+ All Categories
Home > Documents > Modeling coupled processes · Fluid flow Reactive transport Deformation Hydraulics Chemistry...

Modeling coupled processes · Fluid flow Reactive transport Deformation Hydraulics Chemistry...

Date post: 13-Aug-2020
Category:
Upload: others
View: 4 times
Download: 0 times
Share this document with a friend
95
Page 1 Modeling coupled processes Solving multifield problems with objectoriented numerical methods Application examples in geotechnics and hydrology Olaf Kolditz
Transcript
Page 1: Modeling coupled processes · Fluid flow Reactive transport Deformation Hydraulics Chemistry Mechanics Thermodynamics Multi‐Physics: THMC coupled processes. Page 8 PorousMedia:

Page 1

Modeling coupled processesSolving multi‐field problems with object‐oriented numerical methodsApplication examples in geotechnics and hydrology

Olaf Kolditz

Page 2: Modeling coupled processes · Fluid flow Reactive transport Deformation Hydraulics Chemistry Mechanics Thermodynamics Multi‐Physics: THMC coupled processes. Page 8 PorousMedia:

Page 2

Variety of problems

T

H

M

C

Yajie Wu

Karsten Rink

Thomas KalbacherNorbert Böttcher

Page 3: Modeling coupled processes · Fluid flow Reactive transport Deformation Hydraulics Chemistry Mechanics Thermodynamics Multi‐Physics: THMC coupled processes. Page 8 PorousMedia:

Page 3

GeothermalEnergy

GeotechnicalSystems

WaterQuality

Water Resources

Variety of geoscientific problem requires system analysis

Page 4: Modeling coupled processes · Fluid flow Reactive transport Deformation Hydraulics Chemistry Mechanics Thermodynamics Multi‐Physics: THMC coupled processes. Page 8 PorousMedia:

Page 4

OutlineIntroduction / Motivation• Geotechnics• Hydrology, soil science

Governing equations

Software issues• Object‐oriented methods• HPC and visualization

Applications• CO2 sequestration• Nuclear waste deposition• Coupled hydrosystems• Geothermal energy (Norihiro Watanabe)

Page 5: Modeling coupled processes · Fluid flow Reactive transport Deformation Hydraulics Chemistry Mechanics Thermodynamics Multi‐Physics: THMC coupled processes. Page 8 PorousMedia:

Page 5

HIGRADE Course onTHM Mechanics

http://www.ufz.de/index.php?en=17985

HIGRADE Course 2011onReactive Transport

Page 6: Modeling coupled processes · Fluid flow Reactive transport Deformation Hydraulics Chemistry Mechanics Thermodynamics Multi‐Physics: THMC coupled processes. Page 8 PorousMedia:

Page 6

Continuum Mechanics

Page 7: Modeling coupled processes · Fluid flow Reactive transport Deformation Hydraulics Chemistry Mechanics Thermodynamics Multi‐Physics: THMC coupled processes. Page 8 PorousMedia:

Page 7

Heat transport

Fluid flow

Reactive transport

Deformation

Hydraulics

Chemistry

Mechanics

Thermodynamics

Multi‐Physics: THMC coupled processes

Page 8: Modeling coupled processes · Fluid flow Reactive transport Deformation Hydraulics Chemistry Mechanics Thermodynamics Multi‐Physics: THMC coupled processes. Page 8 PorousMedia:

Page 8

Porous Media: Phases and Components

Page 9: Modeling coupled processes · Fluid flow Reactive transport Deformation Hydraulics Chemistry Mechanics Thermodynamics Multi‐Physics: THMC coupled processes. Page 8 PorousMedia:

Page 9

Theoretical background:Heat transport in porous media (T)

Governing equation

Boundary and initial conditions

Page 10: Modeling coupled processes · Fluid flow Reactive transport Deformation Hydraulics Chemistry Mechanics Thermodynamics Multi‐Physics: THMC coupled processes. Page 8 PorousMedia:

Page 10

Theoretical background:Non‐isothermal flow in porous media (H)

Governing equation

Page 11: Modeling coupled processes · Fluid flow Reactive transport Deformation Hydraulics Chemistry Mechanics Thermodynamics Multi‐Physics: THMC coupled processes. Page 8 PorousMedia:

Page 11

Theoretical background:Non‐isothermal flow in porous media (H)

Boundary and initial conditions

Page 12: Modeling coupled processes · Fluid flow Reactive transport Deformation Hydraulics Chemistry Mechanics Thermodynamics Multi‐Physics: THMC coupled processes. Page 8 PorousMedia:

Page 12

Theoretical background:Deformation in porous media (M)

Governing equation

Boundary and initial conditions

Page 13: Modeling coupled processes · Fluid flow Reactive transport Deformation Hydraulics Chemistry Mechanics Thermodynamics Multi‐Physics: THMC coupled processes. Page 8 PorousMedia:

Page 13

Constitutive theoryWang, Görke et al. (2007‐10)

Page 14: Modeling coupled processes · Fluid flow Reactive transport Deformation Hydraulics Chemistry Mechanics Thermodynamics Multi‐Physics: THMC coupled processes. Page 8 PorousMedia:

Page 14

Constitutive theoryWang, Görke et al. (2007‐10)

Page 15: Modeling coupled processes · Fluid flow Reactive transport Deformation Hydraulics Chemistry Mechanics Thermodynamics Multi‐Physics: THMC coupled processes. Page 8 PorousMedia:

Page 15

Constitutive theoryWang, Görke et al. (2007‐10)

Page 16: Modeling coupled processes · Fluid flow Reactive transport Deformation Hydraulics Chemistry Mechanics Thermodynamics Multi‐Physics: THMC coupled processes. Page 8 PorousMedia:

Page 16

Constitutive theoryWang, Görke et al. (2007‐10)

Page 17: Modeling coupled processes · Fluid flow Reactive transport Deformation Hydraulics Chemistry Mechanics Thermodynamics Multi‐Physics: THMC coupled processes. Page 8 PorousMedia:

Page 17

Governing Equations

Page 18: Modeling coupled processes · Fluid flow Reactive transport Deformation Hydraulics Chemistry Mechanics Thermodynamics Multi‐Physics: THMC coupled processes. Page 8 PorousMedia:

Page 18

EOSEquations of state

Böttcher et al. (2010)

Page 19: Modeling coupled processes · Fluid flow Reactive transport Deformation Hydraulics Chemistry Mechanics Thermodynamics Multi‐Physics: THMC coupled processes. Page 8 PorousMedia:

Page 19

GOVERNING EQUATIONSH3 Problem

gf

gfs

gf

h

qt

h

∇−=

=⋅∇+∂∂

Kq

q

gf

gfφ

( )zk

qtS

r

sfs

+Ψ∇−=

=⋅∇+∂∂

Kq

q

sf

sfφ

ofj

s

l

ofs

aa

hS

CH

qt

H

∇−=

=⋅∇+∂∂

+

1

1of

of

q

Diffusive wave surface flow

Richards flow in soil Groundwater flow in aquifer

10 ≤≤ aφ

Borden AquiferOK et al. (JHI 2008)

Jens‐Olaf Delfs

Page 20: Modeling coupled processes · Fluid flow Reactive transport Deformation Hydraulics Chemistry Mechanics Thermodynamics Multi‐Physics: THMC coupled processes. Page 8 PorousMedia:

Page 20

Computational Mechanics

Page 21: Modeling coupled processes · Fluid flow Reactive transport Deformation Hydraulics Chemistry Mechanics Thermodynamics Multi‐Physics: THMC coupled processes. Page 8 PorousMedia:

Page 21

Finite element approach:Weak forms with the test function

Heat balance equation (T)Mass balance equation (H)Momentum balance equation (M)

Page 22: Modeling coupled processes · Fluid flow Reactive transport Deformation Hydraulics Chemistry Mechanics Thermodynamics Multi‐Physics: THMC coupled processes. Page 8 PorousMedia:

Page 22

Finite element approach:Applying the Galerkin method to the weak forms leads to the coupling equations

Thermal and hydraulic equations

•Mass and Laplace matrices

Mechanical equation

Page 23: Modeling coupled processes · Fluid flow Reactive transport Deformation Hydraulics Chemistry Mechanics Thermodynamics Multi‐Physics: THMC coupled processes. Page 8 PorousMedia:

Page 23

Finite element approach:The derived coupling equations are solved in the problem‐dependent staggered/monolithic manner

H1H2

M

T

H1H2

M

T

Heat emitting waste CO2

Page 24: Modeling coupled processes · Fluid flow Reactive transport Deformation Hydraulics Chemistry Mechanics Thermodynamics Multi‐Physics: THMC coupled processes. Page 8 PorousMedia:

Page 24

Numerical Methods ‐ Summary

Page 25: Modeling coupled processes · Fluid flow Reactive transport Deformation Hydraulics Chemistry Mechanics Thermodynamics Multi‐Physics: THMC coupled processes. Page 8 PorousMedia:

Page 25

OO Software ConceptHPC Developments and Applications

Page 26: Modeling coupled processes · Fluid flow Reactive transport Deformation Hydraulics Chemistry Mechanics Thermodynamics Multi‐Physics: THMC coupled processes. Page 8 PorousMedia:

Page 26

Heat transport

Fluid flow

Reactive transport

Deformation

Hydraulics

Chemistry

Mechanics

Thermodynamics

Multi‐Physics: THMC coupled processes

Page 27: Modeling coupled processes · Fluid flow Reactive transport Deformation Hydraulics Chemistry Mechanics Thermodynamics Multi‐Physics: THMC coupled processes. Page 8 PorousMedia:

Page 27

Version 4: Object‐Orientationfor Multifield Problems

PCS

MSH

GEO

GeometryPointsPolylinesSurfacesVolumesDomains

TopologyNOD NodesELE  Meshes

IC BC ST

MATMFPMSPMMPMCP

NUM

FEMFDMFVM

FCT

I/O

CProcess::Create()CProcess::Config()CProcess::Execute()

EQS

Kolditz & Bauer (2004)J Hydroinformatics

Source code reduction: 10 (V3) ‐> 3 MB (V4)

Ax = b

x = A‐1b 

Page 28: Modeling coupled processes · Fluid flow Reactive transport Deformation Hydraulics Chemistry Mechanics Thermodynamics Multi‐Physics: THMC coupled processes. Page 8 PorousMedia:

Page 28

OO‐ELEElement Objects

Wang & Kolditz (2007)J Num Methods Eng

Version 4.4 – OO‐FEM

Aij(xj)xi = bi

Page 29: Modeling coupled processes · Fluid flow Reactive transport Deformation Hydraulics Chemistry Mechanics Thermodynamics Multi‐Physics: THMC coupled processes. Page 8 PorousMedia:

Page 29

Processor 0

...

Processor 1 Processor n

Version 4.5 – MPI‐FEM

• MPI parallelization

Page 30: Modeling coupled processes · Fluid flow Reactive transport Deformation Hydraulics Chemistry Mechanics Thermodynamics Multi‐Physics: THMC coupled processes. Page 8 PorousMedia:

Page 30

MPI‐Efficiency for THM coupled problems

Wenqing Wang

Page 31: Modeling coupled processes · Fluid flow Reactive transport Deformation Hydraulics Chemistry Mechanics Thermodynamics Multi‐Physics: THMC coupled processes. Page 8 PorousMedia:

Page 31

MPI‐Efficiency for THM coupled problems

Page 32: Modeling coupled processes · Fluid flow Reactive transport Deformation Hydraulics Chemistry Mechanics Thermodynamics Multi‐Physics: THMC coupled processes. Page 8 PorousMedia:

Page 32

MPI‐Efficiency for THM coupled problems

Page 33: Modeling coupled processes · Fluid flow Reactive transport Deformation Hydraulics Chemistry Mechanics Thermodynamics Multi‐Physics: THMC coupled processes. Page 8 PorousMedia:

Page 33

Version 4.7 – OpenMP

Theory vs. OpenMP

0

10

20

30

40

50

60

70

80

90

100

110

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Number of Threads

% ti

me

in c

ompu

tatio

n

ICC Real time Theory

OpenMP OpenMP OpenMP

MPI MPI

SMP Node

• OpenMP parallelization

• Hybrid parallelization (GRID computing)

Test bed (8 x DualCore)

Simple test example

Page 34: Modeling coupled processes · Fluid flow Reactive transport Deformation Hydraulics Chemistry Mechanics Thermodynamics Multi‐Physics: THMC coupled processes. Page 8 PorousMedia:

Page 34

• SX6 (HLRS)0.3 TFlop/s

• SX8 (HLRS)15 TFlop/s

• Cray XT3 (PSI)8.5 TFlop/s, 1664 CPUs

• BlueGene/L (FZJ)Test node

• LiClus (UFZ)256 CPUs (QuadCore)

• Strider (HLRS)256 Opteron CPUs

• Merlin 3 (PSI)256 Opteron CPUs

• HYDRA (ZAG)8 AMD Opteron CPUs

HPC Platforms

Linux ClusterSuper‐Computer

NEC‐SX8HYDRA

Page 35: Modeling coupled processes · Fluid flow Reactive transport Deformation Hydraulics Chemistry Mechanics Thermodynamics Multi‐Physics: THMC coupled processes. Page 8 PorousMedia:

Page 35

Flexibility of OO codes, but …

THMCcoupling

Surface/subsurfacecouplingFracture networks

OpenMP

MPI

Page 36: Modeling coupled processes · Fluid flow Reactive transport Deformation Hydraulics Chemistry Mechanics Thermodynamics Multi‐Physics: THMC coupled processes. Page 8 PorousMedia:

Page 36

Monte‐Carlo simulation on Parallel Clusters

Measurements

THM model

Stochastic reservoir model

Virtual reservoir1 …

Prediction1

Virtual reservoir2 Virtual reservoir N

Scenario / Assumptions

Prediction2 Prediction N…

Statistical property of sample data

Data analysis

THM model THM modelParallelization

Norihiro Watanabe

Page 37: Modeling coupled processes · Fluid flow Reactive transport Deformation Hydraulics Chemistry Mechanics Thermodynamics Multi‐Physics: THMC coupled processes. Page 8 PorousMedia:

Page 37

(Parallel) Threading for Root‐Soil SystemsThomas Kalbacher

Page 38: Modeling coupled processes · Fluid flow Reactive transport Deformation Hydraulics Chemistry Mechanics Thermodynamics Multi‐Physics: THMC coupled processes. Page 8 PorousMedia:

Page 38

Geochemical SimulatorsCoupled to OGS

MultiCompTransport

CHEMAPP

?FlexibleThermodynamics(High T, high C)

Special Data for nuclideThermodynamicsSorption & desorptionUncertainty

EQlinkPHREEQC

World wide distributedAquatic geochemistryLow T, low C, kineticFree code

BRNS

BiogeochemicalMicrobiologicalprocesses

GEMS

Page 39: Modeling coupled processes · Fluid flow Reactive transport Deformation Hydraulics Chemistry Mechanics Thermodynamics Multi‐Physics: THMC coupled processes. Page 8 PorousMedia:

Page 39

PHREEQC ChemApp

BRNS GEMS

OGS Focus ‐ Reactive Transport

HIGRADE Course 2011: Reactive Transport

Page 40: Modeling coupled processes · Fluid flow Reactive transport Deformation Hydraulics Chemistry Mechanics Thermodynamics Multi‐Physics: THMC coupled processes. Page 8 PorousMedia:

Page 40

Maintenance of scientific software ‐ OpenSource

(6 Partners from 4 countriesIn all about 100 people)

Page 41: Modeling coupled processes · Fluid flow Reactive transport Deformation Hydraulics Chemistry Mechanics Thermodynamics Multi‐Physics: THMC coupled processes. Page 8 PorousMedia:

Page 41

Plattform‐independent: CMakeAutomated benchmarking: CTestScientific Visualization 3D data explorer: Qt

OGS 5 – a scientific open source project

Page 42: Modeling coupled processes · Fluid flow Reactive transport Deformation Hydraulics Chemistry Mechanics Thermodynamics Multi‐Physics: THMC coupled processes. Page 8 PorousMedia:

Page 42

TESSIN ‐ Helmholtz Topic Center for Terrestrial Environmental System Simulation and INtegration

Data modelingHigh performance computingScientitic visualization

Water resourcesGeotechnics (CO2)Geothermal energyLandscape modeling

Page 43: Modeling coupled processes · Fluid flow Reactive transport Deformation Hydraulics Chemistry Mechanics Thermodynamics Multi‐Physics: THMC coupled processes. Page 8 PorousMedia:

Page 43

Process UnderstandingBenchmarks / Code comparisonReal Applications

Page 44: Modeling coupled processes · Fluid flow Reactive transport Deformation Hydraulics Chemistry Mechanics Thermodynamics Multi‐Physics: THMC coupled processes. Page 8 PorousMedia:

Page 44

Multiphase flow (H2)Chan‐Hee Park, Wenqing Wang

Page 45: Modeling coupled processes · Fluid flow Reactive transport Deformation Hydraulics Chemistry Mechanics Thermodynamics Multi‐Physics: THMC coupled processes. Page 8 PorousMedia:

Page 45

3D multiphase flow

Chan‐Hee Park

Page 46: Modeling coupled processes · Fluid flow Reactive transport Deformation Hydraulics Chemistry Mechanics Thermodynamics Multi‐Physics: THMC coupled processes. Page 8 PorousMedia:

Page 46

Known Numerical Issues and Workarounds: Multiphase flow

Local mass conservatory method• Finite difference method • Finite volume method• Mixed‐finite element method

Non‐local mass conservatory method• Standard Galerkin finite element method

Page 47: Modeling coupled processes · Fluid flow Reactive transport Deformation Hydraulics Chemistry Mechanics Thermodynamics Multi‐Physics: THMC coupled processes. Page 8 PorousMedia:

Page 47

Primary Variables:Multiphase flow

Oil science: Pw and Pnw

Soil science: Pc and Pnw

Water resources science: Pw and Sw or Snw

Page 48: Modeling coupled processes · Fluid flow Reactive transport Deformation Hydraulics Chemistry Mechanics Thermodynamics Multi‐Physics: THMC coupled processes. Page 8 PorousMedia:

Page 48

H2(PwSnw and PcPnw): Kueper’s Experiment ‐Heterogeneity (Water and Oil)

Selection of primary variables … don‘t forget about physics

Page 49: Modeling coupled processes · Fluid flow Reactive transport Deformation Hydraulics Chemistry Mechanics Thermodynamics Multi‐Physics: THMC coupled processes. Page 8 PorousMedia:

Page 49

H2 (PwSnw): CO2 workshop in Stuttgart Germany 2008 (Water and CO2)

Is CO2 wetting or non‐wetting to media of our interests?

Page 50: Modeling coupled processes · Fluid flow Reactive transport Deformation Hydraulics Chemistry Mechanics Thermodynamics Multi‐Physics: THMC coupled processes. Page 8 PorousMedia:

Page 50

Multiphase flow (H2T)Non‐isothermal effectsNorbert Böttcher, Ashok Singh

Page 51: Modeling coupled processes · Fluid flow Reactive transport Deformation Hydraulics Chemistry Mechanics Thermodynamics Multi‐Physics: THMC coupled processes. Page 8 PorousMedia:

Page 51

Test case definition

for supercritical fluids(Böttcher et al. 2010)

Page 52: Modeling coupled processes · Fluid flow Reactive transport Deformation Hydraulics Chemistry Mechanics Thermodynamics Multi‐Physics: THMC coupled processes. Page 8 PorousMedia:

Page 52

Non‐isothermal effects for supercritical fluids

for supercritical fluids(Böttcher et al. 2010)

Page 53: Modeling coupled processes · Fluid flow Reactive transport Deformation Hydraulics Chemistry Mechanics Thermodynamics Multi‐Physics: THMC coupled processes. Page 8 PorousMedia:

Page 53

Multiphase flow consolidation (H2M)Defining test casesJoshua Taron, Uwe Görke

Page 54: Modeling coupled processes · Fluid flow Reactive transport Deformation Hydraulics Chemistry Mechanics Thermodynamics Multi‐Physics: THMC coupled processes. Page 8 PorousMedia:

Page 54

Known Numerical Issues and Workarounds: Conversion of primary variables on nodal points to cell centers or the other way around

What if mechanical deformation is involved?• Merge of FEM and FVM or FDM 

Page 55: Modeling coupled processes · Fluid flow Reactive transport Deformation Hydraulics Chemistry Mechanics Thermodynamics Multi‐Physics: THMC coupled processes. Page 8 PorousMedia:

Page 55

A benchmark proposal for H2M ‐ Definition

Page 56: Modeling coupled processes · Fluid flow Reactive transport Deformation Hydraulics Chemistry Mechanics Thermodynamics Multi‐Physics: THMC coupled processes. Page 8 PorousMedia:

Page 56

H2M: German test site for CO2 storage in deformable media

Fluid properties Medium properties

Page 57: Modeling coupled processes · Fluid flow Reactive transport Deformation Hydraulics Chemistry Mechanics Thermodynamics Multi‐Physics: THMC coupled processes. Page 8 PorousMedia:

Page 57

A benchmark proposal for H2M ‐ Results

Page 58: Modeling coupled processes · Fluid flow Reactive transport Deformation Hydraulics Chemistry Mechanics Thermodynamics Multi‐Physics: THMC coupled processes. Page 8 PorousMedia:

Page 58

A benchmark proposal for H2M ‐ Results

Page 59: Modeling coupled processes · Fluid flow Reactive transport Deformation Hydraulics Chemistry Mechanics Thermodynamics Multi‐Physics: THMC coupled processes. Page 8 PorousMedia:

Page 59

Multiphase flow consolidation (H2M)Shear slip during CO2 injection

Page 60: Modeling coupled processes · Fluid flow Reactive transport Deformation Hydraulics Chemistry Mechanics Thermodynamics Multi‐Physics: THMC coupled processes. Page 8 PorousMedia:

Page 60

H2M Problem Definition:

Shale

Sandstone

3 km

100 m

4 m

6 m

σV=76.5 MPa

σH=0.6σv

Line source of CO2 injection: 500 tones per year

Vertical cross-section at 3 km depth

100 m

1 km

∆x=1m and ∆z=0.5m

{pw=31 MPa and Snw=0} or {pc=19 kPa and pnw=pw+pc}

1 mqnw(50,1)= 1.87e-3 m3/day

σH=0.6σv

x

z

Page 61: Modeling coupled processes · Fluid flow Reactive transport Deformation Hydraulics Chemistry Mechanics Thermodynamics Multi‐Physics: THMC coupled processes. Page 8 PorousMedia:

Page 61

CO2 Saturation with 20 Years of the Injection

1 year

10 years

20 years

100 years

Page 62: Modeling coupled processes · Fluid flow Reactive transport Deformation Hydraulics Chemistry Mechanics Thermodynamics Multi‐Physics: THMC coupled processes. Page 8 PorousMedia:

Page 62

Safety Factors for Shear Slip Failure:The realistic failure mode

1 year

10 years

20 years

100 years

Page 63: Modeling coupled processes · Fluid flow Reactive transport Deformation Hydraulics Chemistry Mechanics Thermodynamics Multi‐Physics: THMC coupled processes. Page 8 PorousMedia:

Page 63

A systematic for CO2 benchmarking #1 Processes

Page 64: Modeling coupled processes · Fluid flow Reactive transport Deformation Hydraulics Chemistry Mechanics Thermodynamics Multi‐Physics: THMC coupled processes. Page 8 PorousMedia:

Page 64

A systematic for CO2 benchmarking #3 Scenarios

Page 65: Modeling coupled processes · Fluid flow Reactive transport Deformation Hydraulics Chemistry Mechanics Thermodynamics Multi‐Physics: THMC coupled processes. Page 8 PorousMedia:

Page 65

Multiphase flow consolidation (TH2M)Non‐isothermal effects

Page 66: Modeling coupled processes · Fluid flow Reactive transport Deformation Hydraulics Chemistry Mechanics Thermodynamics Multi‐Physics: THMC coupled processes. Page 8 PorousMedia:

Page 66

DECOVALEXDECOVALEX‐‐IV IV TaskTask DD

DEvelopment of COupled modelsAnd their VAlidation against EXperiments

Task D – Teams:DOE/LBNL Lawrence Berkeley National LaboratoryCAS Chinese Academy of ScienceJAEA/JNC Japan Atomic Energy Agency

Japan Nuclear Cycle Develoment Inst.Hazama Corporation

BGR/UFZ Federal Institut for GeosciencesHelmholtz Center forEnvironmental Sciences

Page 67: Modeling coupled processes · Fluid flow Reactive transport Deformation Hydraulics Chemistry Mechanics Thermodynamics Multi‐Physics: THMC coupled processes. Page 8 PorousMedia:

Page 67

THM1/2 Task Definitions

Page 68: Modeling coupled processes · Fluid flow Reactive transport Deformation Hydraulics Chemistry Mechanics Thermodynamics Multi‐Physics: THMC coupled processes. Page 8 PorousMedia:

Page 68

Geomechanical ProcessesShort‐Term Effects

Significant geomechanical effects are expected in response to heat release from the decaying radioactive waste

FEBEX type:

Drying / wetting of bentoniteinduces shrinkage and swelling in thebuffer

Yucca Mountain type:

High temperature dryout zone byboiling effects

Thermally induced stresses will act upon rock mass:

thermal expansion effects might be recoverable but …

Final DECOVALEX‐IV Reporting (Birkholzer et al. 2008) 

Page 69: Modeling coupled processes · Fluid flow Reactive transport Deformation Hydraulics Chemistry Mechanics Thermodynamics Multi‐Physics: THMC coupled processes. Page 8 PorousMedia:

Page 69

Geomechanical ProcessesLong‐Term Effects

thermal stresses may lead to irreversible impacts

Changes in the stress field during the heating period can lead to inelastic mechanical response induced by fracture shear slip or crushing of fracture asperities

Elevated temperatures and stresses will be maintained for long time periods ‐> increased microcracking, crack growth

‐> irreversible changes 

in hydraulic properties

Final DECOVALEX‐IV Reporting (Birkholzer et al. 2008) 

Page 70: Modeling coupled processes · Fluid flow Reactive transport Deformation Hydraulics Chemistry Mechanics Thermodynamics Multi‐Physics: THMC coupled processes. Page 8 PorousMedia:

Page 70

THM Simulations ‐ T Process

THM1‐FEBEX THM1‐YuccaMountain

Page 71: Modeling coupled processes · Fluid flow Reactive transport Deformation Hydraulics Chemistry Mechanics Thermodynamics Multi‐Physics: THMC coupled processes. Page 8 PorousMedia:

Page 71

THM Simulations ‐M Process

THM1‐FEBEX THM1‐YuccaMountain

Page 72: Modeling coupled processes · Fluid flow Reactive transport Deformation Hydraulics Chemistry Mechanics Thermodynamics Multi‐Physics: THMC coupled processes. Page 8 PorousMedia:

Page 72

THM Simulations ‐ H ProcessTHM1‐FEBEX THM1‐YuccaMountain

Stress dependent

permeability

changes

for Yucca Mountain

type

Page 73: Modeling coupled processes · Fluid flow Reactive transport Deformation Hydraulics Chemistry Mechanics Thermodynamics Multi‐Physics: THMC coupled processes. Page 8 PorousMedia:

Page 73

THM Teams – Flow models

Page 74: Modeling coupled processes · Fluid flow Reactive transport Deformation Hydraulics Chemistry Mechanics Thermodynamics Multi‐Physics: THMC coupled processes. Page 8 PorousMedia:

Page 74

Time [Year] (Log scaling)

Satu

ratio

n

10-3 10-2 10-1 100 101 102 103 104 105 1060.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Present multi-phase modelRichards model

Time [Year] (Log scaling)

Air

pres

sure

[Pa]

10-3 10-2 10-1 100 101 102 103 104 105 1060.0E+00

2.0E+06

4.0E+06

6.0E+06

8.0E+06

1.0E+07

V1V2

Richards vs Two‐Phase Flow

Special Issue(2009)

Page 75: Modeling coupled processes · Fluid flow Reactive transport Deformation Hydraulics Chemistry Mechanics Thermodynamics Multi‐Physics: THMC coupled processes. Page 8 PorousMedia:

Page 75

Richards vs Two‐Phase Flow

Page 76: Modeling coupled processes · Fluid flow Reactive transport Deformation Hydraulics Chemistry Mechanics Thermodynamics Multi‐Physics: THMC coupled processes. Page 8 PorousMedia:

Page 76

Richards vs Two‐Phase Flow

Intrinsic permeability10‐13m2

Intrinsic permeability10‐18m2

Page 77: Modeling coupled processes · Fluid flow Reactive transport Deformation Hydraulics Chemistry Mechanics Thermodynamics Multi‐Physics: THMC coupled processes. Page 8 PorousMedia:

Page 77

Richards vs Two‐Phase Flow

Page 78: Modeling coupled processes · Fluid flow Reactive transport Deformation Hydraulics Chemistry Mechanics Thermodynamics Multi‐Physics: THMC coupled processes. Page 8 PorousMedia:

Page 78

Reactive Transport

Page 79: Modeling coupled processes · Fluid flow Reactive transport Deformation Hydraulics Chemistry Mechanics Thermodynamics Multi‐Physics: THMC coupled processes. Page 8 PorousMedia:

Page 79

Results of THC Simulations1D‐TestMineral 

Abundances

Page 80: Modeling coupled processes · Fluid flow Reactive transport Deformation Hydraulics Chemistry Mechanics Thermodynamics Multi‐Physics: THMC coupled processes. Page 8 PorousMedia:

Page 80

Richards vs. Two‐Phase‐Flow Models

Figure 20: Alteration of Annite and Pyrite, Multiphase flow / Richards flow

Page 81: Modeling coupled processes · Fluid flow Reactive transport Deformation Hydraulics Chemistry Mechanics Thermodynamics Multi‐Physics: THMC coupled processes. Page 8 PorousMedia:

Page 81

Reactive nuclide transport

120 species have to beconsidered to represent thegeochemical system

non‐ideal solid solutions

60 in PSI data base Haibing Shao (PhD thesis 2010)

Reactive TransportNuclear Waste Deposition

Page 82: Modeling coupled processes · Fluid flow Reactive transport Deformation Hydraulics Chemistry Mechanics Thermodynamics Multi‐Physics: THMC coupled processes. Page 8 PorousMedia:

Page 82

Approaching the RealityGeometry matters …

Björn Zehner, Lars Bilke

Page 83: Modeling coupled processes · Fluid flow Reactive transport Deformation Hydraulics Chemistry Mechanics Thermodynamics Multi‐Physics: THMC coupled processes. Page 8 PorousMedia:

Page 83

HPC in real applications of THM codes

Whiteshell URLCanada

Page 84: Modeling coupled processes · Fluid flow Reactive transport Deformation Hydraulics Chemistry Mechanics Thermodynamics Multi‐Physics: THMC coupled processes. Page 8 PorousMedia:

Page 84

HPC in real applications of THM codes

Page 85: Modeling coupled processes · Fluid flow Reactive transport Deformation Hydraulics Chemistry Mechanics Thermodynamics Multi‐Physics: THMC coupled processes. Page 8 PorousMedia:

Page 85

HPC in real applications of THM codes

Page 86: Modeling coupled processes · Fluid flow Reactive transport Deformation Hydraulics Chemistry Mechanics Thermodynamics Multi‐Physics: THMC coupled processes. Page 8 PorousMedia:

Page 86

PresentationNorihiroWatanabe

Geothermal reservoir simulation

Page 87: Modeling coupled processes · Fluid flow Reactive transport Deformation Hydraulics Chemistry Mechanics Thermodynamics Multi‐Physics: THMC coupled processes. Page 8 PorousMedia:

Page 87

Benchmarking projects in 

CO2 storage:  CO2BENCH

Hydrology:      HNBENCH

Geothermics:  GEOBENCH

BENCHMARKING

Page 88: Modeling coupled processes · Fluid flow Reactive transport Deformation Hydraulics Chemistry Mechanics Thermodynamics Multi‐Physics: THMC coupled processes. Page 8 PorousMedia:

Page 88

Conclusions

Community efforts are necessary …• Observation & Data assimilation• Conceptual modelling• Numerical methods• Computer sciences• Open source philosophy• Transparent and efficient work platforms• Cooperation between NLs and Universities• …Computer power & man power …• more complexity must coincide with a better understanding

• …

Page 89: Modeling coupled processes · Fluid flow Reactive transport Deformation Hydraulics Chemistry Mechanics Thermodynamics Multi‐Physics: THMC coupled processes. Page 8 PorousMedia:

Page 89

Thank you for your attention

Page 90: Modeling coupled processes · Fluid flow Reactive transport Deformation Hydraulics Chemistry Mechanics Thermodynamics Multi‐Physics: THMC coupled processes. Page 8 PorousMedia:

Page 90

Hydrology II

TERENOwww.tereno.net

Page 91: Modeling coupled processes · Fluid flow Reactive transport Deformation Hydraulics Chemistry Mechanics Thermodynamics Multi‐Physics: THMC coupled processes. Page 8 PorousMedia:

Page 91

Database

Bode ModelWork flow

Karsten RinkFeng Sun

Page 92: Modeling coupled processes · Fluid flow Reactive transport Deformation Hydraulics Chemistry Mechanics Thermodynamics Multi‐Physics: THMC coupled processes. Page 8 PorousMedia:

Page 92

BODE BASINSELKE CATCHMENT

OGS‐DE

Page 93: Modeling coupled processes · Fluid flow Reactive transport Deformation Hydraulics Chemistry Mechanics Thermodynamics Multi‐Physics: THMC coupled processes. Page 8 PorousMedia:

Page 93

SELKE CATCHMENTFirst results

mHM: Groundwater recharge OGS: Groundwater discharge

Wenqing WangLuis SamaniegoJens Delfs

Page 94: Modeling coupled processes · Fluid flow Reactive transport Deformation Hydraulics Chemistry Mechanics Thermodynamics Multi‐Physics: THMC coupled processes. Page 8 PorousMedia:

Page 94

Hydrology I Yajie Wu

Page 95: Modeling coupled processes · Fluid flow Reactive transport Deformation Hydraulics Chemistry Mechanics Thermodynamics Multi‐Physics: THMC coupled processes. Page 8 PorousMedia:

Page 95

106 grid nodes

Density‐dependent flow


Recommended