+ All Categories
Home > Documents > Modeling a vibrating string terminated against a bridge with …dima/stringarbitrary/slides.pdf ·...

Modeling a vibrating string terminated against a bridge with …dima/stringarbitrary/slides.pdf ·...

Date post: 04-Jun-2020
Category:
Upload: others
View: 7 times
Download: 0 times
Share this document with a friend
28
Modeling a vibrating string terminated against a bridge with arbitrary geometry Dmitri Kartofelev, Anatoli Stulov, Heidi-Maria Lehtonen and Vesa V¨ alim¨ aki Institute of Cybernetics at Tallinn University of Technology, Centre for Nonlinear Studies (CENS), Tallinn, Estonia & Department of Signal Processing and Acoustics, Aalto University, Espoo, Finland August 3, 2013 Dmitri Kartofelev, Anatoli Stulov, Heidi-Maria Lehtonen and Vesa V¨ SMAC SMC 2013 August 3, 2013 1 / 18
Transcript
  • Modeling a vibrating string terminatedagainst a bridge with arbitrary geometry

    Dmitri Kartofelev, Anatoli Stulov,Heidi-Maria Lehtonen and Vesa Välimäki

    Institute of Cybernetics at Tallinn University of Technology,Centre for Nonlinear Studies (CENS),

    Tallinn, Estonia&

    Department of Signal Processing and Acoustics,Aalto University,Espoo, Finland

    August 3, 2013

    Dmitri Kartofelev, Anatoli Stulov, Heidi-Maria Lehtonen and Vesa Välimäki (CENS)SMAC SMC 2013 August 3, 2013 1 / 18

  • Motivation

    In numerous musical instruments the collision of avibrating string with rigid spatial obstacles, such as fretsor a bridge is present.

    Biwa Shamisen Sitar Jawari (bridge)

    Dmitri Kartofelev, Anatoli Stulov, Heidi-Maria Lehtonen and Vesa Välimäki (CENS)SMAC SMC 2013 August 3, 2013 2 / 18

  • Motivation

    Medieval and Renaissance bray harp and bray pins

    Audio example of bray harp timbre (15 s)

    Dmitri Kartofelev, Anatoli Stulov, Heidi-Maria Lehtonen and Vesa Välimäki (CENS)SMAC SMC 2013 August 3, 2013 3 / 18

  • Motivation

    Capo bar (Capo d’astro) of the piano cast iron frame

    Dmitri Kartofelev, Anatoli Stulov, Heidi-Maria Lehtonen and Vesa Välimäki (CENS)SMAC SMC 2013 August 3, 2013 4 / 18

  • String description

    String u(x,t)

    ∂2u

    ∂t2= c2

    ∂2u

    ∂x2, c =

    √T

    µ(1)

    u(0, t) = u(L, t) = 0 (2)

    Solution to Eq. (1) is famous d’Alembert’s solution:

    u(x, t) =1

    2[ur(x− ct) + ul(x+ ct)] (3)

    Dmitri Kartofelev, Anatoli Stulov, Heidi-Maria Lehtonen and Vesa Välimäki (CENS)SMAC SMC 2013 August 3, 2013 5 / 18

  • String description

    String u(x,t)

    ∂2u

    ∂t2= c2

    ∂2u

    ∂x2, c =

    √T

    µ(1)

    u(0, t) = u(L, t) = 0 (2)

    Solution to Eq. (1) is famous d’Alembert’s solution:

    u(x, t) =1

    2[ur(x− ct) + ul(x+ ct)] (3)

    Dmitri Kartofelev, Anatoli Stulov, Heidi-Maria Lehtonen and Vesa Välimäki (CENS)SMAC SMC 2013 August 3, 2013 5 / 18

  • Geometric termination condition (TC)

    TC is an absolutely rigid unilateral constraint of thestring’s transverse deflection.Support profile geometry is described by an arbitraryfunction U(x).

    StringU(x)

    a) parabolic profile

    StringU(x)

    b) linear profile

    StringU(x)

    c) Sine-like profile

    Dmitri Kartofelev, Anatoli Stulov, Heidi-Maria Lehtonen and Vesa Välimäki (CENS)SMAC SMC 2013 August 3, 2013 6 / 18

  • Geometric termination condition (TC)

    TC is an absolutely rigid unilateral constraint of thestring’s transverse deflection.Support profile geometry is described by an arbitraryfunction U(x).

    StringU(x)

    a) parabolic profile

    StringU(x)

    b) linear profile

    StringU(x)

    c) Sine-like profile

    Dmitri Kartofelev, Anatoli Stulov, Heidi-Maria Lehtonen and Vesa Välimäki (CENS)SMAC SMC 2013 August 3, 2013 6 / 18

  • Geometric termination condition (TC)

    TC is an absolutely rigid unilateral constraint of thestring’s transverse deflection.Support profile geometry is described by an arbitraryfunction U(x).

    StringU(x)

    a) parabolic profile

    StringU(x)

    b) linear profile

    StringU(x)

    c) Sine-like profile

    Dmitri Kartofelev, Anatoli Stulov, Heidi-Maria Lehtonen and Vesa Välimäki (CENS)SMAC SMC 2013 August 3, 2013 6 / 18

  • Bridge-string interaction model

    Since the termination is rigid, it must hold

    u(x∗, t) 6 U(x∗). (4)

    In order to satisfy condition (4) for u(x∗, t) > U(x∗) areflected traveling wave is introduced

    ur

    (t− x

    c

    )= U(x∗)− ul

    (t+

    x∗

    c

    ), (5)

    here the waves ul and ur correspond to any waves thathave reflected from the terminator earlier.

    Dmitri Kartofelev, Anatoli Stulov, Heidi-Maria Lehtonen and Vesa Välimäki (CENS)SMAC SMC 2013 August 3, 2013 7 / 18

  • Bridge-string interaction model

    Since the termination is rigid, it must hold

    u(x∗, t) 6 U(x∗). (4)

    In order to satisfy condition (4) for u(x∗, t) > U(x∗) areflected traveling wave is introduced

    ur

    (t− x

    c

    )= U(x∗)− ul

    (t+

    x∗

    c

    ), (5)

    here the waves ul and ur correspond to any waves thathave reflected from the terminator earlier.

    Dmitri Kartofelev, Anatoli Stulov, Heidi-Maria Lehtonen and Vesa Välimäki (CENS)SMAC SMC 2013 August 3, 2013 7 / 18

  • Bridge-string interaction model

    Since the termination is rigid, it must hold

    u(x∗, t) 6 U(x∗). (4)

    In order to satisfy condition (4) for u(x∗, t) > U(x∗) areflected traveling wave is introduced

    ur

    (t− x

    c

    )= U(x∗)− ul

    (t+

    x∗

    c

    ), (5)

    here the waves ul and ur correspond to any waves thathave reflected from the terminator earlier.

    Dmitri Kartofelev, Anatoli Stulov, Heidi-Maria Lehtonen and Vesa Välimäki (CENS)SMAC SMC 2013 August 3, 2013 7 / 18

  • Single wave reflection from the terminator

    ur(t− x∗/c) = U(x∗)− ul(t+ x∗/c)u(x∗, t) = U(x∗) = ur(t− x∗/c) + ul(t+ x∗/c) (6)

    x

    A

    -A

    ∆x ∆x ∆x ∆x ∆x ∆x

    x

    A

    -A

    ∆x ∆x ∆x ∆x ∆x ∆xx

    A

    -A

    ∆x ∆x ∆x ∆x ∆x ∆x

    Dmitri Kartofelev, Anatoli Stulov, Heidi-Maria Lehtonen and Vesa Välimäki (CENS)SMAC SMC 2013 August 3, 2013 8 / 18

  • Single wave reflection from the terminator

    ur(t− x∗/c) = U(x∗)− ul(t+ x∗/c)u(x∗, t) = U(x∗) = ur(t− x∗/c) + ul(t+ x∗/c) (6)

    x

    A

    -A

    ∆x ∆x ∆x ∆x ∆x ∆xx

    A

    -A

    ∆x ∆x ∆x ∆x ∆x ∆x

    x

    A

    -A

    ∆x ∆x ∆x ∆x ∆x ∆x

    Dmitri Kartofelev, Anatoli Stulov, Heidi-Maria Lehtonen and Vesa Välimäki (CENS)SMAC SMC 2013 August 3, 2013 8 / 18

  • Single wave reflection from the terminator

    ur(t− x∗/c) = U(x∗)− ul(t+ x∗/c)u(x∗, t) = U(x∗) = ur(t− x∗/c) + ul(t+ x∗/c) (6)

    x

    A

    -A

    ∆x ∆x ∆x ∆x ∆x ∆xx

    A

    -A

    ∆x ∆x ∆x ∆x ∆x ∆xx

    A

    -A

    ∆x ∆x ∆x ∆x ∆x ∆x

    Dmitri Kartofelev, Anatoli Stulov, Heidi-Maria Lehtonen and Vesa Välimäki (CENS)SMAC SMC 2013 August 3, 2013 8 / 18

  • Single wave reflection from the terminator

    ur(t− x∗/c) = U(x∗)− ul(t+ x∗/c)u(x, t) = ur(t− x/c) + ul(t+ x/c) (7)

    0.0 0.2 0.4 0.6 0.8 1.0Distance along the string x

    1.0

    0.5

    0.0

    0.5

    1.0

    Disp

    lace

    men

    t u(x,t)

    Time 0.40

    0.0 0.2 0.4 0.6 0.8 1.0Distance along the string x

    1.0

    0.5

    0.0

    0.5

    1.0

    Disp

    lace

    men

    t u(x,t)

    Time 0.700.0 0.2 0.4 0.6 0.8 1.0

    Distance along the string x1.0

    0.5

    0.0

    0.5

    1.0

    Disp

    lace

    men

    t u(x,t)

    Time 0.800.0 0.2 0.4 0.6 0.8 1.0

    Distance along the string x1.0

    0.5

    0.0

    0.5

    1.0

    Disp

    lace

    men

    t u(x,t)

    Time 1.00

    Dmitri Kartofelev, Anatoli Stulov, Heidi-Maria Lehtonen and Vesa Välimäki (CENS)SMAC SMC 2013 August 3, 2013 9 / 18

  • Single wave reflection from the terminator

    ur(t− x∗/c) = U(x∗)− ul(t+ x∗/c)u(x, t) = ur(t− x/c) + ul(t+ x/c) (7)

    0.0 0.2 0.4 0.6 0.8 1.0Distance along the string x

    1.0

    0.5

    0.0

    0.5

    1.0

    Disp

    lace

    men

    t u(x,t)

    Time 0.400.0 0.2 0.4 0.6 0.8 1.0

    Distance along the string x1.0

    0.5

    0.0

    0.5

    1.0

    Disp

    lace

    men

    t u(x,t)

    Time 0.70

    0.0 0.2 0.4 0.6 0.8 1.0Distance along the string x

    1.0

    0.5

    0.0

    0.5

    1.0

    Disp

    lace

    men

    t u(x,t)

    Time 0.800.0 0.2 0.4 0.6 0.8 1.0

    Distance along the string x1.0

    0.5

    0.0

    0.5

    1.0

    Disp

    lace

    men

    t u(x,t)

    Time 1.00

    Dmitri Kartofelev, Anatoli Stulov, Heidi-Maria Lehtonen and Vesa Välimäki (CENS)SMAC SMC 2013 August 3, 2013 9 / 18

  • Single wave reflection from the terminator

    ur(t− x∗/c) = U(x∗)− ul(t+ x∗/c)u(x, t) = ur(t− x/c) + ul(t+ x/c) (7)

    0.0 0.2 0.4 0.6 0.8 1.0Distance along the string x

    1.0

    0.5

    0.0

    0.5

    1.0

    Disp

    lace

    men

    t u(x,t)

    Time 0.400.0 0.2 0.4 0.6 0.8 1.0

    Distance along the string x1.0

    0.5

    0.0

    0.5

    1.0

    Disp

    lace

    men

    t u(x,t)

    Time 0.700.0 0.2 0.4 0.6 0.8 1.0

    Distance along the string x1.0

    0.5

    0.0

    0.5

    1.0

    Disp

    lace

    men

    t u(x,t)

    Time 0.80

    0.0 0.2 0.4 0.6 0.8 1.0Distance along the string x

    1.0

    0.5

    0.0

    0.5

    1.0

    Disp

    lace

    men

    t u(x,t)

    Time 1.00

    Dmitri Kartofelev, Anatoli Stulov, Heidi-Maria Lehtonen and Vesa Välimäki (CENS)SMAC SMC 2013 August 3, 2013 9 / 18

  • Single wave reflection from the terminator

    ur(t− x∗/c) = U(x∗)− ul(t+ x∗/c)u(x, t) = ur(t− x/c) + ul(t+ x/c) (7)

    0.0 0.2 0.4 0.6 0.8 1.0Distance along the string x

    1.0

    0.5

    0.0

    0.5

    1.0

    Disp

    lace

    men

    t u(x,t)

    Time 0.400.0 0.2 0.4 0.6 0.8 1.0

    Distance along the string x1.0

    0.5

    0.0

    0.5

    1.0

    Disp

    lace

    men

    t u(x,t)

    Time 0.700.0 0.2 0.4 0.6 0.8 1.0

    Distance along the string x1.0

    0.5

    0.0

    0.5

    1.0

    Disp

    lace

    men

    t u(x,t)

    Time 0.800.0 0.2 0.4 0.6 0.8 1.0

    Distance along the string x1.0

    0.5

    0.0

    0.5

    1.0

    Disp

    lace

    men

    t u(x,t)

    Time 1.00

    Dmitri Kartofelev, Anatoli Stulov, Heidi-Maria Lehtonen and Vesa Välimäki (CENS)SMAC SMC 2013 August 3, 2013 9 / 18

  • Single wave reflection from the terminator

    0.0 0.2 0.4 0.6 0.8 1.0Distance along the string [1]

    1.0

    0.5

    0.0

    0.5

    1.0Am

    plitu

    de [1

    ]

    Time 0.00

    Dmitri Kartofelev, Anatoli Stulov, Heidi-Maria Lehtonen and Vesa Välimäki (CENS)SMAC SMC 2013 August 3, 2013 10 / 18

  • Model application: Biwa

    String length L = 0.8 mString plucking point l = 3/4L = 0.6 m

    Linear mass density of the string µ = 0.375 g/mString tension T = 38.4 N

    Velocity of the traveling waves c = 320 m/sFundamental frequency f0 = 200 Hz

    Dmitri Kartofelev, Anatoli Stulov, Heidi-Maria Lehtonen and Vesa Välimäki (CENS)SMAC SMC 2013 August 3, 2013 11 / 18

  • Bridge profiles studied

    Profile shapes

    Case 1: Linearbridge withsharp edge

    Case 2: Linearbridge withcurved parabolicedge

    Case 3: Bridgewith minordefect

    0 5 10 xc 200.00.51.0

    case 1

    0 5 xb 15 200.00.51.0

    U(x

    ) (m

    m)

    case 2

    0 xa 5 xb 15 20Distance along the srtring x (mm)

    0.00.51.0

    case 3

    Dmitri Kartofelev, Anatoli Stulov, Heidi-Maria Lehtonen and Vesa Välimäki (CENS)SMAC SMC 2013 August 3, 2013 12 / 18

  • Result: Time series u(l, t)

    63036 case 1

    63036

    Disp

    lace

    men

    t u(l,t) (

    mm

    )

    case 2

    0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35Time t (s)

    63036 case 3

    Nonperiodic and almost periodic vibration regimes.

    Dmitri Kartofelev, Anatoli Stulov, Heidi-Maria Lehtonen and Vesa Välimäki (CENS)SMAC SMC 2013 August 3, 2013 13 / 18

  • Case 1: Linear bridge with sharp edge

    Spectrograms of the string vibration u(l, t).

    0.0 0.1 0.2 0.3Time t (s)

    0.00.51.01.52.02.53.0

    Freq

    uenc

    y f

    (kHz

    ) 0102030405060

    Figure: Linear case, no TC

    0.0 0.1 0.2 0.3Time t (s)

    0.00.51.01.52.02.53.0 0

    102030405060 R

    elat

    ive

    leve

    l (dB

    )

    Figure: Case 1. Transition betweenthe vibration regimes is shown bydashed line at tnp = 0.13 s.

    Dmitri Kartofelev, Anatoli Stulov, Heidi-Maria Lehtonen and Vesa Välimäki (CENS)SMAC SMC 2013 August 3, 2013 14 / 18

  • Case 2: Linear bridge with curved edge

    Spectrograms of the string vibration u(l, t).

    0.0 0.1 0.2 0.3Time t (s)

    0.00.51.01.52.02.53.0

    Freq

    uenc

    y f

    (kHz

    ) 0102030405060

    Figure: Linear case, no TC

    0.0 0.1 0.2 0.3Time t (s)

    0.00.51.01.52.02.53.0 0

    102030405060 R

    elat

    ive

    leve

    l (dB

    )

    Figure: Case 2. Transition betweenthe vibration regimes is shown bydashed line at tnp = 0.16 s.

    Dmitri Kartofelev, Anatoli Stulov, Heidi-Maria Lehtonen and Vesa Välimäki (CENS)SMAC SMC 2013 August 3, 2013 15 / 18

  • Case 3: Bridge with minor defect

    Spectrograms of the string vibration u(l, t).

    0.0 0.1 0.2 0.3Time t (s)

    0.00.51.01.52.02.53.0

    Freq

    uenc

    y f

    (kHz

    ) 0102030405060

    Figure: Linear case, no TC

    0.0 0.1 0.2 0.3Time t (s)

    0.00.51.01.52.02.53.0 0

    102030405060 R

    elat

    ive

    leve

    l (dB

    )

    Figure: Case 3. Transition betweenthe vibration regimes is shown bydashed line at tnp = 0.3 s.

    Dmitri Kartofelev, Anatoli Stulov, Heidi-Maria Lehtonen and Vesa Välimäki (CENS)SMAC SMC 2013 August 3, 2013 16 / 18

  • Case 2: Animation

    0 100 200 300 400 500 600 700 800Distance along the string x (mm)

    10

    5

    0

    5

    10Di

    spla

    cem

    ent u

    (x,t) (

    mm

    )

    Time 0.0 ms (nonperiodic regime)

    Case 1Linear caseCase 1

    Dmitri Kartofelev, Anatoli Stulov, Heidi-Maria Lehtonen and Vesa Välimäki (CENS)SMAC SMC 2013 August 3, 2013 17 / 18

  • Conclusions

    A relatively simple method for modeling theTC-string interaction problem was presented.

    Two distinct vibration regimes in the case of thelossless string: strongly nonlinear nonperiodic andalmost periodic regimes.

    Duration of the nonperiodic vibration regimedepended on the bridge profile and on the pluckingcondition.

    A minor imperfection of the bridge profile geometryleads to prolonged nonperiodic vibration regime.

    Dmitri Kartofelev, Anatoli Stulov, Heidi-Maria Lehtonen and Vesa Välimäki (CENS)SMAC SMC 2013 August 3, 2013 18 / 18


Recommended