+ All Categories
Home > Documents > Modeling Chemical Reactions for Drug Discovery

Modeling Chemical Reactions for Drug Discovery

Date post: 30-Nov-2021
Category:
Upload: others
View: 3 times
Download: 0 times
Share this document with a friend
46
/slides/dirname/filename.ppt © Gasteiger et al. C 3 Modeling Chemical Reactions for Drug Discovery Johann Gasteiger Computer-Chemie-Centrum Universität Erlangen-Nürnberg D-91052 Erlangen Germany http://www2.ccc.uni-erlangen.de /slides/Biochemical_Pathways/Folien/CCC/gcb00.ppt © Gasteiger et al. C 3
Transcript

/slides/dirname/filename.ppt© Gasteiger et al.C3

Modeling Chemical Reactions for Drug Discovery

Johann GasteigerComputer-Chemie-Centrum

Universität Erlangen-NürnbergD-91052 Erlangen

Germanyhttp://www2.ccc.uni-erlangen.de

/slides/Biochemical_Pathways/Folien/CCC/gcb00.ppt© Gasteiger et al.C3

/slides/dirname/filename.ppt© Gasteiger et al.C3

Chemical Reactions and Drug Design• target identification

enzyme reactions• lead discovery and lead optimization

library synthesissynthetic accessibilitystability of compounds

• ADME-Toxmetabolism of drugs toxicity

J.Gasteiger, J.Comput.Aided Mol. Des., 2007, 21, 33-52

/slides/dirname/filename.ppt© Gasteiger et al.C3

Modeling Chemical Reactions

- theoretical chemist:

quantum-mechanical calculations: time-consuming

- organic chemist:

concepts for rationalizing reaction mechanisms

⇒ quantify physicochemical effects⇒ learn from the data gained by chemists in the lab

/slides/Biochemical_Pathways/Folien/CCC/roche_2.ppt© Gasteiger et al.C3

/slides/dirname/filename.ppt© Gasteiger et al.C3

Calculation of Chemical Effects

charge distributionJ. Gasteiger, M. Marsili, Tetrahedron 36, 3219 (1980)

inductive effectJ. Gasteiger, M. G. Hutchings, Tetrah. Lett. 24, 2541 (1983)

resonance effectJ. Gasteiger, H. Saller, Angew. Chem. Int. Ed. Engl. 24, 687 (1985)

polarizability effectJ. Gasteiger, M. G. Hutchings, J. Chem. Soc. Perkin 2, 559 (1984)

bond dissociation energyJ. Gasteiger, Comp. Chem. 2, 85 (1978)

/slides/dirname/filename.ppt© Gasteiger et al.C3

• alcohols (286 cpds.)• aliphatic acids (1109 cpds.)• phenols (452 cpds.)• benzoic acids (341 cpds.)• aliphatic amines (409 cpds.)

Prediction of pKa ValueCompound Classes

/slides/dirname/filename.ppt© Gasteiger et al.C3

Prediction of pKa valuesDescriptors Used

electronic effects

steric descriptor

/slides/dirname/filename.ppt© Gasteiger et al.C3

A pKa Model for Phenols

n = 452, r2 = 0.81, s = 0.95

Qtot,O , αO, A(2D), qπ,O

carboxyoOOOOtota IqDAQpK −+++−−= 3.22.154)2(2.10.24.480.7 ,, πα

OH

H2O+ O- H3O++

/slides/dirname/filename.ppt© Gasteiger et al.C3

A pKa Model for Phenols

n = 452R = 0.81σ = 0.95Rloo-cv = 0.80σloo-cv = 0.97

0 5 10 15

02

46

810

12

pKa (observed)

pKa (

pred

icte

d)

2

2

/slides/dirname/filename.ppt© Gasteiger et al.C3

SYLVIA

estimation of synthetic accessibility

/slides/dirname/filename.ppt© Gasteiger et al.C3

de novo design system• constructs a diverse set of novel potential leads from scratch

however, these have to be synthesized by medicinal chemists

estimate synthetic accessibility• ranks these structures according to ease of synthesis

Receptor Structure Based Drug Design

/slides/dirname/filename.ppt© Gasteiger et al.C3

Estimation of Synthetic Accessibility

structure-based:• molecular graph complexity • ring complexity • stereochemical complexity

starting material-based:• similarity to starting materials

based on made bonds• based on presence of product reaction center substructures (RCSS) extracted from reaction databases

/slides/dirname/filename.ppt© Gasteiger et al.C3

Synthetic Accessibility

simple complex

3.49

3.56

5.28

6.58

/slides/dirname/filename.ppt© Gasteiger et al.C3

Analysis of Pharma Estimations

• dataset = 100 structures with known synthetic routes were collected from J. Med. Chem.

- wide variety in size and complexity

• request: estimate synthetic accessibility (1-easy,10-difficult)

correlation coefficients for the estimationsALTANA1 ALTANA2 ALTANA3 4SC JG Lilly

ALTANA1 — 0,75 0,77 0,63 0,84 0,74ALTANA2 — 0,78 0,37 0,73 0,74ALTANA3 — 0,47 0,82 0,75

4SC — 0,56 0,51JG — 0,81Lilly —

/slides/dirname/filename.ppt© Gasteiger et al.C3

Comparison of Synthetic Accessibility Estimations

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

Predicted Synthetic Accessibility

Lilly

human - human human - computer

correlation = 0.75 correlation = 0.74

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

ALTANA-3

Lilly

K.Boda, T.Seidel, J.Gasteiger, J.Comp.Aid.Mol.Des., 2007, in press

SYLVIAGraphical user interface

novice userstrying out & playing around

Web servicesimple deployment to lab benches

Batch versioneasy integration intoexisting workflows

Availability (planned)β-version in mid-Junefinal version for ACS national meeting, Aug. 2007

/slides/dirname/filename.ppt© Gasteiger et al.C3

RetroSynthesis Browser

design of organic syntheses

/slides/dirname/filename.ppt© Gasteiger et al.C3

RetroSynthesis Browser

DB of reaction centers and transformations

full reactiontarget

NH NH

O

NH NH

ONH NH

O

O

SN N

O

NH

NH + +

+

NH NH

O

NH2 NH2

OS

+

DB of reactions(Theilheimer,

BioPath, ELN, etc.)

……

S C O

O

CS

/slides/dirname/filename.ppt© Gasteiger et al.C3

Methoxatin (coenzyme PQQ)

NH

ONO

HO2CCO2H

CO2H

• coenzyme for redox catalysis discovered in 1979 in methylotrophic bacteria (methane and methanol oxidation)

• present in mammals: growth factor, tissue protective agent, vitamin

• eight published syntheses (8 to 13 steps)

/slides/dirname/filename.ppt© Gasteiger et al.C3

Methoxatin: First Published Synthesis (10 Steps)

NH2

NO2

OMeO O

OMe

NHCO

NO2

OMeNHCO

NH2

OMe

NHCO

NH

OMe

N

Me

CO2Me

NHCO

NH

OMe

MeO2C

NH2

NH

OMe

MeO2CO

MeO2C CO2Me NH

OMe

MeO2C

NH

CO2Me

OH CO2Me

NH

OMe

MeO2C

N CO2Me

CO2Me NH

O

MeO2C

N CO2Me

CO2Me

O

NHMeO2C

N CO2Me

CO2Me

OOMeMeO

NH

ONO

HO2CCO2H

CO2H

HCOOAc, HCO2H H2, PtO2, EtOH, 65°C1. NaNO2, HCl2. KOH, MeOH/H2O, 0°C

95% 93%

HCO2H, 80°C

72%

HCl

acetone/H2O Δ

dry HCl

> 90%79%60%

(NH4)2Ce(NO3)6

CH3CN/H2O, 0°C

HC(OMe)3, TsOH

MeOH, Δ

1. 0.5 N K2CO3, 85°C

2. HCl, pH 2.5

92%

98%

80%

25°C 25°C

Corey, E. J.; Tramontano, A. J. Am. Chem. Soc. 1981, 103, 5599-5600

/slides/dirname/filename.ppt© Gasteiger et al.C3

Methoxatin: Oxydation Step (1)

• suggested synthesis:

• published reaction:

NH

ONO

HO2CCO2H

CO2H

NH

ONO

CO2H

CO2HCo(AcO)2, NaBr, HOAc, AIBN

O2, dichlorobenzene, 110°C, 9 hrs

92%

Yang, F.; Sun, J.; Zheng, R.; Qiu, W.; Tang, J.; He, M. A. Tetrahedron 2004, 60, 1225-1228

/slides/dirname/filename.ppt© Gasteiger et al.C3

Methoxatin: Diels-Alder Step (2)

• suggested synthesis:

• published reaction:

Genisson, V. B.; Nebois, P.; Domard, M.; Fillion, H. Chem. Pharm. Bull. 2000, 48, 893-894

NH

OO

NH

ONO

NN

+

NH

OO

MeO2CNH

ONO

MeO2C

NN

+

42%

THF

RT

/slides/dirname/filename.ppt© Gasteiger et al.C3

Methoxatin: Oxydation Step (3)

• suggested synthesis:

• published reaction:

Cai, P.; Snyder, J. K.; Chen, J.-C.; Fine, R.; Volicer, L. Tetrahedron Lett. 1990, 31, 969-972

NH

OH

NH

OO

NH

OH

NHCO2Et

NH

OO

NHCO2Et

90%

(C6H5SeO)2O

/slides/dirname/filename.ppt© Gasteiger et al.C3

Methoxatin: Azadiene Formation (4)

• suggested synthesis:

• published reaction:

Corey, E. J.; Pearce, H. L. J. Am. Chem. Soc. 1979, 101, 5841-5843

ONH2 N

NN

+

O NN

NH2 N

95%

+CF3COOH

Tol, Δ

/slides/dirname/filename.ppt© Gasteiger et al.C3

Methoxatin: Suggested Synthesis with RSB (4 steps)

O

NH2 N

NH

OH

NH

OO

NH

ONO

HO2CCO2H

CO2H

NH

ONO

NN +

+

(1)

(2)

(3) (4)

/slides/dirname/filename.ppt© Gasteiger et al.C3

Endogenous Metabolism

analysis of enzyme reactions

/slides/dirname/filename.ppt© Gasteiger et al.C3

/slides/dirname/filename.ppt© Gasteiger et al.C3

BioPath Database

molecules and reactions are stored with atomic resolution:- molecules as connection tables- reactions with reaction center marked

• 1,533 structures

• 2,175 reactions

/slides/Biochemical_Pathways/Folien/CCC/roche_2.ppt© Gasteiger et al.C3

M.Reitz, O.Sacher, A.Tarkhov, D.Trümbach, J.Gasteiger, Org. Biomol. Chem., 2004, 2, 3226-3237.

/slides/dirname/filename.ppt© Gasteiger et al.C3

Web-based Retrieval System

• web-based graphical user interface

• various rapid search methods for chemical structures

• structure search• substructure search• similarity search• 3D substructure search• search by EC number,

compartment, species

• search by reaction center

C@ROL

C ompoundA ccess & R etrievalO n L ine system http://www.mol-net.com/databases

/slides/dirname/filename.ppt© Gasteiger et al.C3

Biochemical Reactions

lycopene β-carotene

acetyl-CoA + acetoacetyl-CoA 2-hydroxy-3-methylglutaryl-CoA

2-ketoglutarate + CO2 oxalosuccinate

isopentenyl-PP + dimethylallyl-PP geranyl-PP

D-glyceraldehyde-3-P + dihydroxyacetone-P β-D-fructose-1,6-P2

/slides/dirname/filename.ppt© Gasteiger et al.C3

Reaction Center Searchsearch for biochemical reactions making a

single C-C bond

110 hits

CCmake/break

/slides/dirname/filename.ppt© Gasteiger et al.C3

C-C Bond Formation

lycopene β-carotene

acetyl-CoA + acetoacetyl-CoA 2-hydroxy-3-methylglutaryl-CoA

2-ketoglutarate + CO2 oxalosuccinate

isopentenyl-PP + dimethylallyl-PP geranyl-PP

D-glyceraldehyde-3-P + dihydroxyacetone-P β-D-fructose-1,6-P2

⇒ what are the similarities between these reactions ?

⇒ can we find new uses for an enzyme ?

/slides/dirname/filename.ppt© Gasteiger et al.C3

• search for enzyme inhibitors

• search for similar enzymes

• search for alternative pathways

Applications

/© Gasteiger et al.C3

/slides/dirname/filename.ppt© Gasteiger et al.C3

Energy Diagram of an Enzyme Catalyzed vs. Uncatalyzed Reaction

⇒ an enzyme must most tightly bind the transition state

⇒ inhibitors are transition states analogs

/slides/dirname/filename.ppt© Gasteiger et al.C3

Reaction Catalyzed by AMP Deaminase(EC 3.5.4.6)

nucleophilic substitution (AE)

AMP + H20 → IMP +NH3

H H

N

N

N

N

P O O

O O

O

O

O

N

H H

HH

H H

N

N

N

N

P O O

O O

O

O

O

O

HHH H

H

H H

OH H N

H H

H

+ +

/slides/dirname/filename.ppt© Gasteiger et al.C3

Reaction Catalyzed by AMP Deaminase(EC 3.5.4.6)

intermediateAMP IMP

H H

N

N

N

N

P O O

O O

O

O

O

N

H H

HH

H H

N

N

N

N

P O O

O O

O

O

O

O

HHH H

H

H H

N

N

N

N

P O O

O O

O

O

OHH

H H

HO N

H H

H H H

+H2O -NH3

/slides/dirname/filename.ppt© Gasteiger et al.C3

coformycin

N

N

O O

O O

HHH H

Inhibitor of AMP Deaminase:R-coformycin

H H

H

N

N

O H

H

H

/slides/dirname/filename.ppt© Gasteiger et al.C3

Superimpositions with Carbocyclic Coformycin

carb. cof. + AMP

rms=0.19Å

carb. cof. + intermediate

rms=0.13Å

carb. cof. + IMP

rms=0.20Å(# atoms = 16)

M.Reitz, A.von Homeyer, J.Gasteiger, J.Chem.Inf.Model., 2006, 46, 2333-2341

/slides/dirname/filename.ppt© Gasteiger et al.C3

Metabolism of Xenobiotics

selectivity between cytochrome P450 isoforms

/slides/dirname/filename.ppt© Gasteiger et al.C3

Metabolism by Cytochrome P450 Enzymes

• different isoforms (isoform specificity)• e.g. 2D6 vs. 3A4

• different reaction types (chemoselectivity)• e.g. N- vs. O-dealkylation

• different reaction sites (regioselectivity)• e.g. aromatic hydroxylation in m- vs. p-position

Prediction of Selectivities

/slides/dirname/filename.ppt© Gasteiger et al.C3

Data Set of 3A4, 2D6, and 2C9 Substrates

Training set: 146 drugs, substrate for 3A4, 2D6 or 2C9*

*Manga, N. et al. SAR and QSAR in Env. Res. 2005, 16, 43-61.

Bufuralol Tramadol Felodipine

O OH

N

OOHN

NH

O

O

O

O

Cl

Cl

/slides/dirname/filename.ppt© Gasteiger et al.C3

SVM Model

• Descriptor (242 components)• Automatic variable selection: 12 components

•2D-ACidentity(5), 2D-ACqπ(3), 2D-ACqπ(6), 2D-ACχπ(5), 2D-ACqσ(1), 2D-ACqσ(2), 2D-ACχσ(6), 3D-ACidentity([5.8-5.9[Å), nacid_groups, naliphatic_amino , nbasic_n , r3

PredictabilityTraining: 90.4%5-fold CV: 87.8%

/slides/dirname/filename.ppt© Gasteiger et al.C3

Validation of the SVM Model

• Validation set: 233 substrates from the Metabolite database

• Predictability: 82.8%

L. Terfloth, B. Bienfait, J. Gasteiger, „Ligand-based Models for the IsoformSpecificity of Cytochrome P450 3A4, 2D6, and 2C9 Substrates.“ J. Chem.Inf. Model. In print.

ISOCYP Webservice

http://www.molecular-networks.com/online_services

/slides/dirname/filename.ppt© Gasteiger et al.C3

Acknowledgements

Dr. Bruno BienfaitDr. Krisztina BodaMaria CamargoDr. Yongquan HanAngelika Hofmann Alexander von HomeyerDimitar HristozovDr. Thomas KleinöderJörg MarusczykDr. Eric Pellegrini

Martin ReitzDr. Lothar TerflothDr. Dušica VidovićDr. Jinhua ZhangDr. Qian-Nan Hu

Molecular NetworksDr. Oliver SacherDr. Achim Herwig

Synthesis Design and ReactionPrediction

SYLVIAEstimation of synthetic accessibility

RetroSynthesis BrowserBrowse a reaction database for similar reactions

Prediction of Metabolism

BioPathDatabase of biochemical pathways in endogenous metabolism

XENIADatabase of metabolic reactions for xenobiotics(drugs, agrochemicals)

MetaboGenGeneral of metabolites of xenobiotics

ISOCYPClassification of organic compounds into the major cytochromeP450 isoform that metabolizes it


Recommended