+ All Categories
Home > Documents > Modeling Science - helper.ipam.ucla.eduhelper.ipam.ucla.edu/publications/sews1/sews1_7319.pdfwater...

Modeling Science - helper.ipam.ucla.eduhelper.ipam.ucla.edu/publications/sews1/sews1_7319.pdfwater...

Date post: 01-Nov-2020
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
58
Modeling Science David M. Blei Department of Computer Science Princeton University October 3, 2007 Joint work with John Lafferty (CMU) D. Blei Modeling Science 1 / 49
Transcript
Page 1: Modeling Science - helper.ipam.ucla.eduhelper.ipam.ucla.edu/publications/sews1/sews1_7319.pdfwater acid disease milk water blood food solution cholera dry experiments bacteria fed

Modeling Science

David M. Blei

Department of Computer SciencePrinceton University

October 3, 2007

Joint work with John Lafferty (CMU)

D. Blei Modeling Science 1 / 49

Page 2: Modeling Science - helper.ipam.ucla.eduhelper.ipam.ucla.edu/publications/sews1/sews1_7319.pdfwater acid disease milk water blood food solution cholera dry experiments bacteria fed

Modeling Science

Science, August 13, 1886

water acid disease

milk water blood

food solution cholera

dry experiments bacteria

fed liquid found

cows chemical bacillus

houses action experiments

butter copper organisms

fat crystals bacilli

found carbon cases

made alcohol diseases

contained made germs

wells obtained animal

produced substances koch

poisonous nitrogen made

5

Science, June 24, 1994

evolution rna disease

evolutionary mrna host

species site bacteria

organisms splicing diseases

biology rnas new

phylogenetic nuclear bacterial

life sequence resistance

origin introns control

diversity messenger strains

groups cleavage infectious

molecular two malaria

animals splice parasites

two sequences parasite

new polymerase tuberculosis

living intron health

6• Our data are Science from 1880-2002, courtesy of JSTOR.

• JSTOR is an on-line archive that scans the original volumes andperforms optical character recognition on the scans.

• This process results in 130K documents, 76M words.

D. Blei Modeling Science 2 / 49

Page 3: Modeling Science - helper.ipam.ucla.eduhelper.ipam.ucla.edu/publications/sews1/sews1_7319.pdfwater acid disease milk water blood food solution cholera dry experiments bacteria fed

Modeling Science

Science, August 13, 1886

water acid disease

milk water blood

food solution cholera

dry experiments bacteria

fed liquid found

cows chemical bacillus

houses action experiments

butter copper organisms

fat crystals bacilli

found carbon cases

made alcohol diseases

contained made germs

wells obtained animal

produced substances koch

poisonous nitrogen made

5

Science, June 24, 1994

evolution rna disease

evolutionary mrna host

species site bacteria

organisms splicing diseases

biology rnas new

phylogenetic nuclear bacterial

life sequence resistance

origin introns control

diversity messenger strains

groups cleavage infectious

molecular two malaria

animals splice parasites

two sequences parasite

new polymerase tuberculosis

living intron health

6• Discover the hidden thematic structure with hierarchical probabilisticmodels called topic models.

• Use this structure for browsing, search, and similarity assessment.

D. Blei Modeling Science 2 / 49

Page 4: Modeling Science - helper.ipam.ucla.eduhelper.ipam.ucla.edu/publications/sews1/sews1_7319.pdfwater acid disease milk water blood food solution cholera dry experiments bacteria fed

Discover topics from a corpus

“Genetics” “Evolution” “Disease” “Computers”

human evolution disease computergenome evolutionary host models

dna species bacteria informationgenetic organisms diseases datagenes life resistance computers

sequence origin bacterial systemgene biology new network

molecular groups strains systemssequencing phylogenetic control model

map living infectious parallelinformation diversity malaria methods

genetics group parasite networksmapping new parasites softwareproject two united new

sequences common tuberculosis simulations

D. Blei Modeling Science 3 / 49

Page 5: Modeling Science - helper.ipam.ucla.eduhelper.ipam.ucla.edu/publications/sews1/sews1_7319.pdfwater acid disease milk water blood food solution cholera dry experiments bacteria fed

Annotate unlabeled imagesAutomatic image annotation

birds nest leaves branch treepredicted caption: predicted caption:

people market pattern textile displaysky water tree mountain peoplepredicted caption:

fish water ocean tree coral sky water buildings people mountainpredicted caption: predicted caption: predicted caption:

scotland water flowers hills tree

Probabilistic modelsof text and images – p.5/53

SKY WATER TREE

MOUNTAIN PEOPLE

Automatic image annotation

birds nest leaves branch treepredicted caption: predicted caption:

people market pattern textile displaysky water tree mountain peoplepredicted caption:

fish water ocean tree coral sky water buildings people mountainpredicted caption: predicted caption: predicted caption:

scotland water flowers hills tree

Probabilistic modelsof text and images – p.5/53

SCOTLAND WATER

FLOWER HILLS TREE

Automatic image annotation

birds nest leaves branch treepredicted caption: predicted caption:

people market pattern textile displaysky water tree mountain peoplepredicted caption:

fish water ocean tree coral sky water buildings people mountainpredicted caption: predicted caption: predicted caption:

scotland water flowers hills tree

Probabilistic modelsof text and images – p.5/53

SKY WATER BUILDING

PEOPLE WATER

Automatic image annotation

birds nest leaves branch treepredicted caption: predicted caption:

people market pattern textile displaysky water tree mountain peoplepredicted caption:

fish water ocean tree coral sky water buildings people mountainpredicted caption: predicted caption: predicted caption:

scotland water flowers hills tree

Probabilistic modelsof text and images – p.5/53

FISH WATER OCEAN

TREE CORAL

Automatic image annotation

birds nest leaves branch treepredicted caption: predicted caption:

people market pattern textile displaysky water tree mountain peoplepredicted caption:

fish water ocean tree coral sky water buildings people mountainpredicted caption: predicted caption: predicted caption:

scotland water flowers hills tree

Probabilistic modelsof text and images – p.5/53

PEOPLE MARKET PATTERN

TEXTILE DISPLAY

Automatic image annotation

birds nest leaves branch treepredicted caption: predicted caption:

people market pattern textile displaysky water tree mountain peoplepredicted caption:

fish water ocean tree coral sky water buildings people mountainpredicted caption: predicted caption: predicted caption:

scotland water flowers hills tree

Probabilistic modelsof text and images – p.5/53

BIRDS NEST TREE

BRANCH LEAVES

D. Blei Modeling Science 4 / 49

Page 6: Modeling Science - helper.ipam.ucla.eduhelper.ipam.ucla.edu/publications/sews1/sews1_7319.pdfwater acid disease milk water blood food solution cholera dry experiments bacteria fed

Model the evolution of topics over time

1880 1900 1920 1940 1960 1980 2000

o o o o o o o ooooooooo o o o o o o o o o

o o o o oo o o

o oo o

o oooo

o

oooo

oo o

o o oo o

oooo o

o

o

ooo

o

o

o

oo o o

o o o

1880 1900 1920 1940 1960 1980 2000

o o ooo o

oooo o o o

oo o o o o o

o o o o o

o o oooo

ooooo o

o

o

oooooo o

ooo o

o o o o o o o o o oo o

o ooo

o

o

oo o o o o o

RELATIVITY

LASERFORCE

NERVE

OXYGEN

NEURON

"Theoretical Physics" "Neuroscience"

D. Blei Modeling Science 5 / 49

Page 7: Modeling Science - helper.ipam.ucla.eduhelper.ipam.ucla.edu/publications/sews1/sews1_7319.pdfwater acid disease milk water blood food solution cholera dry experiments bacteria fed

Model connections between topics

wild typemutant

mutationsmutantsmutation

plantsplantgenegenes

arabidopsis

p53cell cycleactivitycyclin

regulation

amino acidscdna

sequenceisolatedprotein

genedisease

mutationsfamiliesmutation

rnadna

rna polymerasecleavage

site

cellscell

expressioncell lines

bone marrow

united stateswomen

universitiesstudents

education

sciencescientists

saysresearchpeople

researchfundingsupport

nihprogram

surfacetip

imagesampledevice

laseropticallight

electronsquantum

materialsorganicpolymerpolymersmolecules

volcanicdepositsmagmaeruption

volcanism

mantlecrust

upper mantlemeteorites

ratios

earthquakeearthquakes

faultimages

dataancientfoundimpact

million years agoafrica

climateocean

icechanges

climate change

cellsproteins

researchersproteinfound

patientsdisease

treatmentdrugsclinical

geneticpopulationpopulationsdifferencesvariation

fossil recordbirds

fossilsdinosaurs

fossil

sequencesequences

genomedna

sequencing

bacteriabacterial

hostresistanceparasite

developmentembryos

drosophilagenes

expression

speciesforestforests

populationsecosystems

synapsesltp

glutamatesynapticneurons

neuronsstimulusmotorvisual

cortical

ozoneatmospheric

measurementsstratosphere

concentrations

sunsolar wind

earthplanetsplanet

co2carbon

carbon dioxidemethane

water

receptorreceptors

ligandligands

apoptosis

proteinsproteinbindingdomaindomains

activatedtyrosine phosphorylation

activationphosphorylation

kinase

magneticmagnetic field

spinsuperconductivitysuperconducting

physicistsparticlesphysicsparticle

experimentsurfaceliquid

surfacesfluid

model reactionreactionsmoleculemolecules

transition state

enzymeenzymes

ironactive sitereduction

pressurehigh pressure

pressurescore

inner core

brainmemorysubjects

lefttask

computerproblem

informationcomputersproblems

starsastronomers

universegalaxiesgalaxy

virushiv

aidsinfectionviruses

miceantigent cells

antigensimmune response

D. Blei Modeling Science 6 / 49

Page 8: Modeling Science - helper.ipam.ucla.eduhelper.ipam.ucla.edu/publications/sews1/sews1_7319.pdfwater acid disease milk water blood food solution cholera dry experiments bacteria fed

Outline

1 Introduction

2 Latent Dirichlet allocation

3 Dynamic topic models

4 Correlated topic models

D. Blei Modeling Science 7 / 49

Page 9: Modeling Science - helper.ipam.ucla.eduhelper.ipam.ucla.edu/publications/sews1/sews1_7319.pdfwater acid disease milk water blood food solution cholera dry experiments bacteria fed

Outline

1 Introduction

2 Latent Dirichlet allocation

3 Dynamic topic models

4 Correlated topic models

D. Blei Modeling Science 8 / 49

Page 10: Modeling Science - helper.ipam.ucla.eduhelper.ipam.ucla.edu/publications/sews1/sews1_7319.pdfwater acid disease milk water blood food solution cholera dry experiments bacteria fed

Probabilistic modeling

• Treat data as observations that arise from a generative probabilisticprocess that includes hidden variables

• For documents, the hidden variables reflect the thematicstructure of the collection.

• Infer the hidden structure using posterior inference

• What are the topics that describe this collection?

• Situate new data into the estimated model.

• How does this query or new document fit into the estimatedtopic structure?

D. Blei Modeling Science 9 / 49

Page 11: Modeling Science - helper.ipam.ucla.eduhelper.ipam.ucla.edu/publications/sews1/sews1_7319.pdfwater acid disease milk water blood food solution cholera dry experiments bacteria fed

Intuition behind LDA

Simple intuition: Documents exhibit multiple topics.

D. Blei Modeling Science 10 / 49

Page 12: Modeling Science - helper.ipam.ucla.eduhelper.ipam.ucla.edu/publications/sews1/sews1_7319.pdfwater acid disease milk water blood food solution cholera dry experiments bacteria fed

Generative process

• Cast these intuitions into a generative probabilistic process

• Each document is a random mixture of corpus-wide topics

• Each word is drawn from one of those topics

D. Blei Modeling Science 11 / 49

Page 13: Modeling Science - helper.ipam.ucla.eduhelper.ipam.ucla.edu/publications/sews1/sews1_7319.pdfwater acid disease milk water blood food solution cholera dry experiments bacteria fed

Generative process

• In reality, we only observe the documents

• Our goal is to infer the underlying topic structure

• What are the topics?• How are the documents divided according to those topics?

D. Blei Modeling Science 11 / 49

Page 14: Modeling Science - helper.ipam.ucla.eduhelper.ipam.ucla.edu/publications/sews1/sews1_7319.pdfwater acid disease milk water blood food solution cholera dry experiments bacteria fed

Graphical models (Aside)

· · ·

Y

X1 X2 XN

Xn

Y

N

• Nodes are random variables

• Edges denote possible dependence

• Observed variables are shaded

• Plates denote replicated structure

D. Blei Modeling Science 12 / 49

Page 15: Modeling Science - helper.ipam.ucla.eduhelper.ipam.ucla.edu/publications/sews1/sews1_7319.pdfwater acid disease milk water blood food solution cholera dry experiments bacteria fed

Graphical models (Aside)

· · ·

Y

X1 X2 XN

Xn

Y

N

• Structure of the graph defines the pattern of conditional dependencebetween the ensemble of random variables

• E.g., this graph corresponds to

p(y , x1, . . . , xN) = p(y)N∏

n=1

p(xn | y)

D. Blei Modeling Science 12 / 49

Page 16: Modeling Science - helper.ipam.ucla.eduhelper.ipam.ucla.edu/publications/sews1/sews1_7319.pdfwater acid disease milk water blood food solution cholera dry experiments bacteria fed

Latent Dirichlet allocation

θd Zd,n Wd,nN

D Kβk

α η

Dirichletparameter

Per-documenttopic proportions

Per-wordtopic assignment

Observedword Topics

Topichyperparameter

D. Blei Modeling Science 13 / 49

Page 17: Modeling Science - helper.ipam.ucla.eduhelper.ipam.ucla.edu/publications/sews1/sews1_7319.pdfwater acid disease milk water blood food solution cholera dry experiments bacteria fed

Latent Dirichlet allocation

θd Zd,n Wd,nN

D Kβk

α η

1 Draw each topic βi ∼ Dir(η), for i ∈ {1, . . . ,K}.2 For each document:

1 Draw topic proportions θd ∼ Dir(α).2 For each word:

1 Draw Zd ,n ∼ Mult(θd).2 Draw Wd ,n ∼ Mult(βzd,n

).

D. Blei Modeling Science 14 / 49

Page 18: Modeling Science - helper.ipam.ucla.eduhelper.ipam.ucla.edu/publications/sews1/sews1_7319.pdfwater acid disease milk water blood food solution cholera dry experiments bacteria fed

Latent Dirichlet allocation

θd Zd,n Wd,nN

D Kβk

α η

• From a collection of documents, infer

• Per-word topic assignment zd ,n

• Per-document topic proportions θd

• Per-corpus topic distributions βk

• Use posterior expectations to perform the task at hand, e.g.,information retrieval, document similarity, etc.

D. Blei Modeling Science 14 / 49

Page 19: Modeling Science - helper.ipam.ucla.eduhelper.ipam.ucla.edu/publications/sews1/sews1_7319.pdfwater acid disease milk water blood food solution cholera dry experiments bacteria fed

Latent Dirichlet allocation

θd Zd,n Wd,nN

D Kβk

α η

• Computing the posterior is intractable:

p(θ |α)∏N

n=1 p(zn | θ)p(wn | zn, β1:K )∫θ p(θ |α)

∏Nn=1

∑Kz=1 p(zn | θ)p(wn | zn, β1:K )

• Several approximation techniques have been developed.

D. Blei Modeling Science 14 / 49

Page 20: Modeling Science - helper.ipam.ucla.eduhelper.ipam.ucla.edu/publications/sews1/sews1_7319.pdfwater acid disease milk water blood food solution cholera dry experiments bacteria fed

Latent Dirichlet allocation

θd Zd,n Wd,nN

D Kβk

α η

• Mean field variational methods (Blei et al., 2001, 2003)

• Expectation propagation (Minka and Lafferty, 2002)

• Collapsed Gibbs sampling (Griffiths and Steyvers, 2002)

• Collapsed variational inference (Teh et al., 2006)

D. Blei Modeling Science 14 / 49

Page 21: Modeling Science - helper.ipam.ucla.eduhelper.ipam.ucla.edu/publications/sews1/sews1_7319.pdfwater acid disease milk water blood food solution cholera dry experiments bacteria fed

Example inference

• Data: The OCR’ed collection of Science from 1990–2000

• 17K documents• 11M words• 20K unique terms (stop words and rare words removed)

• Model: 100-topic LDA model using variational inference.

D. Blei Modeling Science 15 / 49

Page 22: Modeling Science - helper.ipam.ucla.eduhelper.ipam.ucla.edu/publications/sews1/sews1_7319.pdfwater acid disease milk water blood food solution cholera dry experiments bacteria fed

Example inference

1 8 16 26 36 46 56 66 76 86 96

Topics

Probability

0.0

0.1

0.2

0.3

0.4

D. Blei Modeling Science 16 / 49

Page 23: Modeling Science - helper.ipam.ucla.eduhelper.ipam.ucla.edu/publications/sews1/sews1_7319.pdfwater acid disease milk water blood food solution cholera dry experiments bacteria fed

Example topics

“Genetics” “Evolution” “Disease” “Computers”

human evolution disease computergenome evolutionary host models

dna species bacteria informationgenetic organisms diseases datagenes life resistance computers

sequence origin bacterial systemgene biology new network

molecular groups strains systemssequencing phylogenetic control model

map living infectious parallelinformation diversity malaria methods

genetics group parasite networksmapping new parasites softwareproject two united new

sequences common tuberculosis simulations

D. Blei Modeling Science 17 / 49

Page 24: Modeling Science - helper.ipam.ucla.eduhelper.ipam.ucla.edu/publications/sews1/sews1_7319.pdfwater acid disease milk water blood food solution cholera dry experiments bacteria fed

LDA discussion

• LDA is a powerful model for

• Visualizing the hidden thematic structure in large corpora• Generalizing new data to fit into that structure

• LDA is a mixed membership model (Erosheva, 2004) that builds onthe work of Deerwester et al. (1990) and Hofmann (1999).

• For document collections and other grouped data, this mightbe more appropriate than a simple finite mixture

• See Blei et al., 2003 for a quantitative comparison.

• Modular : It can be embedded in more complicated models.

• General : The data generating distribution can be changed.

• Variational inference is fast; allows us to analyze large data sets.

• Code to play with LDA is freely available on my web-site,http://www.cs.princeton.edu/∼blei.

D. Blei Modeling Science 18 / 49

Page 25: Modeling Science - helper.ipam.ucla.eduhelper.ipam.ucla.edu/publications/sews1/sews1_7319.pdfwater acid disease milk water blood food solution cholera dry experiments bacteria fed

Outline

1 Introduction

2 Latent Dirichlet allocation

3 Dynamic topic models

4 Correlated topic models

D. Blei Modeling Science 19 / 49

Page 26: Modeling Science - helper.ipam.ucla.eduhelper.ipam.ucla.edu/publications/sews1/sews1_7319.pdfwater acid disease milk water blood food solution cholera dry experiments bacteria fed

LDA and exchangeability

θd Zd,n Wd,nN

D Kβk

α η

• LDA assumes that documents are exchangeable.

• I.e., their joint probability is invariant to permutation.

• This is too restrictive.

D. Blei Modeling Science 20 / 49

Page 27: Modeling Science - helper.ipam.ucla.eduhelper.ipam.ucla.edu/publications/sews1/sews1_7319.pdfwater acid disease milk water blood food solution cholera dry experiments bacteria fed

Documents are not exchangeable

"Infrared Reflectance in Leaf-Sitting Neotropical Frogs" (1977)"Instantaneous Photography" (1890)

• Documents about the same topic are not exchangeable.

• Topics evolve over time.

D. Blei Modeling Science 21 / 49

Page 28: Modeling Science - helper.ipam.ucla.eduhelper.ipam.ucla.edu/publications/sews1/sews1_7319.pdfwater acid disease milk water blood food solution cholera dry experiments bacteria fed

Dynamic topic model

• Divide corpus into sequential slices (e.g., by year).

• Assume each slice’s documents exchangeable.

• Drawn from an LDA model.

• Allow topic distributions evolve from slice to slice.

D. Blei Modeling Science 22 / 49

Page 29: Modeling Science - helper.ipam.ucla.eduhelper.ipam.ucla.edu/publications/sews1/sews1_7319.pdfwater acid disease milk water blood food solution cholera dry experiments bacteria fed

Dynamic topic models

D

θd

Zd,n

Wd,n

N

K

α

D

θd

Zd,n

Wd,n

N

α

D

θd

Zd,n

Wd,n

N

α

βk,1 βk,2 βk,T

. . .

D. Blei Modeling Science 23 / 49

Page 30: Modeling Science - helper.ipam.ucla.eduhelper.ipam.ucla.edu/publications/sews1/sews1_7319.pdfwater acid disease milk water blood food solution cholera dry experiments bacteria fed

Modeling evolving topics

βk,1 βk,2 βk,T

. . .

• Use a logistic normal distribution to model topics evolving over time(Aitchison, 1980)

• A state-space model on the natural parameter of the topicmultinomial (West and Harrison, 1997)

βt,k |βt−1,k ∼ N (βt−1,k , Iσ2)

p(w |βt,k) = exp{

βt,k − (1 +∑V−1

v=1 exp{βt,k,v})}

D. Blei Modeling Science 24 / 49

Page 31: Modeling Science - helper.ipam.ucla.eduhelper.ipam.ucla.edu/publications/sews1/sews1_7319.pdfwater acid disease milk water blood food solution cholera dry experiments bacteria fed

Posterior inference

• Our goal is to compute the posterior distribution,

p(β1:T ,1:K , θ1:T ,1:D , z1:T ,1:D |w1:T ,1:D).

• Exact inference is impossible

• Per-document mixed-membership model• Non-conjugacy between p(w |βt,k) and p(βt,k)

• MCMC is not practical for the amount of data.

• Solution: Variational inference

D. Blei Modeling Science 25 / 49

Page 32: Modeling Science - helper.ipam.ucla.eduhelper.ipam.ucla.edu/publications/sews1/sews1_7319.pdfwater acid disease milk water blood food solution cholera dry experiments bacteria fed

Variational inference

• Define a family of distributions q on the latent variables indexed byfree variational parameters.

• Find the member closest in KL(q||p) to the true posterior.

• Equivalently, maximize the Jensen’s bound on the marginallikelihood of the data, within the variational family.

• See Jordan et al. (1999) and Wainwright and Jordan (2003).

• (More details at the end of the talk, if you are interested.)

D. Blei Modeling Science 26 / 49

Page 33: Modeling Science - helper.ipam.ucla.eduhelper.ipam.ucla.edu/publications/sews1/sews1_7319.pdfwater acid disease milk water blood food solution cholera dry experiments bacteria fed

Science data

TECHVIEW: DNA S E Q U E N C I NG

Sequencing the Genome, Fast

James C. Mullikin and Amanda A. McMurray

Genome sequencing projects reveal the genetic makeup of an organism by reading off the sequence of theDNA bases, which encodes all of the infor-mation necessary for the life of the organ-ism. The base sequence contains four nu-cleotides-adenine, thymidine, guanosine,and cytosine-which are linked togetherinto long double-helical chains. Over thelast two decades, automated DNA se-quencers have made the process of obtain-ing the base-by-base sequence of DNA...

• Analyze JSTOR’s entire collection from Science (1880-2002)

• No reliable punctuation, meta-data, or references

• Restrict to 30K terms that occur more than ten times

• The data are 76M words in 130K documents

D. Blei Modeling Science 27 / 49

Page 34: Modeling Science - helper.ipam.ucla.eduhelper.ipam.ucla.edu/publications/sews1/sews1_7319.pdfwater acid disease milk water blood food solution cholera dry experiments bacteria fed

Analyzing a document

Original article Topic proportions

D. Blei Modeling Science 28 / 49

Page 35: Modeling Science - helper.ipam.ucla.eduhelper.ipam.ucla.edu/publications/sews1/sews1_7319.pdfwater acid disease milk water blood food solution cholera dry experiments bacteria fed

Analyzing a document

sequencegenomegenessequenceshumangenednasequencingchromosomeregionsanalysisdatagenomicnumber

devicesdevicematerialscurrenthighgatelightsiliconmaterialtechnologyelectricalfiberpowerbased

datainformationnetworkwebcomputerlanguagenetworkstimesoftwaresystemwordsalgorithmnumberinternet

Original article Most likely words from top topics

D. Blei Modeling Science 28 / 49

Page 36: Modeling Science - helper.ipam.ucla.eduhelper.ipam.ucla.edu/publications/sews1/sews1_7319.pdfwater acid disease milk water blood food solution cholera dry experiments bacteria fed

Analyzing a topic

1880electric

machinepowerenginesteam

twomachines

ironbattery

wire

1890electricpower

companysteam

electricalmachine

twosystemmotorengine

1900apparatus

steampowerengine

engineeringwater

constructionengineer

roomfeet

1910air

waterengineeringapparatus

roomlaboratoryengineer

madegastube

1920apparatus

tubeair

pressurewaterglassgas

madelaboratorymercury

1930tube

apparatusglass

airmercury

laboratorypressure

madegas

small

1940air

tubeapparatus

glasslaboratory

rubberpressure

smallmercury

gas

1950tube

apparatusglass

airchamber

instrumentsmall

laboratorypressurerubber

1960tube

systemtemperature

airheat

chamberpowerhigh

instrumentcontrol

1970air

heatpowersystem

temperaturechamber

highflowtube

design

1980high

powerdesignheat

systemsystemsdevices

instrumentscontrollarge

1990materials

highpowercurrent

applicationstechnology

devicesdesigndeviceheat

2000devicesdevice

materialscurrent

gatehighlight

siliconmaterial

technology

D. Blei Modeling Science 29 / 49

Page 37: Modeling Science - helper.ipam.ucla.eduhelper.ipam.ucla.edu/publications/sews1/sews1_7319.pdfwater acid disease milk water blood food solution cholera dry experiments bacteria fed

Visualizing trends within a topic

1880 1900 1920 1940 1960 1980 2000

o o o o o o o ooooooooo o o o o o o o o o

o o o o oo o o

o oo o

o oooo

o

oooo

oo o

o o oo o

oooo o

o

o

ooo

o

o

o

oo o o

o o o

1880 1900 1920 1940 1960 1980 2000

o o ooo o

oooo o o o

oo o o o o o

o o o o o

o o oooo

ooooo o

o

o

oooooo o

ooo o

o o o o o o o o o oo o

o ooo

o

o

oo o o o o o

RELATIVITY

LASERFORCE

NERVE

OXYGEN

NEURON

"Theoretical Physics" "Neuroscience"

D. Blei Modeling Science 30 / 49

Page 38: Modeling Science - helper.ipam.ucla.eduhelper.ipam.ucla.edu/publications/sews1/sews1_7319.pdfwater acid disease milk water blood food solution cholera dry experiments bacteria fed

Time-corrected document similarity

• Consider the expected Hellinger distance between the topicproportions of two documents,

dij = E

[K∑

k=1

(√

θi ,k −√

θj ,k)2 |wi ,wj

]

• Uses the latent structure to define similarity

• Time has been factored out because the topics associated to thecomponents are different from year to year.

• Similarity based only on topic proportions

D. Blei Modeling Science 31 / 49

Page 39: Modeling Science - helper.ipam.ucla.eduhelper.ipam.ucla.edu/publications/sews1/sews1_7319.pdfwater acid disease milk water blood food solution cholera dry experiments bacteria fed

Time-corrected document similarity

The Brain of the Orang (1880)

D. Blei Modeling Science 32 / 49

Page 40: Modeling Science - helper.ipam.ucla.eduhelper.ipam.ucla.edu/publications/sews1/sews1_7319.pdfwater acid disease milk water blood food solution cholera dry experiments bacteria fed

Time-corrected document similarity

Representation of the Visual Field on the Medial Wall ofOccipital-Parietal Cortex in the Owl Monkey (1976)

D. Blei Modeling Science 33 / 49

Page 41: Modeling Science - helper.ipam.ucla.eduhelper.ipam.ucla.edu/publications/sews1/sews1_7319.pdfwater acid disease milk water blood food solution cholera dry experiments bacteria fed

Browser of Science

D. Blei Modeling Science 34 / 49

Page 42: Modeling Science - helper.ipam.ucla.eduhelper.ipam.ucla.edu/publications/sews1/sews1_7319.pdfwater acid disease milk water blood food solution cholera dry experiments bacteria fed

Quantitative comparison

• Compute the probability of each year’s documents conditional on allthe previous year’s documents,

p(wt |w1, . . . ,wt−1)

• Compare exchangeable and dynamic topic models

D. Blei Modeling Science 35 / 49

Page 43: Modeling Science - helper.ipam.ucla.eduhelper.ipam.ucla.edu/publications/sews1/sews1_7319.pdfwater acid disease milk water blood food solution cholera dry experiments bacteria fed

Quantitative comparison

1920 1940 1960 1980 2000

1015

2025

Year

Per

−w

ord

nega

tive

log

likel

ihoo

d

● ●●

● ●●

● ●

● ● ●

● ●●

●●

● ●

●●

● ●

● ●● ●

LDADTM

D. Blei Modeling Science 36 / 49

Page 44: Modeling Science - helper.ipam.ucla.eduhelper.ipam.ucla.edu/publications/sews1/sews1_7319.pdfwater acid disease milk water blood food solution cholera dry experiments bacteria fed

Dynamic topic models discussion

• The DTM is a hierarchical model of sequential document collections;

• Exchangeability assumptions should be taken seriously.

• Variational methods allow large scale posterior inference.

• Examining the latent structure yields useful browsing tools

• Some open issues

• Model selection: choosing the number of topics• Variational inference: what are the hidden assumptions?

D. Blei Modeling Science 37 / 49

Page 45: Modeling Science - helper.ipam.ucla.eduhelper.ipam.ucla.edu/publications/sews1/sews1_7319.pdfwater acid disease milk water blood food solution cholera dry experiments bacteria fed

Outline

1 Introduction

2 Latent Dirichlet allocation

3 Dynamic topic models

4 Correlated topic models

D. Blei Modeling Science 38 / 49

Page 46: Modeling Science - helper.ipam.ucla.eduhelper.ipam.ucla.edu/publications/sews1/sews1_7319.pdfwater acid disease milk water blood food solution cholera dry experiments bacteria fed

The hidden assumptions of the Dirichlet distribution

• The Dirichlet is an exponential family distribution on the simplex,positive vectors that sum to one.

• However, the near independence of components makes it a poorchoice for modeling topic proportions.

• An article about fossil fuels is more likely to also be about geologythan about genetics.

D. Blei Modeling Science 39 / 49

Page 47: Modeling Science - helper.ipam.ucla.eduhelper.ipam.ucla.edu/publications/sews1/sews1_7319.pdfwater acid disease milk water blood food solution cholera dry experiments bacteria fed

The logistic normal distribution

• The logistic normal is a distribution on the simplex that can modeldependence between components.

• The natural parameters of the multinomial are drawn from amultivariate Gaussian distribution.

X ∼ NK−1(µ,Σ)

θi = exp{xi − log(1 +∑K−1

j=1 exp{xj})}D. Blei Modeling Science 40 / 49

Page 48: Modeling Science - helper.ipam.ucla.eduhelper.ipam.ucla.edu/publications/sews1/sews1_7319.pdfwater acid disease milk water blood food solution cholera dry experiments bacteria fed

Correlated topic model (CTM)

Zd,n Wd,nN

D

K

Σ

µ

ηd

βk

• Draw topic proportions from a logistic normal, where topicoccurrences can exhibit correlation.

• Use for:

• Providing a “map” of topics and how they are related• Better prediction via correlated topics

D. Blei Modeling Science 41 / 49

Page 49: Modeling Science - helper.ipam.ucla.eduhelper.ipam.ucla.edu/publications/sews1/sews1_7319.pdfwater acid disease milk water blood food solution cholera dry experiments bacteria fed

wild typemutant

mutationsmutantsmutation

plantsplantgenegenes

arabidopsis

p53cell cycleactivitycyclin

regulation

amino acidscdna

sequenceisolatedprotein

genedisease

mutationsfamiliesmutation

rnadna

rna polymerasecleavage

site

cellscell

expressioncell lines

bone marrow

united stateswomen

universitiesstudents

education

sciencescientists

saysresearchpeople

researchfundingsupport

nihprogram

surfacetip

imagesampledevice

laseropticallight

electronsquantum

materialsorganicpolymerpolymersmolecules

volcanicdepositsmagmaeruption

volcanism

mantlecrust

upper mantlemeteorites

ratios

earthquakeearthquakes

faultimages

dataancientfoundimpact

million years agoafrica

climateocean

icechanges

climate change

cellsproteins

researchersproteinfound

patientsdisease

treatmentdrugsclinical

geneticpopulationpopulationsdifferencesvariation

fossil recordbirds

fossilsdinosaurs

fossil

sequencesequences

genomedna

sequencing

bacteriabacterial

hostresistanceparasite

developmentembryos

drosophilagenes

expression

speciesforestforests

populationsecosystems

synapsesltp

glutamatesynapticneurons

neuronsstimulusmotorvisual

cortical

ozoneatmospheric

measurementsstratosphere

concentrations

sunsolar wind

earthplanetsplanet

co2carbon

carbon dioxidemethane

water

receptorreceptors

ligandligands

apoptosis

proteinsproteinbindingdomaindomains

activatedtyrosine phosphorylation

activationphosphorylation

kinase

magneticmagnetic field

spinsuperconductivitysuperconducting

physicistsparticlesphysicsparticle

experimentsurfaceliquid

surfacesfluid

model reactionreactionsmoleculemolecules

transition state

enzymeenzymes

ironactive sitereduction

pressurehigh pressure

pressurescore

inner core

brainmemorysubjects

lefttask

computerproblem

informationcomputersproblems

starsastronomers

universegalaxiesgalaxy

virushiv

aidsinfectionviruses

miceantigent cells

antigensimmune response

D. Blei Modeling Science 42 / 49

Page 50: Modeling Science - helper.ipam.ucla.eduhelper.ipam.ucla.edu/publications/sews1/sews1_7319.pdfwater acid disease milk water blood food solution cholera dry experiments bacteria fed

Summary

• Topic models provide useful descriptive statistics for analyzing andunderstanding the latent structure of large text collections.

• More generally, probabilistic graphical models are a useful way toexpress assumptions about the hidden structure of complicated data.

• Variational methods allow us to perform posterior inference toautomatically infer that structure from large data sets.

• Current research

• Choosing the number of topics• Continuous time dynamic topic models• Topic models for prediction• Inferring the impact of a document

D. Blei Modeling Science 43 / 49

Page 51: Modeling Science - helper.ipam.ucla.eduhelper.ipam.ucla.edu/publications/sews1/sews1_7319.pdfwater acid disease milk water blood food solution cholera dry experiments bacteria fed

“We should seek out unfamiliar summaries of observational material, andestablish their useful properties... And still more novelty can come fromfinding, and evading, still deeper lying constraints.” (Tukey, 1962)

D. Blei Modeling Science 44 / 49

Page 52: Modeling Science - helper.ipam.ucla.eduhelper.ipam.ucla.edu/publications/sews1/sews1_7319.pdfwater acid disease milk water blood food solution cholera dry experiments bacteria fed

Diversion: Variational inference

• Let x1:N be observations and z1:M be latent variables

• Our goal is to compute the posterior distribution

p(z1:M | x1:N) =p(z1:M , x1:N)∫

p(z1:M , x1:N)dz1:M

• For many interesting distributions, the marginal likelihood of theobservations is difficult to efficiently compute

D. Blei Modeling Science 45 / 49

Page 53: Modeling Science - helper.ipam.ucla.eduhelper.ipam.ucla.edu/publications/sews1/sews1_7319.pdfwater acid disease milk water blood food solution cholera dry experiments bacteria fed

Variational inference

• Use Jensen’s inequality to bound the log prob of the observations:

log p(x1:N) ≥ Eqν [log p(z1:M , x1:N)]− Eqν [log qν(z1:M)].

• We have introduced a distribution of the latent variables with freevariational parameters ν.

• We optimize those parameters to tighten this bound.

• This is the same as finding the member of the family qν that isclosest in KL divergence to p(z1:M | x1:N).

D. Blei Modeling Science 46 / 49

Page 54: Modeling Science - helper.ipam.ucla.eduhelper.ipam.ucla.edu/publications/sews1/sews1_7319.pdfwater acid disease milk water blood food solution cholera dry experiments bacteria fed

Mean-field variational inference

• Complexity of optimization is determined by the factorization of qν

• In mean field variational inference we choose qν to be fully factored

qν(z1:M) =M∏

m=1

qνm(zm).

• The latent variables are independent.

• Each is governed by its own variational parameter νm.

• In the true posterior they can exhibit dependence(often, this is what makes exact inference difficult).

D. Blei Modeling Science 47 / 49

Page 55: Modeling Science - helper.ipam.ucla.eduhelper.ipam.ucla.edu/publications/sews1/sews1_7319.pdfwater acid disease milk water blood food solution cholera dry experiments bacteria fed

MFVI and conditional exponential families

• Suppose the distribution of each latent variable conditional on theobservations and other latent variables is in the exponential family:

p(zm | z−m, x) = hm(zm) exp{gm(z−m, x)T zm − am(gi (z−m, x))}

• Assume qν is fully factorized, and each factor is in the sameexponential family:

qνm(zm) = hm(zm) exp{νTmzm − am(νm)}

D. Blei Modeling Science 48 / 49

Page 56: Modeling Science - helper.ipam.ucla.eduhelper.ipam.ucla.edu/publications/sews1/sews1_7319.pdfwater acid disease milk water blood food solution cholera dry experiments bacteria fed

MFVI and conditional exponential families

• Variational inference is the following coordinate ascent algorithm

νm = Eqν [gm(Z−m, x)]

• Notice the relationship to Gibbs sampling

D. Blei Modeling Science 48 / 49

Page 57: Modeling Science - helper.ipam.ucla.eduhelper.ipam.ucla.edu/publications/sews1/sews1_7319.pdfwater acid disease milk water blood food solution cholera dry experiments bacteria fed

Variational family for the DTM

βk,1 βk,2 βk,T

. . .

β̂k,1 β̂k,2 β̂k,T

• Distribution of θ and z is fully-factorized (Blei et al., 2003)

• Distribution of {β1,k , . . . , βT ,k} is a variational Kalman filter

• Gaussian state-space model with free observations β̂k,t .

• Fit observations such that the corresponding posterior over thechain is close to the true posterior.

D. Blei Modeling Science 49 / 49

Page 58: Modeling Science - helper.ipam.ucla.eduhelper.ipam.ucla.edu/publications/sews1/sews1_7319.pdfwater acid disease milk water blood food solution cholera dry experiments bacteria fed

Variational family for the DTM

βk,1 βk,2 βk,T

. . .

β̂k,1 β̂k,2 β̂k,T

• Given a document collection, use coordinate ascent on all thevariational parameters until the KL converges.

• Yields a distribution close to the true posterior of interest

• Take expectations w/r/t the simpler variational distribution

D. Blei Modeling Science 49 / 49


Recommended