+ All Categories
Home > Documents > Modeling Using Colorability Presented by: Kelley Louie CSC 252 Algorithms 252a-aj.

Modeling Using Colorability Presented by: Kelley Louie CSC 252 Algorithms 252a-aj.

Date post: 12-Jan-2016
Category:
Upload: vincent-wilkins
View: 213 times
Download: 0 times
Share this document with a friend
22
Modeling Using Modeling Using Colorability Colorability Presented by: Kelley Presented by: Kelley Louie Louie CSC 252 Algorithms CSC 252 Algorithms 252a-aj 252a-aj
Transcript
Page 1: Modeling Using Colorability Presented by: Kelley Louie CSC 252 Algorithms 252a-aj.

Modeling Using Colorability Modeling Using Colorability

Presented by: Kelley Louie Presented by: Kelley Louie

CSC 252 AlgorithmsCSC 252 Algorithms

252a-aj252a-aj

Page 2: Modeling Using Colorability Presented by: Kelley Louie CSC 252 Algorithms 252a-aj.

Introduction

All of the algorithms that we have learned in class have real world applications such as social science problems.

By associating a problem to a graph, we can solve the social science problem.

Page 3: Modeling Using Colorability Presented by: Kelley Louie CSC 252 Algorithms 252a-aj.

Summary

History Two Models

– Committee Scheduling – Routing Garbage Trucks

Planar Graphs Bipartite Graphs LEDA implementation

Page 4: Modeling Using Colorability Presented by: Kelley Louie CSC 252 Algorithms 252a-aj.

History: Four Color Problem

In 1852, Francis Guthrie noticed that he could color the map of England in four colors. He asked his brother, Frederick Guthrie, if every map has the chromatic number of four. This same question was relayed to London mathematican Augustus de Morgan by his student Frederick Guthrie.

In 1853, Kempe devised a proof, but eleven years later, Heawood disproved the correctness. Several other proofs were also found, but all had flaws.

The theorem was finally proved by Appel and Haken in 1976 using a computer to solve difficult cases and 1200 hours of computing time. This employed using techniques called reducibility and discharging. The theorem by Appel and Haken remains a disputed proof because part of the proof uses a computer and can not be verified by hand, and the part that is checkable by hand is complex and tedious and no one has been able

to verify it.

Page 5: Modeling Using Colorability Presented by: Kelley Louie CSC 252 Algorithms 252a-aj.

Definition

chromatic number χ(G) - minimum number k such that Graph G is colorable in k-colorings

clique - subgraph Gc that is a complete graph

Page 6: Modeling Using Colorability Presented by: Kelley Louie CSC 252 Algorithms 252a-aj.

Committee Scheduling

Problem: assign meeting times such that there are no conflicts between members

Solution: create a corresponding graph with the condition that no two adjacent vertices are assigned the same time instead of times, assign colors such that no two adjacent vertices share the same color

Graph G– vertices: all the committees that need regular meeting times– edge: joins two vertices iff share a common member

Page 7: Modeling Using Colorability Presented by: Kelley Louie CSC 252 Algorithms 252a-aj.

Graph of Committee Scheduling

This graph has a chromatic number of three because the largest clique is 3. Credit: Applied Combinatorics p. 98

Page 8: Modeling Using Colorability Presented by: Kelley Louie CSC 252 Algorithms 252a-aj.

Routing Garbage Trucks

Posed by the New York City Department of Sanitation (Beltrami and Bodin [1973])

Tour of a truck is a scheduling of sites to visit within one day– each site i visited ki times in a week

– tours partitioned among six days (Sunday is not a working day) such that

• each site is visited once a day• no day assigned more tours than the number of trucks

– total time for all trucks is minimal

Page 9: Modeling Using Colorability Presented by: Kelley Louie CSC 252 Algorithms 252a-aj.

Routing Continued

Start with any set of tours and improve the total time of the tours

Test if the set satisfies the condition that it must be partitioned into 6 days

To determine if a possible solution can be partitioned into six parts: – create Graph (G)– determine if the graph can be colored in 6 or less

colors

Page 10: Modeling Using Colorability Presented by: Kelley Louie CSC 252 Algorithms 252a-aj.

Graph of Garbage Tour

The graph on the left is an example of the routing problem without any colored vertices.

The graph on the right has chromatic number six.

Page 11: Modeling Using Colorability Presented by: Kelley Louie CSC 252 Algorithms 252a-aj.

Determine 6-Colorable Quickly

Use the Strong Perfect Graph Conjecture – definition: G is γ-perfect iff neither G or any

subgraph Gc has an odd circuit of 3 or greater

– γ-perfect: if for all subgraphs Gc χ(G) >= ω(G) yes - use the old algorithm to check if the chromatic

number is 6 – start from one vertex and check if the chromatic number

is 6 no - determine if the graph has a clique of 6 or greater

Page 12: Modeling Using Colorability Presented by: Kelley Louie CSC 252 Algorithms 252a-aj.

Determining 6-Color in Detail

For γ-perfect graphs, the chromatic number can be calculated by the finding the number of vertices in the largest clique.

Page 13: Modeling Using Colorability Presented by: Kelley Louie CSC 252 Algorithms 252a-aj.

Planar Graphs

Four Color Theorem

– all planar graphs are colorable in four colors Test if Graph G is planar

– K3, 3 and K5 are not planar

– a graph is planar iff it has no subgraph homeomorphic to K3, 3 or K5

– a graph is planar if it has no subgraph that is K3, 3 or K5

Page 14: Modeling Using Colorability Presented by: Kelley Louie CSC 252 Algorithms 252a-aj.

Examples of Non-planar

left: G is nonplanar because it has a subgraph S that is homeomorphic to K3, 3 as shown by the open circles and closed circles

right: G is nonplanar because it has a subgraph S that is homeomorphic to K5 as shown by the vertex A being adjacent to C and D and with added vertexes to B and E

credit: Discrete Mathematics with Graph Theory p. 471

Page 15: Modeling Using Colorability Presented by: Kelley Louie CSC 252 Algorithms 252a-aj.

Bipartite Graphs

all bipartite graphs are colorable in two colors color a bipartite graph

– perform Breadth First Search – first node is one color– adjacent node is the other color– continue BFS with alternating color assignments– end only when all the nodes are colored

Page 16: Modeling Using Colorability Presented by: Kelley Louie CSC 252 Algorithms 252a-aj.

LEDA implementation a planar graph has at most five

neighbors as stated in the LEDA book Lemma 47– if node v has less than five neighbors

• recursively color the neighbors and color v in the color not used by its neighbors

– if node v has five neighbors • merge the two non-adjacent vertices, w and z, to its neighbor v

• remove v and any parallel edges • five color the graph recursively • unmerge w and z by coloring w and z

the color used in the merged graph

• color v a color not used by its neighbors

Credit: LEDA: A Platform for Combinatorial and Geometric Computing p. 578

Page 17: Modeling Using Colorability Presented by: Kelley Louie CSC 252 Algorithms 252a-aj.

Five Colorability

It has been proven that planar graphs can be colored in 5 or less colors. Proof by induction if V = 1, then yes the graph is colorable in 5 or less colors, to be more specific, it can colored in exactly one color prove for V = k+1, assume G is planar

– Corollary 13.6 states that every planar graph has at least one vertex v of at most degree 5

– delete this vertex of at most degree 5, and then G0 can be colored in 5 or less colors by the induction hypothesis

• color the vertices neighboring v, if one color has not been used, color v with this last remain, vertex v has less than 5 neighbors

• if v has 5 neighbors, there are two cases

– G0 has no path from v1 to v3 all colored 1 or 3

• subgraph H with vertices colored 1 or 3 which start at v1, alternate coloring H with colors 1 and 3, so v1 and v3 are colored 3 and v can be colored 1

– G0 has a path from v1 to v3 with vertices all colored 1 or 3

• path of v and v1 produces a circuit that does not enclose both v2 and v4, so must cross the path at a vertex within the path. There is no path in G0 from v2 to v4 that just uses color 2 and 4, since it crosses another vertex. Now we have the same case as above.

Credit: Discrete Mathematics with Graph Theory

Page 18: Modeling Using Colorability Presented by: Kelley Louie CSC 252 Algorithms 252a-aj.

Possible Implementation

assume Graph G is stored as an adjacency list, perform a search through the list to determine if each node has less than five neighbors, this would take n+m time

if less than five neighbors, then five color the graph recursively if five neighbors, then perform the merging and unmerging, and color

the graph coloring the graph would require visiting all the nodes once again

the most time spent would be to determine the degree of the nodes, this would take O(n+m), coloring would take O(n+m), total = O(n+m)

Page 19: Modeling Using Colorability Presented by: Kelley Louie CSC 252 Algorithms 252a-aj.

Conclusion

Colorability is NP-hard. For some problems, determining the type of graph leads to the chromatic

number. In general, any type of scheduling problem can be related to a colorable

graph. Therefore, by using techniques to determine the chromatic number of the graph, one can find organize a schedule to avoid all possible conflicts.

It is not possible to just find the largest clique number and assume that this s the chromatic number because finding the largest clique is NP-complete.

For the routing problem, it was simpler to find a solution because the

number of colors were set.

Page 20: Modeling Using Colorability Presented by: Kelley Louie CSC 252 Algorithms 252a-aj.

Acknowledgements

Discrete Mathematical Models: with applications to social, biological, and environmental problems

– Fred S. Roberts

Applied Combinatorics– Fred S. Roberts

Discrete Mathematics with Graph Theory – Edgar G. Goodaire & Michael M. Parmenter

Lovász’s reduction of Colorability to 3-Colorability– http://www.cs.rutgers.edu/~chvatal/notes/color.html

The Four Color Theorem – http://www.math.gatech.edu/~thomas/FC/fourcolor.html

Graphs And Their Uses – Oystein Ore

LEDA: A Platform for Combinatorial and Geometric Computing– Kurt Mehlhorn & Stefan Näher

Page 21: Modeling Using Colorability Presented by: Kelley Louie CSC 252 Algorithms 252a-aj.

Further Information

Links to various coloring sites including source codes for coloring programs– http://www.cs.ualberta.ca/~joe/Coloring/

index.html Dna computing to solve colorability

– http://cism.jpl.nasa.gov/program/RCT/DNACompUD.html

Page 22: Modeling Using Colorability Presented by: Kelley Louie CSC 252 Algorithms 252a-aj.

Contributions

I found and read many books about colorability to get a better understanding of the different theorems associated with graph coloring. Unfortunately, I did not find a heuristic for solving colorability. The closest solutions I have found involved theorems that prove whether or not a graph is planar. If so, the graph can be colored in four or less colors, if the Four Color Theorem holds to be true. It has been proven that planar graphs are colorable in five or more colors.

I searched the internet for relevant information, but most sites dealt only with the fact that colorability is NP-hard and that many researchers are trying reduce colorability to 3-colorability, which is NP-hard.

I used LEDA to illustrate the algorithm that it employs to display 5-colorability. Along with LEDA, I read the book to understand how the algorithm works to color the graph.

I briefly stated a possible implementation of five colorability.


Recommended