Multi-Modal Decision

Graphics Rendering

TRN Generator

K-Glass 3 SystemUI/UX Processor

PHSC USSC

DDLE

Hoi-Jun Yoo[14] Seongwook Park et al, ISSCC 2016

33

Page 34: Mobile/Embedded DNN and AI SoCs - Homepage - CMU · PDF fileOutline 1. Deep Neural Network Processor –Mobile DNN Applications –Basic CNN Architectures 2. M/E-DNN: Mobile/Embedded

Hoi-Jun Yoo[14] Seongwook Park et al, ISSCC 2016

K-Glass 3 Demonstration Video

34

Page 35: Mobile/Embedded DNN and AI SoCs - Homepage - CMU · PDF fileOutline 1. Deep Neural Network Processor –Mobile DNN Applications –Basic CNN Architectures 2. M/E-DNN: Mobile/Embedded

Summary

1. Deep Neural Network Processor

– Mobile DNN Applications: AR, Drone, ADAS, Security

– CNN Hardware Mapping and Architectures

2. Mobile/Embedded Deep Neural Network

– Low-power, Real-time Operations

– Limited Memory Capacity and Memory Bandwidth

– Algorithm, Architecture, Circuit Level Optimization

– Mobile/Embedded-CNNs – SRAM-based Architecture

3. SoC Applications of Mobile/Embedded-DNN

– Hybrid CIS, CNNP Processor for Always-on Face Recognition System

– DNPU Processor for General Purpose DNN System

– Hybrid Intelligent Systems

– AR Processor and UI/UX Processor for Smart Glasses

Hoi-Jun Yoo35

Page 36: Mobile/Embedded DNN and AI SoCs - Homepage - CMU · PDF fileOutline 1. Deep Neural Network Processor –Mobile DNN Applications –Basic CNN Architectures 2. M/E-DNN: Mobile/Embedded

1.Active Research Exchange Opportunities – Academy-to-Academy

– Industry-to-Academy

2.National Funding & Exchange Programs– National organization

– Equal distribution of ownership policy

3.Collaboration b/w Different FieldsResearch Fields

Collaborative Research

Hoi-Jun Yoo36

SystemAlgorithm(Software)

Chip(Hardware)

Circuit Transistor

Page 37: Mobile/Embedded DNN and AI SoCs - Homepage - CMU · PDF fileOutline 1. Deep Neural Network Processor –Mobile DNN Applications –Basic CNN Architectures 2. M/E-DNN: Mobile/Embedded

[1] Kyeongryeol Bong, et al. “A 0.62mW Ultra-Low-Power Convolutional-Neural-Network Face-Recognition Processor and a CIS Integrated with Always-On Haar-Like Face Detector”, ISSCC 2017

[2] Hiroki Nakahara, et al. “A deep convolutional neural network based on nested residue number system”, FBL 2015

[3] Bert Moons, et al. “A 0.3–2.6 TOPS/W precision-scalable processor for real-time large-scale ConvNets”, SOVC 2016

[4] Michael Figurnov, et al. “PerforatedCNNs: Acceleration through Elimination of Redundant Convolutions”, NIPS 2016

[5] Song Han, et al. “Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding”, ICLR 2016

[6] Yu-Hsin Chen, et al. “Eyeriss: An energy-efficient reconfigurable accelerator for deep convolutional neural networks”, ISSCC 2016

[7] Dongjoo Shin, et al. “DNPU: An 8.1TOPS/W Reconfigurable CNN-RNN Processor for General-Purpose Deep Neural Networks”, ISSCC 2017

[8] Kwanho Kim, et al. “A 125GOPS 583mW Network-on-Chip Based Parallel Processor with Bio-inspired Visual Attention Engine”, ISSCC 2008

[9] Seungjin Lee, et al. “24-GOPS 4.5-mm2 Digital Cellular Neural Network for Rapid Visual Attention in an Object-Recognition SoC”, IEEE TNN 2011

[10] Seungjin Lee, et al. “A 345mW Heterogeneous Many-Core Processor with an Intelligent Engine for Robust Object Recognition”, ISSCC 2010

[11] Injoon Hong, et al. “A 1.9nJ/Pixel Deep Neural Network Processor for High Speed Visual Attention in a Mobile Vision Recognition SoC”, ASSCC 2015

[12] Gyonghoon Kim, et al. “A 1.22TOPS and 1.52mW/MHz Augmented Reality Multi-Core Processor with Neural Network NoC for HMD Applications”, ISSCC 2014

[13] Injoon Hong, et al. “A 2.71nJ/Pixel 3D-Stacked Gaze-Activated Object Recognition System for Low-power Mobile HMD Applications”, ISSCC 2015

[14] Seongwook Park, et al. “A 126.1mW Real-Time Natural UI/UX Processor with Embedded Deep-Learning Core for Low-Power Smart Glasses”, ISSCC 2016

[15] Seungjin Lee, et al. “The Brain Mimicking Visual Attention Engine: An 80x60 Digital Cellular Neural Network for Rapid Global Feature Extraction”, SOVC 2008

[16] Jinwook Oh, et al. “An Area Efficient Shared Synapse Cellular Neural Network for Low Power Image Processing”, VLSI-DAT 2009

[17] Youchang Kim, et al. “A 4.9mW Neural Network Task Scheduler for Congestion-minimized Network-on-Chip in Multi-core Systems”, ASSCC 2014

[18] Junyoung Park, et al. “A 92mW Real-Time Traffic Sign Recognition System with Robust Light and Dark Adaptation”, ASSCC 2011

[19] Minsu Kim, et al. “A 22.8GOPS 2.83mW Neuro-fuzzy Object Detection Engine for Fast Multi-object Recognition”, SOVC 2009

[20] Seungjin Lee, et al.“A 92mW 76.8GOPS Vector Matching Processor with Parallel Huffman Decoder and Query Re-ordering Buffer for Real-time Object Recognition”, ASSCC 2010

[21] Jinwook Oh, et al.“An Asynchronous Mixed-mode Neuro-Fuzzy Controller for Energy Efficient Machine Intelligence SoC”, ASSCC 2011

[22] Donghyun Kim, et al. “81.6 GOPS Object Recognition Processor Based on a Memory-Centric NoC”, TVLSI 2009

[23] Joo-Young Kim, et al. “A 66fps 38mW Nearest Neighbor Matching Processor with Hierarchical VQ Algorithm for Real-Time Object Recognition”, ASSCC 2008

[24] Minsu Kim, et al. “A 54GOPS 51.8mW Analog-Digital Mixed Mode Neural Perception Engine for Fast Object Detection”, CICC 2009

[25] Jinwook Oh, et al. “A 1.2mW On-Line Learning Mixed Mode Intelligent Inference Engine for Robust Object Recognition”, SOVC 2010

[26] Junyoung Park, et al. “Online Reinforcement Learning NoC for Portable HD Object Recognition Processor”, CICC 2012

[27] Injoon Hong, et al. “A 125,582 vector/s Throughput and 95.1% Accuracy ANN Searching Processor with Neuro-Fuzzy Vision Cache for Real-time Object Recognition”, SOVC 2013

[28] Kyuho Lee, et al. “A Vocabulary Forest-based Object Matching Processor with 2.07M-vec/s Throughput and 13.3nJ/vector Energy in Full-HD Resolution”, SOVC 2014

[29] Jinwook Oh, et al. “A 57mW Embedded Mixed-Mode Neuro-Fuzzy Accelerator for Intelligent Multi-core Processor”, ISSCC 2011

[30] Jinwook Oh, et al. “A 320mW 342GOPS Real-Time Moving Object Recognition Processor for HD 720p Video Streams”, ISSCC 2012

[31] Youchang Kim, et al. “A 0.55V 1.1mW Artificial-Intelligence Processor with PVT Compensation for Micro Robots”, ISSCC 2016

[32] Kyuho J. Lee, et al. “A 502GOPS and 0.984mW Dual-Mode ADAS SoC with RNN-FIS Engine for Intention Prediction in Automotive Black-Box System”, ISSCC 2016

Hoi-Jun Yoo

References

37


Recommended