+ All Categories
Home > Documents > Modeling IMC growth in leadfree solder joints using the phase...

Modeling IMC growth in leadfree solder joints using the phase...

Date post: 27-Jan-2021
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
29
1 / 25 Modeling IMC growth in leadfree solder joints using the phase-field method coupled with the COST-531 thermodynamic database Nele Moelans, A. Durga, Yuanyuan Guan Bo Sundman, Alan Dinsdale, Suzana Fries Final COST MP0602 meeting, June 22 - 24, BRNO
Transcript
  • 1 / 25

    Modeling IMC growth in leadfree solder jointsusing the phase-field method coupled with the

    COST-531 thermodynamic database

    Nele Moelans, A. Durga, Yuanyuan Guan

    Bo Sundman, Alan Dinsdale, Suzana Fries

    Final COST MP0602 meeting, June 22 - 24, BRNO

  • IMC growth and interdiffusion in leadfree solder joints

    2 / 25

    [J. Mater Sci: Mater. Electron (2007) 18:155 ]

    ◆ IMC-layers, IMC precipi-tates, voids, stresses, cracks. . . during solidification andcoarsening

    ■ GP4: Modeling of microstucture evolution in the interdiffusion zone

    ■ Use COST-531 thermodynamic database in phase-field simulations

  • Outline

    3 / 25

    ■ Phase-field model

    ■ COST - 531 database

    ■ 4 approaches to model phases with low solubility

    ◆ Model I: Stoichiometric

    ◆ Model II: Parabolic composition dependence

    ◆ Model II: Order-disorder model

    ◆ Model IV: Extended sublattice representation

    ■ Concluding remarks

  • Phase-Field Model: Variables

    4 / 25

    ■ Grains and phases

    ηbct,1, ηbct,2, . . . , ηbct,i(x, y, z, t), . . .

    ηCu6Sn5,1, . . .

    ηCu3Sn,1, . . .

    ηfcc,1, . . .

    ηAg3Sn,1, . . .

    with (ηbct,1, ηbct,1, . . . , ηρ,i, . . .) =(1, 0, . . . , 0, . . .), (0, 1, . . . , 0, . . .), . . . , (0, 0, . . . , 1, . . .)

    ■ Composition: xCu, xSn, (xAg = 1 − xCu − xSn)

  • Phase-Field Model: Diffuse interface

    5 / 25

    ■ ηbct,i, ηCu6Sn5,i, ηCu3Sn,i, ηfcc,i, ηAg3Sn,i

    Grain i Grain j

    1ih =

    0jh = 0ih =

    1jh =

    Grain i Grain j

    1ih =

    0jh = 0ih =

    1jh =

    Grain i Grain j

    1ih =

    0jh = 0ih =

    1jh =

    Grain i Grain j

    1ih =

    0jh = 0ih =

    1jh =

  • Phase-Field Model: Diffuse interface

    6 / 25

    ■ Interface : Mixture of 2 phases

    phase a

    cac

    cb

    phase b

    c= c + cf fb

  • Phase-Field Model: Diffuse interface

    6 / 25

    ■ Interface : Mixture of 2 phases

    phase a

    cac

    cb

    phase b

    c= c + cf fb

    ◆ Phase fractions φρ =

    iηρ,i

    σ

    iησ,i

    ◆ Phase compositions xρk(xk, φρ)

  • Phase-Field Model: Free energy functional

    7 / 25

    Ftotal =

    Vfint(ηρ,i,∇ηρ,i)dV +

    Vfbulk(ηρ,i, xk)dV

  • Phase-Field Model: Free energy functional

    7 / 25

    Ftotal =

    Vfint(ηρ,i,∇ηρ,i)dV +

    Vfbulk(ηρ,i, xk)dV

    ■ Bulk contribution

    fbulk =∑

    ρ

    φρfρ(xρk) =

    ρ

    φρGρm(x

    ρk)

    Vm

  • Phase-Field Model: Free energy functional

    7 / 25

    Ftotal =

    Vfint(ηρ,i,∇ηρ,i)dV +

    Vfbulk(ηρ,i, xk)dV

    ■ Bulk contribution

    fbulk =∑

    ρ

    φρfρ(xρk) =

    ρ

    φρGρm(x

    ρk)

    Vm

    ◆ Phase fractions φρ =

    iηρ,i

    σ

    iησ,i

  • Phase-Field Model: Free energy functional

    7 / 25

    Ftotal =

    Vfint(ηρ,i,∇ηρ,i)dV +

    Vfbulk(ηρ,i, xk)dV

    ■ Bulk contribution

    fbulk =∑

    ρ

    φρfρ(xρk) =

    ρ

    φρGρm(x

    ρk)

    Vm

    ◆ Phase fractions φρ =

    iηρ,i

    σ

    iησ,i

    ◆ Phase compositions xρk(xk, φρ)

  • Phase field model: Evolution equations

    8 / 25

    ■ Diffusion

    ∂xk

    ∂t= ∇ ·

    [

    l

    [(

    ρ

    φρMρkl

    )

    (

    ∂fρ

    ∂xρl

    )]]

    ◆ Within each phase: ∂xk∂t

    = ∇ ·

    [

    l

    [(

    Mρkl

    Vm

    )

    ∇ (µl − µAg)

    ]]

    ◆ Link with atomic mobilities βρ:

    Mρkk = x

    ρk(1 − x

    ρk)β

    ρ, Mρkl,k 6=l = −x

    ρkx

    ρl β

    ρ

    ◆ Link with interdiffusion coefficients: Mρkl =D

    ρkl

    ∂2fρ

    ∂xρk

    xρl

    =VmD

    ρkl

    ∂2Gρ

    ∂xρk

    xρl

  • Phase field model: Evolution equations

    9 / 25

    ■ Diffusion

    ∂xk

    ∂t= ∇ ·

    [

    l

    [(

    ρ

    φρMρkl

    )

    (

    ∂fρ

    ∂xρl

    )]]

    ■ Interface movement

    ∂ηρ,i

    ∂t= −L

    δF (ησ,j , xk)

    δηρ

  • COST-531 tdb: Cu-Sn

    10 / 25

    ■ Phase diagram ■ Molar Gibbs Energies at 450 K

    0 0.2 0.4 0.6 0.8 1-3

    -2.5

    -2

    -1.5

    -1

    -0.5x 10

    4

    Molar fraction SnM

    ola

    r G

    ibbs e

    nerg

    y [J/m

    ol]

    T = 450K

    fcc

    bct

    Cu6Sn

    5-L

    Cu3Sn

    liquid

    Cu6Sn

    5-H

    Cu Sn

    ■ Bulk contribution phase-field energy: fbulk =∑

    ρ φρG

    ρm(x

    ρk)

    Vm

    ■ Diffusion equation: µρk − µρAg =

    ∂Gρ

    ∂xk, ∂

    2Gρ

    ∂xkxl, k, l = Cu, Sn

  • COST-531 tdb: Ag-Sn

    11 / 25

    ■ Phase diagram

    200

    400

    600

    800

    1000

    1200

    1400

    0 0.2 0.4 0.6 0.8 1.0

    MOLE_FRACTION SN

    liquid

    Ag Sn

    fcc

    Ag Sn+bct3

    Ag Sn+liquid3

    AgS

    b_O

    rtho

    ■ Molar Gibbs energies at 450 K

    0 0.2 0.4 0.6 0.8 1-2.8

    -2.6

    -2.4

    -2.2

    -2

    -1.8

    -1.6

    -1.4

    -1.2x 10

    4

    Molar fraction Sn

    Mo

    lar

    Gib

    bs e

    ne

    rgy

    T = 450 Kfcc

    bct

    Ag3Sn

    liquid

    Ag Sn

    ■ Sublattice representation Ag3Sn: (Ag)0.75(Ag, Sn)0.25

  • Model I: Stoichiometric phase

    12 / 25

    ■ Bulk contribution phase-field energy

    fbulk =∑

    ρ

    φρGρm(x

    ρk)

    Vm+ φstoich

    GstoichmVm

    ◆ Parallel tangent for solution phases

    ∂fρ(xρk)

    ∂xρk

    =∂fσ(xσk)

    ∂xσk,

    ∀k, ρ 6= σ solution phases

    ◆ Mass balance

    xk − xstoichk =

    ρ=sol

    φρ(xρk − x

    stoichk ), ∀k

    ■ Dstoichkl = Mstoichkl = 0

  • Model I: Stoichiometric phase

    13 / 25

    ■ Simulation precipitation IMC

    Phase fractions

    Cu Sn6 5 bct

    m

    Molar fractions

    Cu Sn6 5 bct

    m

    ■ Growth IMC layer

    ◆ Needs diffusion through

    IMC

    substrate IMC solder

    JkÑmk

    ⇒ Gρ(xk) needed to model ∇µkthe driving force for diffusion

  • Model II: Parabolic composition dependence

    14 / 25

    Vmfstoich =

    Astoich

    2(xSn − xstoich,Sn)

    2 + Gstoichm (T = 450K) (1)

    0 0.2 0.4 0.6 0.8 1

    -2.5

    -2

    -1.5

    -1

    -0.5x 10

    4

    Molar fraction Sn

    Mo

    lar

    Gib

    bs E

    ne

    rgy [

    J/m

    ol]

    T = 450 K

    Fcc

    Bct

    Cu6Sn

    5(A=1e6)

    Cu3Sn (A=1e6)

    Liquid

    Cu6Sn

    5(A=1e9)

    Cu3Sn (A=1e9)

    Cu Sn

    ◆ Steepness Astoich

    ◆ Induces small shift in equi-

    librium

    ◆ M stoichSn =Dstoich

    Sn

    Astoich

    (Composition independent)

    [S.Y. Hu, J. Murray, H. Weiland, Z.-K. Liu, L.-Q. Chen, Comp. Coupl. Phase Diagr. Thermoch., 31 (2007) p 303 ]

  • Model II: Results

    15 / 25

    ( ) 25 2

    3 13 2

    6 5 13 2

    ( ) 12 2

    10 m/s

    10 m/

    10 m/s

    10 m/s

    Cu

    Sn

    CuSn

    Sn

    CuSn

    Sn

    Sn

    Sn

    D

    D s

    D

    D

    -

    -

    -

    -

    =

    =

    =

    =

    ( ) 25 2

    3 13 2

    6 5 13 2

    ( ) 14 2

    10 m/s

    10 m/

    10 m/s

    10 m/s

    Cu

    Sn

    CuSn

    Sn

    CuSn

    Sn

    Sn

    Sn

    D

    D s

    D

    D

    -

    -

    -

    -

    =

    =

    =

    =

    6

    6

    0.0301 10

    0.0833 10

    Cu3Sn

    Cu6Sn5

    k

    k

    -

    -

    Þ = ×

    = ×

    6

    6

    0.0306 10

    0.0849 10

    Cu3Sn

    Cu6Sn5

    k

    k

    -

    -

    Þ = ×

    = ×

    ( ) 12 210 m/sSnSn

    D -=

  • Model II: Results

    16 / 25

    ■ With grain boundary diffusion Grain structure

    Vertical Flux of Sn

    −15

    −10

    −5

    0

    5x 10

    −10

    ■ DfccSn = 2 · 10

    −25 m2/s; DCu3SnSn = 2 · 10−15 m2/s; DCu6Sn5Sn = 2 · 10

    −15

    m2/s; DbctSn = 2 · 10−12 m2/s;

    ■ Dinterf = 2 · 10−9 m2/s, δgb = 1nm

  • Model II: Parabolic composition dependence

    17 / 25

    Vmfstoich =

    Astoich

    2(xSn − xstoich,Sn)

    2

    +Astoich

    2(xAg − xshift)

    2 + Gstoichm (T = 450K)

    x(A

    G)

    x(SN)

    0.0

    0.2

    0.3

    0.5

    0.7

    0.9

    0.0 0.2 0.4 0.6 0.8 1

    x(SN)

    x(A

    G)

    Cu

    Ag

    Sn

    Ag3Sn + Cu6Sn5 + (Sn)

    Ag3S

    n +

    Cu3S

    n +

    Cu6S

    n5

    FC

    C_A

    1 +

    Cu3S

    n +

    FC

    C_A

    1

    ◆ Steepness Astoich

    ◆ Small shift in equilibrium

    ◆ M stoichkl =Dstoich

    kl

    Astoich

    ◆ xshift, e.g. = 0.001

  • Model III: Order-disorder CALPHAD description

    18 / 25

    ■ Sublattice representation Cu3Sn: (Ag,Cu, Sn)0.75(Ag,Cu, Sn)0.25

    ■ Molar Gibbs Energy

    GCu3Snm = xAgG0

    Ag + xCuG0

    Cu + xSnG0

    Sn

    +xAgxCuLAg,Cu + xAgxSnLAg,Sn

    +xCuxSnLCu,sn

    +(y1Cuy2

    Sn − xCuxSn)GordCu3Sn

    +RT[

    0.75(y1Ag ln(y1

    Ag) + y1

    Cu ln(y1

    Cu)

    +y1Sn ln(y1

    Sn))

    +0.25(y2Ag ln(y2

    Ag) + y2

    Cu ln(y2

    Cu)

    +y2Sn ln(y2

    Sn))]

    ■ G0Ag = GHSER + 5000 and LAg,Cu,LAg,Sn,LCu,Sn and GordCu3Sn optimized

    [N. Dupin, I Ansara, B. Sundman, Comp. Coupl. Phase Diagr. Thermoch., 25 (2001) p279]

  • Model III: Order-disorder CALPHAD description

    19 / 25

    ■ Cu-Sn, T=450K

    0 0.2 0.4 0.6 0.8 1-3

    -2.5

    -2

    -1.5

    -1

    -0.5x 10

    4

    Molar fraction Sn

    Mola

    r G

    ibbs E

    nerg

    y [J/m

    ol]

    T = 450 KFcc

    Bct

    Cu6Sn

    5

    Cu3Sn

    Liquid

    Cu Sn

    ■ Ag-Sn-0.01%Cu, T= 450 K

    0 0.2 0.4 0.6 0.8-3

    -2.5

    -2

    -1.5

    -1

    -0.5x 10

    4

    Molar fraction Sn

    Mola

    r G

    ibbs E

    nerg

    y [J/m

    ol]

    T = 450 K, xCu

    =0.0001Fcc

    Bct

    Cu6Sn

    5

    Cu3Sn

    Ag3Sn

    Liquid

    Ag Sn

    ■ Miscibility gap is inherent

  • Model IV: Extended sublattice CALPHAD description

    20 / 25

    ■ Sublattice representation Cu3Sn: (Ag,Cu, Sn)0.75(Ag,Cu, Sn)0.25

    ■ Molar Gibbs Energy

    GCu3Snm = y1Agy

    2AgG

    0Ag + y

    1Cuy

    2CuG

    0Cu + y

    1Sny

    2SnG

    0Sn

    +y1Cuy2SnG

    0Cu3Sn + y

    1Sny

    2CuG

    0Sn3Cu

    +RT[

    0.75(y1Ag ln(y1Ag) + y

    1Cu ln(y

    1Cu)

    +y1Sn ln(y1Sn))

    +0.25(y2Ag ln(y2Ag) + y

    2Cu ln(y

    2Cu)

    +y2Sn ln(y2Sn))

    ]

    using G0Sn3Cu = G0Cu + G

    0Sn − G

    0Cu3Sn

  • Model IV: Extended sublattice CALPHAD description

    21 / 25

    ■ Cu-Sn, T=450K

    0 0.2 0.4 0.6 0.8 1-3

    -2

    -1

    0

    1

    2x 10

    4

    Molar fraction Sn

    Mola

    r G

    ibbs E

    nerg

    y [J/m

    ol]

    T = 450 K

    Fcc

    Bct

    Cu6Sn

    5

    Cu3Sn

    Liquid

    Cu Sn

    ■ Ag-Sn-0.01%Cu, T= 450 K

    0 0.2 0.4 0.6 0.8-3

    -2

    -1

    0

    1

    2x 10

    4

    Molar fraction Sn

    Mo

    lar

    Gib

    bs E

    ne

    rgy [

    J/m

    ol]

    T = 450 K, xCu

    =0.0001

    Fcc

    Bct

    Cu6Sn

    5

    Cu3Sn

    Ag3Sn

    Liquid

    Ag Sn

  • Comparison: Growth Cu 6Sn5 from supersaturated Bct

    22 / 25

    ■ Comparison stoichiometric (I) –

    parabolic (II)

    m

    BctCu Sn6 5

    ■ Comparison stoichiometric (I) –

    sublattice (II)

    Cu Sn6 5 Bct

    m

    ■ MCu6Sn5 = 0

    ■ M bctkk = βbctxbctk (1 − x

    bctk ), M

    bctkl,k 6=l = −β

    bctxbctk xbctl

  • Model IV: Growth Cu 6Sn5 between Fcc and Bct

    23 / 25

    BctFcc

    m

    Cu Sn6 5

    ■ Diffusion equation

    ∂xk

    ∂t= ∇·

    [

    l

    [(

    ρ

    φρMρ

    kl

    )

    (

    ∂fρ

    ∂xρ

    l

    )

    ]]

    ■ Mbct/fcckk = β

    bct/fccxk(1 − xk); Mbct/fcckl,k 6=l = −β

    bct/fccxkxl

    ■ MCu6Sn5 = βCu6Sn5(0.545y1k(1 − y1

    k) + 0.455y2

    k(1 − y2

    k)),MCu6Sn5kl,k 6=l = −β

    Cu3Sn(0.545y1ky1

    l + 0.455y2

    ky2

    l )

    ■ βρ estimated based on interdiffusion coefficients of [A. Paul, C. Ghosh and W.J.Boettinger, Metall. Mater. Trans. A, 42A (2011) p952].

  • Model IV: Growth rate Cu 3Sn and Cu 6Sn5

    24 / 25

    ■ 1D system

    Cu Sn6 5

    Cu Sn3bct

    xSn

    xCu

    fcc

    Cu3Sn grows faster than Cu6Sn5 !

    ■ 2D system

    bct

    fcc

    Cu Sn6 5

  • Conclusions

    25 / 25

    ■ Form of the Gibbs energies influences microstructure simulations of

    interdiffusion phenomena at interfaces (diffusion couples)

    ◆ Determines which IMC grows fastest/first

    ■ For a general coupling of phase-field with CALPHAD, an extended

    sublattice model is most suitable

    ◆ Or order-disorder model if based on physics

    ■ Presented approaches also valuable for sharp interface diffusion

    techniques, e.g. DICTRA

    ■ Databases with extended sublattice representations can be improved

    iteratively

    IMC growth and interdiffusion in leadfree solder jointsOutlinePhase-Field Model: VariablesPhase-Field Model: Diffuse interfacePhase-Field Model: Diffuse interfacePhase-Field Model: Free energy functionalPhase field model: Evolution equationsPhase field model: Evolution equationsCOST-531 tdb: Cu-SnCOST-531 tdb: Ag-SnModel I: Stoichiometric phaseModel I: Stoichiometric phaseModel II: Parabolic composition dependenceModel II: ResultsModel II: ResultsModel II: Parabolic composition dependenceModel III: Order-disorder CALPHAD descriptionModel III: Order-disorder CALPHAD descriptionModel IV: Extended sublattice CALPHAD descriptionModel IV: Extended sublattice CALPHAD descriptionComparison: Growth Cu6Sn5 from supersaturated BctModel IV: Growth Cu6Sn5 between Fcc and BctModel IV: Growth rate Cu3Sn and Cu6Sn5Conclusions


Recommended