+ All Categories
Home > Documents > Modeling and evaluation of integration of SNG...

Modeling and evaluation of integration of SNG...

Date post: 18-Aug-2018
Category:
Upload: lyngoc
View: 216 times
Download: 0 times
Share this document with a friend
22
Modeling and evaluation of integration of SNG plants with Carbon Capture and Storage Technologies Claudia Bassano , Paolo Deiana, Nicola Verdone, Lorenza Pacetti 19-22 May 2014, Dresden, Germany ENEA Italian National Agency for New Technologies, Energy And Sustainable Economic Development Casaccia Research Center Rome University of Rome “La Sapienza”, Department of Chemical Engineering, Materials and Envronment
Transcript
Page 1: Modeling and evaluation of integration of SNG …tu-freiberg.de/sites/default/files/media/professur-fuer-energiever... · Modeling and evaluation of integration of SNG plants with

Modeling and evaluation of integration of SNG plants with Carbon Capture and Storage Technologies Claudia Bassano, Paolo Deiana, Nicola Verdone, Lorenza Pacetti 19-22 May 2014, Dresden, Germany

ENEA Italian National Agency for New Technologies, Energy And Sustainable Economic Development Casaccia Research Center – Rome University of Rome “La Sapienza”, Department of Chemical Engineering, Materials and Envronment

Page 2: Modeling and evaluation of integration of SNG …tu-freiberg.de/sites/default/files/media/professur-fuer-energiever... · Modeling and evaluation of integration of SNG plants with

Agenda

• Introduction

• SNG plant process description

System modeling Mass and energy balance Efficiency

• SNG plant performance evaluation

• Conclusions

IFC 2014 19-22 May 2014, Dresden

Page 3: Modeling and evaluation of integration of SNG …tu-freiberg.de/sites/default/files/media/professur-fuer-energiever... · Modeling and evaluation of integration of SNG plants with

ENEA is the Italian National Agency for New Technologies, Energy and Sustainable Economic Development (Law n. 99 of July 23rd, 2009)

ENEA activities are targeted to research, innovation technology and advanced services in the fields of energy.

ENEA performs research activities and provides agency services in support to public administrations, public and private enterprises, and citizens.

12 Research centres

18 Controlled Companies

11 Consortia

What is ENEA?

IFC 2014 19-22 May 2014, Dresden

Page 4: Modeling and evaluation of integration of SNG …tu-freiberg.de/sites/default/files/media/professur-fuer-energiever... · Modeling and evaluation of integration of SNG plants with

To evaluate the performance of a coal to SNG plant and its implementation with Carbon Capture and Storage Technologies

To chose a configuration plant by integration

of various process block

Analysis and modeling of coal-based SNG plants

To compare two different SNG plant configuration

IFC 2014 19-22 May 2014, Dresden

To improve the thermal efficiency

Page 5: Modeling and evaluation of integration of SNG …tu-freiberg.de/sites/default/files/media/professur-fuer-energiever... · Modeling and evaluation of integration of SNG plants with

Study: CCS Technologies Integrated into SNG Plants

Sulcis

Basin

1 ) CO2 storage

Sulcis Basin

Site to test CCS throught

ECBM

acquifers tecniques

Mine mouth plant

Sulcis Coal Mine

South-West Sardinia Italy

Plant size: plant location

Coal mine availability 1 Mtons/y

Technical analysis of SNG plant

2) Absence of regional natural gas supply

IFC 2014 19-22 May 2014, Dresden

Page 6: Modeling and evaluation of integration of SNG …tu-freiberg.de/sites/default/files/media/professur-fuer-energiever... · Modeling and evaluation of integration of SNG plants with

Mass and Energy Balance

Equilibrium Gibbs Reactors, yeld reactor

Process Integration

System modeling

The simulations were carried out using a commercial software AspenPlus

Two different plant configurations have been developed:

1. Case A Case A + CCS

2. Case B Case B + CCS

Highly Exothermic Reaction

CO + 3H2 CH4 + H2O

DH°298 = - 206 kJ/mol

Increase of the temperature in the reactor

Optimal use of reaction heat

CO feed → Potential formation of carbonyls

IFC 2014 19-22 May 2014, Dresden

Page 7: Modeling and evaluation of integration of SNG …tu-freiberg.de/sites/default/files/media/professur-fuer-energiever... · Modeling and evaluation of integration of SNG plants with

SNG

H2S vs Claus

COAL

METHANATION GASIFIER SOUR SHIFT

Steam

CO2 vent

CH4

AGR

ASU

Air

N2

O2

Heat control by product recycle

Removal of H2S & CO2

Molar ratio

CO/H2=3 adjusted

Gasification

System modeling: CASE A

IFC 2014 19-22 May 2014, Dresden

Page 8: Modeling and evaluation of integration of SNG …tu-freiberg.de/sites/default/files/media/professur-fuer-energiever... · Modeling and evaluation of integration of SNG plants with

COAL

METHANATION GASIFIER SWEET SHIFT

Steam

CH4

AGR

ASU Air

N2

O2

AGR

CO2 vent

H2S vs Claus

SNG Removal

of CO2

Heat control gas dilution

with CO2

Molar ratio

CO/H2=3 adjusted

Removal of

H2S Gasification

System modeling: CASE B

IFC 2014 19-22 May 2014, Dresden

Page 9: Modeling and evaluation of integration of SNG …tu-freiberg.de/sites/default/files/media/professur-fuer-energiever... · Modeling and evaluation of integration of SNG plants with

CO2 vs storage

H2S vs Claus

COAL

METHANATION GASIFIER SOUR SHIFT

Steam

CH4

AGR

ASU

Air

N2

O2

CO2 COMPRESSION

COAL

METHANATION GASIFIER SHIFT

H2S vs Claus

Steam

CH4

AGR

ASU Air

N2

O2

AGR

CO2 COMPRESSION

CO2 vs storage

System modeling: CASE CCS

IFC 2014 19-22 May 2014, Dresden

CCS CASE A

CCS CASE B

Page 10: Modeling and evaluation of integration of SNG …tu-freiberg.de/sites/default/files/media/professur-fuer-energiever... · Modeling and evaluation of integration of SNG plants with

System modeling: assumptions

Gasifier Fixed Bed Dry Bottom O2:coal= 0.67 kg/kg (daf); Steam: coal 2.5 kg/kg (daf); Pressure = 30 bar ASU section: 175 kWhe/tO2 O2 purity of 94.3%

WGS section Two catalytic reactors operating in series HT-WGS THT=300°C LT-WGS TLT=200°C Adiabatic Gibbs reactor Chemical equilibrium

AGR section CASE A Rectisol L/G=3 kg/kg p design 30 bar Gas clean H2S= 1 ppm CO2 =1 % H2S rich gas H2S % vol.>20 %

AGR section CASE B

2 Rectisol section p design 30 bar Gas clean H2S= 1 ppm

CO2 compression 3 compressor stages with inter-coolers CO2 liquid purity CO2 = 95 % H2S<200 ppm CO2 liquid pressure p=150 bar

IFC 2014 19-22 May 2014, Dresden

Page 11: Modeling and evaluation of integration of SNG …tu-freiberg.de/sites/default/files/media/professur-fuer-energiever... · Modeling and evaluation of integration of SNG plants with

200

250

300

350

400

450

500

550

600

40 50 60 70 80 90 100

Tem

pera

ture

(°C)

% vol. CH4 dried

Case A: methanation section

R-A401 R-A402 R-A403

SNG

CONDENSATE

RECYCLE COMPRESSOR

SYNGAS FEED

from AGR

CO/H2= 3.1

R-A401

R-A402

R-A403

in

R-401 out

R-401 out

R-402 out

R-403

% vol. % vol. % vol. % vol.

H2 24.5 12.4 2.4 0.6 CO 5.1 0.4 0.0 0.0

CO2 3.0 3.6 1.4 0.9

CH4 41.1 50.3 55.9 56.9

H2O 24.1 31.3 38.2 39.5

N2 2.2 2.2 2.3 2.3 % vol. CH4 dried 54 73 90 94

STEAM 200 t/h p=30 bar T=270 °C

IFC 2014 19-22 May 2014, Dresden

Page 12: Modeling and evaluation of integration of SNG …tu-freiberg.de/sites/default/files/media/professur-fuer-energiever... · Modeling and evaluation of integration of SNG plants with

150

200

250

300

350

400

450

500

550

600

0 10 20 30 40 50

Tem

pe

ratu

re (

°C)

% vol. CH4 dried

Case B: methanation section

R-B401 R-B402 R-B403

CO2 rich SNG

CONDENSATE

SYNGAS FEED

from WGS

CO/H2= 3.1

STEAM 150 t/h p=30 bar T=270 °C

R-B401

R-B402

R-B403

in

R-B401 out

R-B401 out

R-B402 out

R-B403

% vol. % vol. % vol. % vol.

H2 46.8 5.5 0.01 0.0 CO 15.4 3.0 0.00 0.0

CO2 29.7 40.3 43.0 43.0

CH4 7.0 29.2 32.6 32.8

H2O 0.0 20.7 22.7 22.9

N2 0.9 1.3 1.3 1.3 % vol. CH4 dried 6.97 36.87 42.39 42.50

IFC 2014 19-22 May 2014, Dresden

Page 13: Modeling and evaluation of integration of SNG …tu-freiberg.de/sites/default/files/media/professur-fuer-energiever... · Modeling and evaluation of integration of SNG plants with

COAL

Steam

O2

ash

pyrolysis gas

Q dryng

Q pyrolysis

Syngas

Dryng zone

Pyrolysis zone

Gasification Combustion

zone

Temp

height

DRYNG

DEVOLATILIZATION

GASIFICATION

COMBUSTION

PREHEATING OF

AIR AND STEAM

COAL SYNGAS

ASH AIR AND

STEAM

AND

Temp

height

DRYNG

DEVOLATILIZATION

GASIFICATION

COMBUSTION

PREHEATING OF

AIR AND STEAM

COAL SYNGAS

ASH AIR AND

STEAM

AND

System modeling: updraft gasifier

IFC 2014 19-22 May 2014, Dresden

Page 14: Modeling and evaluation of integration of SNG …tu-freiberg.de/sites/default/files/media/professur-fuer-energiever... · Modeling and evaluation of integration of SNG plants with

Gasification pressure bar 30

Coal mass flow kg/s 52

O2/coal mass (daf basis) a 0.67

Steam/coal mass (daf basis) m 2.5

Nm3 Syngas/kgcoal (daf basis) 2.4

Syngas LHV MJ/kg 10.7

Cold Gas Efficiency CGE 0.7

Raw gas composition % mol (dry basis)

H2 42.8

CO 19.2

CO2 29.4

CH4 6.8

H2S+COS 0.82

CnHm 0.51

N2 1.6

System modeling: updraft gasifier results

Syngas from Aspen model

IFC 2014 19-22 May 2014, Dresden

Assumptions and results

Page 15: Modeling and evaluation of integration of SNG …tu-freiberg.de/sites/default/files/media/professur-fuer-energiever... · Modeling and evaluation of integration of SNG plants with

Rectisol process

Case A: Acid Gas Removal section

H2S & CO2 Absorber T=-40°C

Clean gas H2S =1ppm CO2 =1 % vol.

CO2 vs. vent/storage H2S 20 % vol. vs. Claus

Raw gas from Sour WGS

L/G Kg/kg 3.2

W refrigeration MWe 40

p bar 30 IFC 2014 19-22 May 2014, Dresden

Page 16: Modeling and evaluation of integration of SNG …tu-freiberg.de/sites/default/files/media/professur-fuer-energiever... · Modeling and evaluation of integration of SNG plants with

Case CCS A & CASE CCS B CO2 compression section

CO2 compression/liquefaction

Three compressor stages

14 bar, 40 bar, 80 bar

inter-coolers T=25 °C

CO2 liquid: 95 % in CO2, H2S<200 ppm, H2O< 300 ppm

(CO2 stream quality requirements transport)

H2O

CO2

IMPURITIES

CO2 LIQUID K-603 K-604 K-605 P-604

IFC 2014 19-22 May 2014, Dresden

Page 17: Modeling and evaluation of integration of SNG …tu-freiberg.de/sites/default/files/media/professur-fuer-energiever... · Modeling and evaluation of integration of SNG plants with

SNG

81465 Nm3/h

807 MWth

Coal

4500 ton/d

Coal to SNG plant

Ash 691 ton/d

CO2 vent 5106 ton/d

BASE CASE A

SNG

81400 Nm3/h

805 MWth

Coal to SNG plant

Ash 691 ton/d

CO2 vent 5195 ton/d

BASE CASE B

System modeling: main results base case

Coal

4500 ton/d

IFC 2014 19-22 May 2014, Dresden

Page 18: Modeling and evaluation of integration of SNG …tu-freiberg.de/sites/default/files/media/professur-fuer-energiever... · Modeling and evaluation of integration of SNG plants with

SNG

81465 Nm3/h

807 MWth

Coal

4500 ton/d

Coal to SNG plant

Ash 691 ton/d

CO2 vent 360 ton/d

CASE A

SNG

81400 Nm3/h

805 MWth

Coal to SNG plant

Ash 691 ton/d

CO2 vent 470 ton/d

CASE B

Coal

4500 ton/d

CO2 storage 4747 ton/d

CO2 storage 4734 ton/d

System modeling: main results CCS CASE

CO2 removal efficiency = 93 %

CO2 removal efficiency = 91 %

IFC 2014 19-22 May 2014, Dresden

Page 19: Modeling and evaluation of integration of SNG …tu-freiberg.de/sites/default/files/media/professur-fuer-energiever... · Modeling and evaluation of integration of SNG plants with

CASE A CASE A + CCS CASE B CASE B + CCS Coal t/h 187.5 187.5 187.5 187.5 SNG Nm3/h 81466 81466 81407 81407 Thermal input MWth 1320 1320 1320 1320 Auxiliary loads MWe 76.4 86.8 57.3 67.8 Efficiency h 0.52 0.51 0.53 0.52 CO2 capture % 0 93 0 91 Nm3CH4 /kg Coal 0.43 0.43 0.43 0.43

Main performance of SNG plant

Auxiliary loads

IFC 2014 19-22 May 2014, Dresden

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

CASE A CASE A + CCS

CASE B CASE B + CCS

MWe

CO2 compression

Methanathion

AGR

ASU

Gasifier

Page 20: Modeling and evaluation of integration of SNG …tu-freiberg.de/sites/default/files/media/professur-fuer-energiever... · Modeling and evaluation of integration of SNG plants with

Conclusions

The analysis evaluates different scenarios in order to underline potential benefits of SNG production from low rank coal.

1) Comparative performance of two SNG plant configurations

Case A One AGR section Methanation section

Higher production of superheated HP steam Energy consumption of the compressor Increase volumetric flow in the first reactor

Case B

Two AGR section Methanation section

Low temperature process (Tmax = 550°C) No recycle compressor

IFC 2014 19-22 May 2014, Dresden

Page 21: Modeling and evaluation of integration of SNG …tu-freiberg.de/sites/default/files/media/professur-fuer-energiever... · Modeling and evaluation of integration of SNG plants with

Conclusions

2) Energy efficiency Comparative performance analysis shows similar efficiencies for the two cases 3) CCS implementation The capture of CO2 is strictly integrated into SNG plant. In order to meet the pipeline requirements for natural gas is in fact necessary to remove part of the CO2 produced in the process. This analysis indicates a powerful synergism among SNG plant and CO2 capture systems. The introduction of CCS in SNG plant shows a modest decrease of efficiency

IFC 2014 19-22 May 2014, Dresden

Page 22: Modeling and evaluation of integration of SNG …tu-freiberg.de/sites/default/files/media/professur-fuer-energiever... · Modeling and evaluation of integration of SNG plants with

Thank you for your attention!

[email protected]

http://www.enea.it


Recommended